Densité spectrale de puissance Estimation spectrale non paramétrique Estimation spectrale paramétrique Méthodes à haute résolution

Méthodes haute-résolution en analyse spectrale

Yves Grenier

Télécom ParisTech

Mai 2018

Plan

- Densité spectrale de puissance
- 2 Estimation spectrale non paramétrique
- Stimation spectrale paramétrique
- Méthodes à haute résolution

Signaux aléatoires et densité spectrale Exemple, une note de piano Sommes de sinusoïdes Résolution fréquentielle

DENSITÉ SPECTRALE DE PUISSANCE

Movenne, autocovariance

Variable aléatoire $X:\omega\to x(\omega)$, densité de probabilité p(x) t.q. :

$$Prob(x \in B) = \int_{B} p(x)dx$$

Espérance mathématique :

$$\mathbb{E}(f(x)) = \int f(x)p(x)dx$$

Voir le signal $\{X_t,\ t\in\mathbb{Z}\}$ comme réalisation du signal aléatoire $\{X_t(\omega)\}$:

$$p(X_{t_1}, X_{t_2}, \ldots, X_{t_K}), \forall K > 0, \forall t_1, \forall t_2, \ldots, \forall t_K$$

Pour un signal aléatoire du second ordre, $\mathbb{E}(X_t)$ et $\mathbb{E}(X_tX_{t'})$.

Stationarité (moyenne, autocovariance) :

$$\mathbb{E}(X_t) = \mu, \quad \mathbb{E}((X_t - \mu)(X_{t'} - \mu)) = R_{XX}(t - t')$$

Densité spectrale de puissance

Définie comme la transformée de Fourier de l'autocovariance R_{XX} :

$$R_{XX}(n) = \mathbb{E}(X_t X_{t+n}) \to S_{XX}(f) = \sum_{n=-\infty}^{+\infty} R_{XX}(n) e^{-j2\pi fn}$$

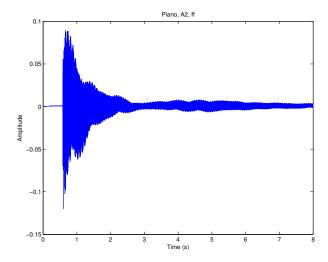
Exemple pour une sinusoïde :

$$X_t = A \sin(2\pi f_0 n + arphi(\omega)) \quad (arphi(\omega) ext{ uniforme sur } [0,2\pi])$$

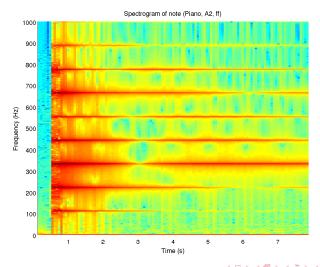
$$R_{XX}(n) = A^2 \cos(2\pi f_0 n)$$

$$S_{XX}(f) = A^2 \left[\delta(f-f_0) + \delta(f+f_0)\right]$$

Un exemple de signal (note de piano, la2)



Représentation temps-fréquence de cette note



Sommes de sinusoïdes

Signal représenté comme somme de sinusoïdes amorties :

$$ilde{X}(t) = \sum_{k=1}^{N} ilde{A}_k e^{-eta_k t} \sin(2\pi f_k t + arphi_k)$$

L'amortissement peut être négligé si la fenêtre d'analyse est courte. On travaille dans $\mathbb C$:

$$\tilde{X}(t) = Re\left(\sum_{k=1}^{N} A_k e^{j2\pi f_k t}\right)$$

Puis si X(t) est la transformée de Hilbert de $ilde{X}(t)$:

$$X(t) = \sum_{k=1}^{N} A_k e^{j2\pi f_k t}$$

Résolution fréquentielle

Sinusoïde observée sur une durée T:

$$ilde{X}_t = X_t imes 1_{[0,T-1]} \Rightarrow S_{ ilde{X} ilde{X}}(f) = S_{XX}(f) * ig| T.F.(1_{[0,T-1]}) ig|^2$$

$$S_{ ilde{X} ilde{X}}(f) = A^2 \left| \frac{\sin(\pi T(f-f_0))}{T\sin(\pi (f-f_0))} \right|^2$$

