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ABSTRACT 
The regularity property was first introduced by wavelet the- 
ory for octave-band “dyadic” filter banks. In this paper, 
we provide a detailed theoretical analysis of the regularity 
property in the more flexible case of filters banks with ra- 
tional sampling changes. Such filter banks provide a finer 
analysis on fractions of an octave, and regularity is equally 
important as in the dyadic case. Sharp regularity estimates 
for any filter bank are given. 

The major difficulty of the rational case, as compared 
to the dyadic case, is that one obtains “wavelets” that are 
not shifted versions of each other at a given scale. We show, 
however, that under regularity conditions, shift invariance 
can be almost obtained. This is a desirable property for e.g. 
coding applications and for efficient filter bank implemen- 
tation of a continuous wavelet transform. 

1. INTRODUCTION 

Dyadic wavelet transforms, associated to  octave-band FIR 
filter banks with sampling changes by two, have been suc- 
cessfully applied for applications such as subband coding of 
speech and images [lo]. The regularity property was first 
introduced in this context by Daubechies [3] and was found 
to be a promising filter criterion for some applications [lo]. 
It  is the major novelty brought by wavelet theory over filter 
banks. Now, the dyadic case can be extended to include 
rational sampling rates, resulting in more flexible decom- 
position schemes: In the “rational” case, the signal is ana- 
lyzed by fractions log,(p/q)th of an octave instead of being 
analyzed octave by octave, resulting in a finer analysis if 
1 < p / q  < 2. The dyadic case is, of course, recovered by 
setting p/q = 2. Within this generalized framework, regu- 
larity of “wavelets” underlying rational filter banks should 
be equally important as in the well-known dyadic case. 

Therefore, we consider the two-band rational filter bank 
as depicted in Fig. 1, where G ( z )  and H ( z )  are low-pass and 
high-pass filters, respectively. This filter bank is iterated 
over low-pass branches. Roughly speaking, wavelets are ob- 
tained as combinations of equivalent impulse responses of 
the low-pass branch, when it is iterated to infinity. The reg- 
ularity problem is to find the conditions on low-pass filter 
G ( z )  such that the corresponding wavelets are “regular,” 
i.e., continuous, possibly with several continuous deriva- 
tives. Such regularity conditions will generate “smooth” 

. .. 

Figure 1: Flow-graph of iterated two-band rational filter 
bank. 

impulse responses in the filter bank. 
KovaEeviC and Vetterli [6] designed perfect reconstruc- 

tion FIR filter banks with rational sampling rates, and were 
the first who investigated the existence of associated rotio- 
nal wavelets as limit functions. They first thought that reg- 
ular rational wavelets could be obtained, and even gave an 
explicit example in [6]. However, they finally concluded [5], 
using a remark of Cohen and Daubechies [2], that it is the- 
oretically impossible to  construct such wavelets. The theo- 
retical analysis undertaken in this paper explains why they 
were at first led to a positive conclusion, while also pointing 
out the existence of rational “pseudo-wavelets”. 

In fact, iterating j times the low-pass branch gives the 
flow-graph of Fig. 2, where G 3 ( z )  is defined by 

KovaEeviC and Vetterli [6] took the associated sequence g: 
as a candidate for converging to a limit function. But it 
turns out that this is impossible [5] for FIR filters. 

There is a good reason for this impossibility: The im- 
pulse responses of Fig. 2 are, in fact, the decimated se- 
quences gf,’” = g~j,-p,d,  and for each value of s (shift pa- 
rameter), we can now define a limit function c p ’ ( ( t ) ,  as the 
limit as j + 00 of the discrete curves g$’ plotted against 
n(p /q ) - ’  [l]. The functions $ ( t )  are the counterparts of 
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Figure 2: Flow-graph of the iterated low-pass branch, giving 
g y  = 3 

Qgj,-pj 3 

the “scaling function” in a classical dyadic wavelet trans- 
form [3], and yield “pseudo-wavelets”. In the dyadic case, 
since gk’ = gf,-, j ,  ( p  = 2, q = I), one has pd(t) = po(t-3): 
shift invariance is satisfied. Unfortunately, this shift invari- 
ance does not hold anymore whenever q > 1, as illustrated 
in Fig. 3 (b). In other words, the shape of the equivalent 
impulse responses of rational FIR filter banks vary in time, 
resulting in infinitely many “wavelet prototypes”. 

