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Introduction Motivation

Explaining data by factorisation
General formulation

F

N

W(F×K ) × H(K×N)V(F×N)

vn wk

vn ≈
∑K

k=1 hknwk Illustration by C. Févotte
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Introduction Motivation

Explaining data by factorisation
General formulation

F

N

W(F×K) × H(K×N)V(F×N)

vn wk

data matrix “explanatory variables” “regressors”,
“basis”, “dictionary”,
“patterns”, “topics”

“activation coefficients”,
“expansion coefficients”

Illustration by C. Févotte
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Introduction Motivation

Data is often nonnegative by nature1

• pixel intensities;
• amplitude spectra;
• occurrence counts;
• food or energy consumption;
• user scores;
• stock market values;
• ...

For the sake of interpretability of the results, optimal processing of
nonnegative data may call for processing under nonnegativity
constraints.

1slide adapted from (Févotte, 2012).
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Introduction Motivation

The Nonnegative Matrix Factorisation model

NMF provides an unsupervised linear representation of the data:

  

W

H

V

V ≈WH;

− W = [wfk ] s.t. wfk ≥ 0
and

− H = [hkn] s.t. hkn ≥ 0.

Illustration by N. Seichepine
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Introduction Motivation

Explaining face images by NMF2

Image example: 49 images among 2429 from MIT’s CBCL face dataset

2slide adapted from (Févotte, 2012).
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Introduction Motivation

Explaining face images by NMF
Method

H

≈

V W

Vectorised images Facial
features

Importance of features
in each image

...

...... ...

Slim ESSID (Telecom ParisTech) Introduction to NMF TPT - UPS – June 2015 8 / 53



Introduction Motivation

NMF outputs
Image example

Illustration by C. Févotte
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Introduction Motivation

Notations I

• V : the F × N data matrix:
− F features (rows),
− N observations/examples/feature vectors (columns);

• vn = (v1n, · · · , vFn)T : the n-th feature vector observation among a
collection of N observations v1, · · · , vN ;

• vn is a column vector in RF
+; vn is a row vector;

• W : the F × K dictionary matrix:
− wfk is one of its coefficients,
− wk a dictionary/basis vector among K elements;
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Introduction Motivation

Notations II

• H : the K × N activation/expansion matrix:
− hn : the column vector of activation coefficients for observation vn :

vn ≈
K∑

k=1

hknwk ;

− hk: : the row vector of activation coefficients relating to basis vector wk .
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NMF models Cost functions

NMF optimization criteria

NMF approximation V ≈WH is usually obtained through:

min
W,H≥0

D(V|WH) ,

where D(V|V̂) is a separable matrix divergence:

D(V|V̂) =
F∑

f=1

N∑
n=1

d(vfn|v̂fn) ,

and d(x |y) defined for all x , y ≥ 0 is a scalar divergence such that:
• d(x |y) is continuous over x and y ;
• d(x |y) ≥ 0 for all x , y ≥ 0;
• d(x |y) = 0 if and only if x = y .
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NMF models Cost functions

Popular (scalar) divergences

Euclidean (EUC) distance (Lee and Seung, 1999)

dEUC (x |y) = (x − y)
2

Kullback-Leibler (KL) divergence (Lee and Seung, 1999)

dKL(x |y) = x log
x

y
− x + y

Itakura-Saito (IS) divergence (Févotte et al., 2009)

dIS(x |y) =
x

y
− log

x

y
− 1
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NMF models Cost functions

Convexity properties

Divergence d(x |y) EUC KL IS
Convex on x yes yes yes
Convex on y yes yes no

Slim ESSID (Telecom ParisTech) Introduction to NMF TPT - UPS – June 2015 15 / 53



NMF models Cost functions

Scale invariance properties3

dEUC (λ x |λ y) = λ2 dEUC (x |y)
dKL(λ x |λ y) = λ dKL(x |y)
dIS(λ x |λ y) = dIS(x |y)

The IS divergence is scale-invariant → it provides higher accuracy in the
representation of data with large dynamic range (e.g. audio spectra).

3slide adapted from (Févotte, 2012).
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NMF models Weighted NMF schemes

Weighted NMF

Conventional NMF optimization criterion:

min
W,H≥0

F∑
f=1

N∑
n=1

d(vfn|v̂fn) .