Si X est la somme de deux sinusoïdes indépendantes à f_1 et f_2 :

$$S_{\tilde{X}\tilde{X}}(f) = A_1^2 \left| \frac{\sin(\pi T(f - f_1))}{T \sin(\pi (f - f_1))} \right|^2 + A_2^2 \left| \frac{\sin(\pi T(f - f_2))}{T \sin(\pi (f - f_2))} \right|^2$$

Un écart minimal entre f_1 et f_2 est nécessaire pour distinguer les deux sinusoïdes (approximativement $|f_1-f_2|>1/T$)

Périodogramme Méthode de Blackman-Tukey Méthode de Bartlett Méthode de Welch

ESTIMATION SPECTRALE NON PARAMÉTRIQUE

Périodogramme

Périodogramme : carré du module de la transformée de Fourier du signal

$$\hat{S}_{P,XX}(f) = \frac{1}{T} \left| \sum_{t=1}^{T} X_t e^{-j2\pi f t} \right|^2$$

Corrélogramme : transformée de Fourier de l'autocovariance

$$\hat{S}_{C,XX}(f) = \sum_{t=-T+1}^{T-1} \hat{R}_{XX}(k)e^{-j2\pi fk}$$

Avec estimation biaisée de l'autocovariance $(\frac{1}{N}$ au lieu de $\frac{1}{N-k})$:

$$\hat{R}_{XX}(k) = \frac{1}{N} \sum_{t=k+1}^{T} X_t X_{t-k}^* \Longrightarrow \hat{S}_{P,XX}(f) = \hat{S}_{C,XX}(f)$$

Biais du Périodogramme

$$\mathbb{E}(\hat{S}_{P,XX}(f)) = \mathbb{E}(\hat{S}_{C,XX}(f)) = \sum_{k=-T+1}^{T-1} \mathbb{E}(\hat{R}_{XX}(k)e^{-j2\pi fk})$$

Comme nous utilisons l'estimateur biaisé :

$$\mathbb{E}\left(\hat{S}_{P,XX}(f)\right) = \sum_{k=-T+1}^{T-1} \left(1 - \frac{|k|}{T}\right) R_{XX}(k) e^{-j2\pi f k}$$

Définir
$$B(k) = \begin{cases} 1 - \frac{|k|}{T} & \text{si } |k| < T \\ 0 & \text{sinon} \end{cases}$$
 et $\tilde{B}(f) = \frac{1}{T} \left| \frac{\sin(\pi f T)}{\sin(\pi f)} \right|^2$

$$\mathbb{E}\left(\hat{S}_{P,XX}(f)\right) = \sum_{k=-\infty}^{\infty} B(k)R_{XX}(k)e^{-j2\pi fk} = \int_{-\frac{1}{2}}^{\frac{1}{2}} S_{XX}(g)\tilde{B}(f-g)dg$$

Le périodogramme est une version lissée de la densité spectrale de puissance, mais il est asymptotiquement sans biais.

Variance du Périodogramme

Calcul complexe, qu'on peut faire dans le cas d'un bruit blanc complexe (ou circulaire) :

$$\begin{cases} \mathbb{E}(e_t e_s^*) = \sigma^2 \delta_{t,s} \\ \mathbb{E}(e_t e_s) = 0 \end{cases}$$

$$\mathbb{E}\left(\hat{S}_{P,ee}(f)\hat{S}_{P,ee}(g)\right) = S_{ee}(f)S_{ee}(g) + S_{ee}(f)^2 \delta_{f,g}$$

On retiendra que la variance du périodogramme est proportionnelle au carré du périodogramme!