We therefore have to consider an infinite set of limit 
functions rather than one, and study regularity of each of 
these functions. Fortunately, a theoretical analysis of their 
global regularity is possible and is undertaken in section 2. 
It allows one to obtain algorithms which compute sharp 
regularity estimates for all limit functions p’(t), given in 
section 3. This is a necessary prerequisite for investigating 
the precise role of regularity for a particular application. 

Regularity is useful not only for obtaining smooth im- 
pulse responses in an iterated rational filter bank, but also 
for obtaining shift invariance within a small error. We show 
in section 4 that rational pseudo-wavelets can be easily 
made almost “shiftable”: Shift invariance can be obtained 
within a small error, precisely by increasing the regularity 
of these pseudo-wavelets. 

2. THEORETICAL ANALYSIS OF 
REGULARITY 

Regularity of limit functions p”(t )  represents the amount 
of “smoothness” that can be imposed by a suitable choice 
of low-pass filters G ( t )  (in the analysis part) or G ’ ( t )  (in 
the synthesis part, see Fig. 1). Since wavelets are linear 
combinations of the ~ ‘ ( 1 )  [l], they are at least as regular. 
Under special conditions on the filters, the “wavelets” are 
regular as shown in Fig. 3 (a). For “bad” choices of the 
low-pass filter G ( r ) ,  however, they do not have smooth time 
evolutions (see each curve in Fig. 3 (b)). The aim of this 
section is to find these regularity conditions on G(z). 

Let us first note that “spectrum-based” methods, which 
have been successfully applied for estimating regularity in 
the dyadic case (see e.g. [3]) are no longer useful in the 
rational case, due to the lack of shift invariance. The only 
method we know that can be successfully generalized from 
the dyadic case to the rational one is the “discrete-time 
approach” investigated in [7,8]. 

In the following, we outline the basic steps of this a p  
proach in the rational case. This development follows [8], 
and can be skipped for readers willing to avoid the tech- 
nical details leading to the main results of this paper. We 
first need some intermediate results on derivatives and Nth 
order derivatives ((2) and (3)) and then use Holder regu- 
larity (4) to arrive at the main discrete criterion (5), which 
serves as the basis for estimating regularity. 

I ’  I 
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Figure 3: Plots of the limit functions p’(t + s), for 32 
different values of s. They were re-shifted to emphasize 
the shape similarities ( p / q  = 3/2). (a). Regular exemple 
G ( r )  = (1 + z-’ + z - ~ ) ~ ,  for which the shift invariance al- 
most holds. (b). Continuous, but not very regular exemple, 
G ( z )  = (1 + . ~ - ~ ) ( 1  + 2-l + t-’). 

First, we characterize “uniform” convergence of g$’ to 
limit functions p’(t)-which are then all continuous-by 
the fact that the maximum of the differences Iskg - g’,’”! 
tend to 0 as j -+ 00. Intuitively speaking, no discontinuities 
occur in the iteration process, hence the limit functions are 
continuous. Moreover, this implies that at  least one factor 
of the form - divides G ( t )  [l]. 

However, continuity is not enough to ensure smooth 
limit functions (Fig. 3 (b)). We need more, namely, conti- 
nuity of derivatives. The sequences converging to the first 
derivatives of the ps(t) are the first-order finite differences 

A d ’ ’  = (d” - g: : I ) / (p /q ) - ’ ,  (2) 

which represent the slopes of the discrete curves gk”, plotted 
against n ( p / q ) - J .  

A remarkable fact is that derivatives can be obtained as 
limit functions of another rational filter bank, in which one 
factor in G ( z )  has been replaced by S. This is 
a simple way to produce derivatives of rational wavelets. 

To obtain Nth  order continuous derivatives, one just 
has to consider Nth-order finite differences ANgkS by a p  
plying N times the operator A in (2), and impose that they 
converge uniformly. A necessary condition [I] is then that 
G ( t )  should contain at  least N + 1 factors s, i.e., 

N t 1  (-) divides G ( t )  (3) 
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This gives a simple rule for constructing regular rational 
filter banks, already applied in [6] as a natural extension to 
the dyadic case. Adding one factor ( ( l - ~ - ~ ) / ( l - z - ’ ) ) ,  i.e., 
adding zeros a t  the p aliasing frequencies 2kx/p, 0 5 k < p ,  
will generally increase the regularity order. 