Weighted NMF optimization criterion:

min
W,H≥0

F∑
f=1

N∑
n=1

bfnd(vfn|v̂fn) ,

where bfn (f = 1, . . . ,F , n = 1, . . . ,N) are some nonnegative weights
representing the contribution of data point vfn to NMF learning.
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NMF models Weighted NMF schemes

Weighted NMF application example I

Learning from partial observations (e.g., for image inpainting as in (Mairal
et al., 2010)):

Observed value
bfn = 1

Missing value

bfn = 0
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NMF models Weighted NMF schemes

Weighted NMF application example II

Face feature extraction (example and figure from (Blondel et al., 2008)):

Data V

Image-centered weights

Face-centered weights

Weights B = {bfn}f ,n
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Algorithms for solving NMF
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Algorithms for solving NMF Preliminaries

Optimization problem

An efficient solution of the NMF optimization problem

min
W,H≥0

D(V|WH) ⇔ min
θ

C (θ) ; C (θ)
def
= D(V|WH)

where θ
def
= {W,H} denotes the NMF parameters, must cope with the

following difficulties:
• the nonnegativity constraints must be taken into account;
• the solution is not unique...
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Algorithms for solving NMF Difficulties in NMF

NMF is ill-posed
The solution is not unique

Given V = WH ; W ≥ 0, H ≥ 0; any matrix Q such that:
• WQ ≥ 0
• Q−1H ≥ 0
provides an alternative factorisation V = W̃H̃ = (WQ)(Q−1H).

In particular, Q can be any nonnegative generalised permutation
matrix; e.g., in R3 :

Q =

0 0 2
0 3 0
1 0 0


This case is not so problematic: merely accounts for scaling and
permutation of basis vectors wk .

Slim ESSID (Telecom ParisTech) Introduction to NMF TPT - UPS – June 2015 22 / 53



Algorithms for solving NMF Difficulties in NMF

Geometric interpretation and ill-posedness

NMF assumes the data is well described by a simplicial convex cone Cw
generated by the columns of W:

vi

Cww1

w2

Cw =
{∑K

k=1 λkwk ; λk ≥ 0
}
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NMF assumes the data is well described by a simplicial convex cone Cw
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w2
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Algorithms for solving NMF Difficulties in NMF

Geometric interpretation and ill-posedness

NMF assumes the data is well described by a simplicial convex cone Cw
generated by the columns of W:

vi

Cww1

w2

Cw =
{∑K

k=1 λkwk ; λk ≥ 0
}

vi

Cww1

w2

Problem: which Cw?

→ Need to impose constraints on the set of possible solutions to select the
most “useful” ones.
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Algorithms for solving NMF Multiplicative update rules

Alternating optimization strategy

The problem is usually easier to optimize over one matrix (say H) given the
other matrix (say W) is known and fixed.

Indeed, for several divergences D(V|WH) is even convex separately w.r.t.
H and w.r.t. W, but not w.r.t. {W,H}.

For this reason many state-of-the-art NMF optimization algorithms rely on
the following iterative alternating optimization strategy.

Alternating optimization a.k.a block-coordinate descent (one iteration):
• update W, given H fixed,
• update H, given W fixed.
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Algorithms for solving NMF Multiplicative update rules

Multiplicative update rules

A heuristic approach introduced by (Lee and Seung, 2001) to solve minθ C (θ)

Multiplicative update (MU) rule for H (similarly for W) is defined as:

hkn ← hkn [∇hknC (θ)]− / [∇hknC (θ)]+ ,

where
∇hknC (θ) = [∇hknC (θ)]+ − [∇hknC (θ)]− ,

and the summands are both nonnegative.

NOTE: The nonnegativity of W and H is guaranteed by construction.
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Algorithms for solving NMF Multiplicative update rules

Intuitive explanation

We consider for simplicity ∇hC (h) = ∇+ −∇−
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Algorithms for solving NMF Multiplicative update rules

Discussion

The only two things guaranteed by this approach:
• the newly updated value lies in the direction of partial derivative
decrease;

• the newly updated value is always nonnegative.

Nothing more can be guaranteed in general, and all the other algorithm
properties depend on the “positive-negative” decomposition chosen:

∇hknC (θ) = [∇hknC (θ)]+ − [∇hknC (θ)]− .
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Algorithms for solving NMF Multiplicative update rules

Majorisation-minimisation viewpoint
For many divergences and certain “positive-negative” decompositions
each MU rule can be interpreted as a Majorisation-Minimisation (MM)
procedure (Hunter and Lange, 2004):

To minimise C (s), e.g., s = wfk or s = hkn:
• build G (s|s̃) such that G (s|s̃) ≥ C (s) and G (s̃|s̃) = C (s̃);
• optimize iteratively G (s|s̃) instead of C (s).
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Illustration by C. Févotte
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Algorithms for solving NMF Multiplicative update rules

Majorisation-minimisation viewpoint
For many divergences and certain “positive-negative” decompositions
each MU rule can be interpreted as a Majorisation-Minimisation (MM)
procedure (Hunter and Lange, 2004):

To minimise C (s), e.g., s = wfk or s = hkn:
• build G (s|s̃) such that G (s|s̃) ≥ C (s) and G (s̃|s̃) = C (s̃);
• optimize iteratively G (s|s̃) instead of C (s).