Méthode de Blackman-Tukey

Réduire la variance par une pondération de la covariance, quitte à augmenter le biais

$$\hat{S}_{BT,XX}(f) = \sum_{k=-M+1}^{M-1} w(k)\hat{R}_{XX}(k)e^{-j2\pi fk}$$

Alors la densité spectrale de puissance estimée est un lissage du périodogramme :

$$\hat{S}_{BT,XX}(f) = \int_{-\frac{1}{2}}^{\frac{1}{2}} \hat{S}_{P,XX}(g)W(f-g)dg$$

Méthode de Bartlett

Toujours pour réduire la variance, quitte à augmenter le biais, on découpe les N échantillons en L blocs de taille M=N/L

$$\tilde{X}_{i,t} = X_{(i-1)M+t}, \quad \begin{cases} t \in [0, M-1] \\ i \in [1, L] \end{cases}$$

On fait la moyenne des périodogrammes de chaque bloc :

$$\hat{S}_{B,XX}(f) = \frac{1}{L} \sum_{i=1}^{L} \frac{1}{M} \left| \sum_{t=0}^{M-1} \tilde{X}_{i,t} e^{-j2\pi ft} \right|^2$$

La résolution est réduite dans un facteur $\frac{1}{M}$

Méthode de Welch

Comme dans la méthode de Bartlett, on découpe en blocs, mais ils peuvent se recouvrir

$$\tilde{X}_{i,t} = X_{(i-1)K+t}, \quad \begin{cases} t \in [0, M-1] \\ i \in [1, S] \end{cases}$$

Si K=M, on retrouve la méthode de Bartlett Valeur recommandée : K=M/2 et donc S=2M/NDe plus on multiplie le signal par une fonction dite d'apodisation v(t)

$$\hat{S}_{W,XX}(f) = \frac{1}{S} \sum_{i=1}^{S} \frac{1}{P} \frac{1}{M} \left| \sum_{t=0}^{M-1} v(t) \tilde{X}_{i,t} e^{-j2\pi f t} \right|^{2}$$

où P permet de normaliser chaque périodogramme

$$P = \frac{1}{M} \sum_{t=0}^{M-1} |v(t)|^2$$

Méthode du Maximum d'Entropie Modèle autorégressif Méthode de Capon, MVDR

ESTIMATION SPECTRALE PARAMÉTRIQUE

Méthode du maximum d'entropie

On estime les covariances R_0 à R_p .

Pour que la densité spectrale de puissance soit définie, comment définir les covariances à partir de R_{p+1} en introduisant le moins d'information possible?

⇒ maximiser l'entropie.

Pour une variable à N valeurs : $H = -\sum_{k=1}^{M} p_k \log p_k$ Pour N variables continues : $H = -\int p(X_1, \cdots X_N) \log p(X_1, \cdots X_N)$ Pour N variables gaussiennes de covariance $R_N : H_N = \frac{1}{2} \log(Det(R_N))$ Pour un processus de durée infinie :

$$H = \lim_{N \to \infty} \frac{H_N}{N} = \frac{1}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} \log S_{XX}(f) df$$

Modèle autorégressif

Parmi tous les processus admettant pour covariance R_0 , R_1 , ..., R_p , celui maximisant l'entropie est le processus autorégressif

$$X_t - \varphi_1 X_{t-1} - \cdots - \varphi_p X_{t-p} = Z_t$$

où Z_t est un bruit blanc et les coefficients $arphi_k$ sont tels que :

$$\begin{bmatrix} R_0 & R_1 & & R_{p-1} \\ R_1 & R_0 & & & \\ & \ddots & \ddots & R_1 \\ R_{p-1} & & R_1 & R_0 \end{bmatrix} \begin{bmatrix} \varphi_1 \\ \varphi_2 \\ \vdots \\ \varphi_p \end{bmatrix} = \begin{bmatrix} R_1 \\ R_2 \\ \vdots \\ R_p \end{bmatrix}$$

La variance de Z_t est $\sigma^2 = R_0 - \varphi_1 R_1 - \cdots - \varphi_p R_p$ La densité spectrale de puissance est

$$S_{XX}(f) = \frac{\sigma^2}{\left|1 - \varphi_1 e^{-j2\pi f} - \dots - \varphi_p e^{-j2\pi pf}\right|^2}$$

Méthode de Capon, MVDR

Hypothèse : le signal comprend une sinusoïde à la fréquence f et un bruit additif.