However, condition (3) is, mathematically speaking, not 
sufficient to  obtain regularity: While zeros of the low-pass 
filter at the p aliasing frequencies have a favorable effect for 
regularity, the effect of the other zeroes in G(z) is generally 
destructive. Therefore, to quantify regularity accurately, 
we evaluate precisely the amount of regularity lost by these 
zeroes. To do this, we use the Holder definition of reg- 
ularity [4,7,8] which allows us to extend the definition of 
regularity orders to real-valued numbers: The p”(t)’s are 
said to be regular of order N + a, where 0 < a 5 1, if 
there is a constant c such that the Nth  derivatives of p”(t), 
denoted by p:”(t), satisfy 

for all t and arbitrarily small h. In other words, infinitesimal 
slopes are allowed to increase indefinitely, but not faster 
than lhl-( l -a) .  

We can prove that it is sufficient, in order to obtain 
regularity order N + a for all limit functions p”(t), that 
the following discrete rewriting of (4) ,  

(5) 

is satisfied. Now, to estimate ( 5 ) ,  we extend the remark 
made earlier for derivatives to higher orders: The Nth 
derivative of ~ ” ( 1 )  is obtained by replacing N factors 

in G(z) by factors -. If we make still another replace- 
ment of this kind-assuming (3)-in order to produce the 
desired sequence in the left-hand side of (5),  we obtain 

(The constant factor is there for normalization purposes.) 
Iterating F N ( z )  similarly as in (1) to give F&(z) ,  is easy to 
check that the 1.h.s. of ( 5 )  is the output of the flow-graph 
depicted in Fig. 2, in which G J ( z )  has been replaced by 
F A ( z ) ,  and where the input is now the sequence associated 
to ~ - ’ ( l - z - ’ ) ~ + ’ ,  Because of this latter property, it is now 
easy to estimate a in (5) using bounds on the coefficients 
of F&(z) .  We then obtain T = N + a as a sharp estimate 
of the regularity order. 

We have deliberately left out many details, which are 
explained in the dyadic case in [8], and more or less easily 
carry over to the rational case. 

3. REGtJLARITY ESTIMATES 

We have seen in the preceding section that sharp regularity 
estimates are obtained simply by estimating (Y in (5), and 
that this is done using bounds on FA(%) ,  an iterated ver- 
sion of (6). We now propose two algorithms to effectively 
compute a. The,y differ only by the way bounds on F & ( z )  
are computed. 

3.1. ITERATED ESTIMATES 

The following algorithm sharply estimates the regularity 
order, for any filter bank: First, normalize G(z) such that 
G(z = 1) = p and consider FN(z) (6),  in which zeroes 
at aliasing frequencies no longer appear. Next, compute 
F A ( z )  (associated to sequence (f;),,) using iteration (1). 
The Holder regularity estimate N + a], improved as j is 
taken larger, is given by 

This algorithm requires a finite number of steps and can 
be easily implemented. However, it requires more compu- 
tation for a given filter length than in the dyadic case [7,8]: 
Complexity grows as q’ times the lengths of the sequences 
gk’, and q = 1 in the dyadic case. A sharp estimate is 
nonetheless obtained fairly rapidly using (7). As an exam- 
ple, the first values of regularity estimates for Kovkevid 
and Vetterli’s choice [6], G(z)  = (1 - z-P)/(1 - . 
(1 - z-*)/ ( l  - z - ’ ) ~ ,  p/p = 3/2,  are 2.924108, 2.929214, 
2.932957, 2.935751 and 2.937873 for the first 5 iterations, 
while an upper bound, computed as shown below, is 2.9498. 
The resulting “wavelets” are all almost three times contin- 
uously differentiable. 

We remark, in passing, that due to the shift invariance 
satisfied in the dyadic case (section l ) ,  these estimates turn 
out to be truely optimal for almost all possible “dyadic” 
wavelets [8,7]. In the more general, rational case, proving 
optimality is much more difficult, again because of lack of 
shift invariance. However the limit of aJ in (7) will give the 
best (largest) (Y in ( 5 ) ,  and we conjecture that this corre- 
sponds to a sharp regularity estimate for the cps( t ) ’s .  

3.2. MATRIX ESTIMATES 

A variation of the above algorithm uses matrices, and is 
a natural extension to the work of Daubechies and La- 
garias [4] for rational filter banks. Although their approach, 
based on two-scale difference equations, can no longer be 
used directly in the rational case (still because of lack of 
shift invariance), our discrete-time approach allows an easy 
generalization. 