I NOTE: The MM procedure guarantees the cost is non-increasing at
each iteration:

C (s(t+1)) ≤ G (s(t+1)|s(t)) ≤ G (s(t)|s(t)) = C (s(t)).
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Algorithms for solving NMF Multiplicative update rules

Summary

Multiplicative Update rules:

Advantages:
• easy to implement;
• non-negativity of W and H is guaranteed.

Drawbacks:
• monotonicity is not always guaranteed;
• among other algorithms the convergence rate is not the highest one.
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Applications Text analysis

Topics recovery

Assume V = [vfn] is a term-document co-occurrence matrix:
vfn is the frequency of occurrences of word mf in document dn;

H

≈

V W

Documents Topics Topic importance
indicators

W
or
ds
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Applications Text analysis

Text document analysis example
After sklearn topics extraction demo (Pedregosa et al., 2011)

Analysing the 20 newsgroups dataset with NMF, the following topics are
automatically determined:
• Topic #0: god people bible israel jesus christian true moral think
christians believe don say human israeli church life children jewish

• Topic #1: drive windows card drivers video scsi software pc thanks vga
graphics help disk uni dos file ide controller work

• Topic #2: game team nhl games ca hockey players buffalo edu cc year
play university teams baseball columbia league player toronto

• Topic #3: window manager application mit motif size display widget
program xlib windows user color event information use events values

• Topic #4: pitt gordon banks cs science pittsburgh univ computer soon
disease edu reply pain health david article medical medicine

Topics described by most frequent words in each dictionary element Wk .
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Applications Music transcription
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Applications Music transcription

NMF-based music transcription
Demo slide courtesy of C. Févotte (Fevotte et al., 2009)

���� ���� ���� ����� ����� �

(MIDI numbers: 61, 65, 68, 72)

Three representations of the data.
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Applications Music transcription

Spectral analysis
Short-Term Fourier Transform (STFT)

Drawing by J. Laroche
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Applications Music transcription

NMF-based music transcription demo
Demo slide courtesy of C. Févotte (Fevotte et al., 2009)

���� ���� ���� ����� ����� �

(MIDI numbers: 61, 65, 68, 72)

Three representations of the data.
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Applications Music transcription

Music transcription demo
Demo slide courtesy of C. Févotte (Fevotte et al., 2009)
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Applications Video structuring
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Applications Video structuring

The video structuring problem

Goal: automatically extract a temporal organization of a
document into units conveying a homogeneous type of
(audio/video) content.
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Applications Video structuring

Video Structuring
Using NMF for temporal segmentation and soft-clustering (Essid and Fevotte, 2013)

Discovering the video editing
structure (Essid and Fevotte, 2012)

"Full group" "Multiple participants" "Multiple participants"

"Participant 1" "Participant 2" "Participant 2"

"Participant 3" "Participant 4" "Participant 5"

Performing speaker diarization
(Seichepine et al., 2013)

“Who spoke when?”

illustration by N. Seichepine
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Applications Video structuring

A generic video structuring system using NMF
Challenge: perform the task in a non-supervised fashion.

Proposed approach: a generic structuring scheme using NMF (Essid and
Fevotte, 2013):

1. Bag of words representation

A/V
frames

Vocab.
Word vocab.

extraction

Histograms
of words NMF

Activation
thresholding

Structure extracted

images/
audio segments

1. create a low-level (visual/audio) vocabulary and use it to extract
histogram of (visual/audio) words from the sequence of observation
frames;
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Applications Video structuring

A generic video structuring system using NMF
Challenge: perform the task in a non-supervised fashion.

Proposed approach: a generic structuring scheme using NMF (Essid and
Fevotte, 2013):

2.hDatahfactorisation

A/V
frames

Vocab.
Wordhvocab.

extraction

Histograms
ofhwords

KL-NMF Activation
thresholding

Structurehextracted

2. apply a variant of smooth NMF using the Kullback-Leibler divergence
to extract latent structuring events and their activations across the
duration of the document.
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Applications Video structuring

A generic video structuring system using NMF
Challenge: perform the task in a non-supervised fashion.