On cherche un filtre défini par les poids w_0 , w_1 ,..., w_p , capable d'extraire la sinusoïde avec un gain de 1 et minimiser les autres contributions.

Soit
$$w(f) = [w_0, w_1, \dots w_p], e(f) = [1, e^{-j2\pi f}, e^{-j2\pi 2f}, \dots, e^{-j2\pi pf}]$$

On minimise $w(f)^H \mathbf{R} w(f)$ sous la contrainte $w(f)^H e(f) = 1$

$$w(f) = \frac{1}{e(f)^{H} \mathbf{R}^{-1} e(f)} \mathbf{R}^{-1} E(f)$$

L'estimation de la densité spectrale à la fréquence f devient :

$$J(f_0) = \frac{1}{e(f)^H \mathbf{R}^{-1} e(f)}$$

Méthodes par sous-espace Méthode MUSIC Méthode par invariance, ESPRIT

MÉTHODES À HAUTE RÉSOLUTION

Structure de la matrice de covariance(1/2)

Hypothèse : K sinusoïdes (variances σ_k^2) et un bruit blanc additif.

Pour chaque sinusoïde, $a_k = [1, e^{-j2\pi f_k}, e^{-j2\pi 2f_k}, \cdots, e^{-j2\pi pf_k}]$ La matrice de covariance (hors bruit) s'écrit :

$$m{R} = \mathbb{E}(\left[egin{array}{c} X_t \ X_{t-1} \ dots \ X_{t-N} \end{array}
ight] [X_t X_{t-1} \cdots X_{t-N}])$$

$$R = [a_1 a_2 \cdots a_K] Diag(\sigma_1^2, \sigma_1^2, \cdots, \sigma_K^2) \begin{bmatrix} a_1^* \\ a_2^* \\ \vdots \\ a_k^* \end{bmatrix} = A R_{ss} A^H$$

Structure de la matrice de covariance(2/2)

La matrice de covariance du signal bruité admet deux décompositions :

$$\mathbf{R} = A\mathbf{R}_{ss}A^{H} + \sigma_{b}^{2}\mathbb{I} = U_{s}\Lambda_{s}U_{s}^{H} + \sigma_{b}^{2}U_{b}U_{b}^{H}$$

Si les sources sont indépendantes, R_{ss} est de rang K, on en déduit que :

- $\bullet \ \operatorname{span}\{u_{s,1}\cdots u_{s,K}\} = \operatorname{span}\{(A\pmb{R}_{ss})_1\cdots (A\pmb{R}_{ss})_K\} \subseteq \operatorname{span}\{a_1\cdots a_K\},$
- $\mathcal{S} = \operatorname{span}\{e_1 \cdots e_K\}$ est appelé le sous-espace-signal;
- U_b est de dimension $N \times (N K)$ et $\Pi_b = U_b U_b^H$ est un projecteur orthogonal défini sur \mathbb{C}^N et à valeurs dans un sous-espace de dimension (N R) appelé le sous-espace-bruit,

MUSIC (1/2)

Dans le cas où R_{ss} est de rang plein K, le sous-espace engendré par $U_s = [u_{s,1} \cdots u_{s,K}]$ coïncide avec le sous-espace engendré par A, ce qui s'écrit :

$$\operatorname{span}\{u_{s,1}\cdots u_{s,K}\}=\operatorname{span}\{a_1\cdots a_K\}$$

Par conséquent

$$\Pi_E\Pi_b=0$$

où
$$\Pi_E = A(A^HA)^{-1}A^H$$
 et $\Pi_b = U_bU_b^H$.