The idea is to compute the coefficients of F&(z)  as en- 
tries of a matrix product, each matrix representing an el- 
ementary sampling change operation in an analysis filter 
bank. We then obtain 

where each F,, is taken in a set of p matrices F,, r = 0, 
. . . , p - 1. The latter are obtained as convolution matrices 
in which one have retained only one every pth line and one 
every qth column. (That is, F, has ( a , j )  entries given by 
(A),+ w - 3 9 . )  

The main advantage of this matrix formulation is that 
it provides sharp lower and upper bounds for regularity es- 
timates provided by (7).  A lower bound is obtained by 
replacing the right-hand side in (8) by the maximum of the 
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Fr’s norms (for any matrix norm), while an upper bound is 
obtained by taking spectral radii (maximum absolute value 
of eigenvalues) instead. 

In contrast with (7), such bounds can be easily and effi- 
ciently computed. For the KovateviC and Vetterli’s example 
considered above, we obtain 2.9241 5 r 5 2.9498. In this 
case, the lower bound is precisely the first estimate 2 + a1 
for j = 1 in (7).  

4. SHIFT INVARIANCE 

As pointed out above, the major difficulty of the rational 
case as compared to the dyadic case is the lack of shift in- 
variance of the equivalent impulse responses, resulting in 
a infinite collection of possible wavelet shapes rather than 
one. In other words, we obtain only a pseudo-wavelet trans- 
form, in which wavelet bases are not shifted versions of each 
other a t  a given scale. However, we now show that this shift 
invariance can be obtained approximately by using regular 
filters, as was observed in Fig. 3 (a). We prove the following 
result: if N in (3) increases indefinitely, thereby increasing 
the regularity order N + a, then the pointwise difference 
between two limit functions ps(t + s) and cp“(t + s‘) tends 
to zero. The proof is a little intricate, and is outlined below. 

To simplify the following derivations, we consider an 
average limit function, @(t),  defined in [l] as 

(9) 

The problem amounts to finding an upper bound for the 
shaft error 

E = sup IpS(t) - @(t - s)I (10) 
t , S  

We found that, provided that the regularity order is posi- 
tive, a bound for E is 

E I c SUP I G ( ~  - S) - gqn--ps+((P/q)t - 12)1 (11)  
t , S  

n E Z  

Now, we recognize a two-scale difference equation [1,4] in 
the term inside bars: Had shift invariance be statisfied, 
this term would vanish. However, because of the averaging 
procedure in (9), @(t) satisfies another two-scale difference 
equation, namely @ ( t -  s) = En g q , , - , , , @ ( ( p / q ) t - n ) ,  where 
n is now taken over values k / q ,  where k is an integer. There- 
fore, the sum in (10) reduces to non-integer values of n. It 
is now easy (?), taking Fourier transforms and using (3) ,  to 
bound (10) by the integral 

E 5 c max Isinc(v)sinp((k + v)/q)IN dv (12) 
1 S k < q  J 

where we have noted sinc(2) = sin(rt)/(xt)  and sinp(2) = 
sin(xpt)/ sin(xl). Because k is not a multiplie of q ,  this inte- 
gral tends to zero exponentially as N increases. Therefore, 
shift invariance is obtained within a small error as regularity 
increases. 

We have seen that KovateviE and Vetterli’s pseudo- 
wavelets, derived from their example in [6] ,  are all almost 
three times continuously differentiable. Hence, they pro- 
duce a very small shift error (We found E < loh2) .  This 

is the reason why these authors first thought that they ob- 
tained regular wavelets by plotting g!, instead of gk”: the 
curves of # ( t )  almost coincide within less than lo-* error, 
similarly as in Fig. 3 (a). 

5. CONCLUSION 

Regularity requires smooth time evolutions of equivalent 
impulse responses in a rational filter bank. We believe that 
this property may be relevant for applications such as image 
coding for the same reasons as in the dyadic case [lo]. As 
in the dyadic case, whether regularity is actually useful in 
a particular application remains an open question. The 
regularity estimates derived in this paper can be used as 
tools for investigating the precise role of regularity. 

Even if the usefulness of smooth impulse responses is 
still an open question in coding applications, regularity has 
an additional merit in the rational case: it allows one to o b  
tain shift invariance of rational filter banks, within a small 
error. In fact, lack of shift invariance may be a serious draw- 
back, since the transform coefficients depend not only on 
the signal waveform, but also on the location at  which it is 
analyzed-equivalent impulse responses vary in time. Also, 
efficient implementation of a true continuous-time wavelet 
transform with rational sampling changes can be obtained 
within a small error, based on the pseudo-shift invariance 
property. This is because shift invariance is necessary to 
utilize filter bank schemes using identical building blocks 
repeatedly. Techniques similar to what was done in the 
dyadic case [9] can then be applied in the rational case. 
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