Proposed approach: a generic structuring scheme using NMF (Essid and
Fevotte, 2013):
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Applications Video structuring

A generic video structuring system using NMF
Challenge: perform the task in a non-supervised fashion.

Proposed approach: a generic structuring scheme using NMF (Essid and
Fevotte, 2013):

2.hDatahfactorisation

A/V
frames

Vocab.
Wordhvocab.

extraction

Histograms
ofhwords

KL-NMF Activation
thresholding

Structurehextracted

Activations should be temporally smooth: structuring events naturally exhibit a
“certain” temporal continuity.
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Applications Video structuring

Smooth KL-NMF
Using the Kullback-Leibler (KL) divergence as a measure of fit

Given histogram data (whose columns are frame-wise descriptors), we seek
a factorization V ≈WH; wfk ≥ 0 ; hkn ≥ 0 that minimises

C (W,H) = D(V|WH) + βS(H) ;

• D(V|WH) =
∑

fn dKL(vfn|
∑

k wfkhkn): fit-to-data term such that
dKL(x |y) = x log x

y − x + y ;

• S(H) is a regularisation term that controls the temporal smoothness
of the activation coefficients:

S(H) =
1
2

K∑
k=1

N∑
n=2

(hkn − hk(n−1))
2.
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Applications Video structuring

Applications
Onscreen person-oriented structuring

Discover the video editing structure: label the video frames as follows in a
non-supervised fashion:

"Full group" "Multiple participants" "Multiple participants"

"Participant 1" "Participant 2" "Participant 2"

"Participant 3" "Participant 4" "Participant 5"

Using the Canal9 political debates database (Vinciarelli et al., 2009).
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Visual features

Visual vocabulary creation
− PHOW features (Bosch et al., 2007): histograms of

orientation gradients over 3 scales, on 8-pixel step
grid; extracted from faces and clothing regions,
determined automatically for current video;

− quantization over 128 bins using K-means.
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Results
Visualising the activations

Full group

Speaker 1

Speaker 2

Speaker 3

Speaker 4

Speaker 5

Full group MP Speaker 5 Full group
MP:
Multiple Participants

MP
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Experimental validation

Canal9 political debates database (Vinciarelli et al., 2009)

− broadcasts featuring a moderator and 2 to 4 guests;
− moderators, guest and background vary;
− 7 hours of video content: 10 minutes from each of the first 41 shows;
− 189 distinct persons; 28521 video shots.
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Results
Shot-type classification error rates
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Take-home messages I

• NMF is a versatile data decomposition technique that has proven
effective for diverse applications across numerous disciplines,
− it tends to provide “meaningful” and “natural” part-based data

representations,
− it can be used both for feature learning, topic extraction, clustering,

segmentation, source separation, coding...

• For NMF to be successful, it has to be estimated using appropriate
cost-functions reflecting prior knowledge about the data.
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Take-home messages II

• Many algorithms are available to estimate NMF, mostly alternating
updates of W and H; variants include:
− multiplicative updates: heuristic, simple and easy to implement, but slow

and instable,
− majorisation-minimisation: well-founded for a variety of cost functions,

stable, still slow,
− gradient-descent and Newton: fast but unstable.

• NMF is a state-of-the-art technique for a number of audio-processing
tasks (transcription, source separation...),

• it has a great potential for video analysis tasks, especially temporal
structure analysis.
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Ongoing and future research

• How to properly estimate the model-order K?
• How to achieve better and faster “convergence”?
• How to perform non-linear data decompositions?
• How to handle big data?
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A selection of NMF software

Software Language Main features

beta_ntf Python
Weighted tensor decomposition, all

β-divergences, MM

sklearn.decomposition.NMF Python `2-norm, gradient-descent, sparsity

IMM DTU NMF toolbox Matlab `2-norm, MM, gradient-descent, ALS

Févotte’s matlab scripts Matlab `2-norm, KL and IS-div, MM, probabilistic

Seichepine’s matlab

scripts
Matlab

Soft co-factorisation, `2-norm, KL and IS-div,

`1/`2-norm temporal smoothing, MM

svmnmf Matlab
Geometric SVM-based NMF, kernel-based

non-linear decompositions, fast

libNMF C
`2-norm, MM, gradient-descent, ALS,

multi-core, fast
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