Si A et U_s engendrent le même sous-espace, il existe une matrice P telle que :

$$U_s = AP$$

MUSIC (2/2)

Si on connaît l'espace-bruit, on peut alors chercher les fréquences telles que leur vecteur a(f) est orthogonal au sous-espace bruit :

$$u_B^H a(f) = 0$$

où *u_B* désigne un vecteur de l'espace-bruit.

Plutôt que minimiser ces quantités, on maximisera leur inverse :

$$J(\theta) = \frac{1}{a(\theta)^H \Pi_b a(\theta)} = \frac{1}{a(\theta)^H U_b U_b^H a(\theta)}$$

ESPRIT, décalage de 1 pas

Estimation of Signal Parameters via Rotational Invariant Techniques

$$a(f) = \begin{bmatrix} 1 \\ e^{j2\pi f} \\ \vdots \\ e^{j2\pi f(N-2)} \\ e^{j2\pi f(N-1)} \end{bmatrix}$$

$$\Rightarrow a_2(f) = a_1(f)e^{j2\pi f}$$

$$a_1(f) = \begin{bmatrix} I_{N-1} & 0 \\ 0 & I_{N-1} \end{bmatrix} a(f)$$

$$a_2(f) = \begin{bmatrix} 0 & I_{N-1} \\ 0 & I_{N-1} \end{bmatrix} a(f)$$

Pour K fréquences

$$A_1 = \begin{bmatrix} I_{N-1} & 0 \end{bmatrix} A \text{ et } A_2 = \begin{bmatrix} 0 & I_{N-1} \end{bmatrix} A \implies A_2 = A_1 \Omega$$

$$\Omega = \mathsf{diag}(e^{j2\pi f_1}, \dots, e^{j2\pi f_K})$$

ESPRIT, décomposition du sous-espace signal

De même que $A_2=A_1\Omega$ avec $\Omega={\rm diag}(e^{j2\pi\nu_{\theta_1}},\ldots,e^{j2\pi\nu_{\theta_K}})$, décomposons U_s :

$$V_1 = \left[\begin{array}{ccc} I_{N-1} & 0 \end{array} \right] U_s \ \ ext{et} \ \ V_2 = \left[\begin{array}{ccc} 0 & I_{N-1} \end{array} \right] U_s$$

On a vu qu'il existe P tel que $U_s = AP$. Par conséquent :

$$\begin{array}{rcl} V_1 & = & \left[\begin{array}{cc} I_{N-1} & 0 \\ V_2 & = & \left[\begin{array}{cc} 0 & I_{N-1} \end{array}\right] AP = A_1 P \\ \Longrightarrow V_2 & = & V_1 P^{-1} \Omega P \end{array}$$

$$\Longrightarrow \left(V_1^H V_1\right)^{-1} V_1^H V_2 & = & P^{-1} \Omega P \end{array}$$

Les matrices Ω et $V_1^\# V_2$ sont semblables $(V_1^\# = (V_1^H V_1)^{-1} V_1^H$ est la pseudo-inverse de V_1) : elles ont mêmes valeurs propres.

ESPRIT : résumé de l'algorithme

- $oldsymbol{0}$ estimer la matrice de covariance R,
- \odot diagonaliser la matrice R,
- former U_s avec les K vecteurs propres associés aux K plus grandes valeurs propres,
- ullet extraire de U_s les matrices V_1 et V_2 ,
- **1** diagonaliser $V_1^{\#}V_2$, les valeurs propres sont les $e^{j2\pi\nu_k}$.

Méthodes par sous-espace Méthode MUSIC Méthode par invariance, ESPRIT

Merci pour votre attention

Des questions?