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Part I: Uncertainty in the Real World



Uncertain data

Numerous sources of uncertain data:

▶ Measurement errors
▶ Data integration from contradicting sources
▶ Imprecise mappings between heterogeneous schemata
▶ Imprecise automatic process (information extraction, natural

language processing, etc.)
▶ Imperfect human judgment
▶ Lies, opinions, rumors
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Use case: Web information extraction

Never-ending Language Learning (NELL, CMU),
http://rtw.ml.cmu.edu/rtw/kbbrowser/

http://rtw.ml.cmu.edu/rtw/kbbrowser/


Use case: Web information extraction

Google Squared (terminated), screenshot from [Fink et al., 2011]



Use case: Web information extraction

Subject Predicate Object Confidence

Elvis Presley diedOnDate 1977-08-16 97.91%
Elvis Presley isMarriedTo Priscilla Presley 97.29%
Elvis Presley influences Carlo Wolff 96.25%

YAGO, http://www.mpi-inf.mpg.de/yago-naga/yago

http://www.mpi-inf.mpg.de/yago-naga/yago


Uncertainty in Web information extraction

▶ The information extraction system is imprecise
▶ The system has some confidence in the information extracted,

which can be:
▶ a probability of the information being true (e.g., conditional

random fields)
▶ an ad-hoc numeric confidence score
▶ a discrete level of confidence (low, medium, high)

▶ What if this uncertain information is not seen as something final,
but is used as a source of, e.g., a query answering system?



Different types of uncertainty

Two dimensions:

▶ Different types:
▶ Unknown value: NULL in an RDBMS
▶ Alternative between several possibilities: either A or B or C
▶ Imprecision on a numeric value: a sensor gives a value that is an

approximation of the actual value
▶ Confidence in a fact as a whole: cf. information extraction
▶ Structural uncertainty: the schema of the data itself is uncertain

▶ Qualitative (NULL) or Quantitative (95%, low-confidence, etc.)
uncertainty



Managing uncertainty

Objective

Not to pretend this imprecision does not exist, and manage it as rigor-
ously as possible throughout a long, automatic and human, potentially
complex, process.

Especially:

▶ Represent all different forms of uncertainty
▶ Use probabilities to represent quantitative information on the

confidence in the data
▶ Query data and retrieve uncertain results
▶ Allow adding, deleting, modifying data in an uncertain way
▶ Bonus (if possible): Keep as well lineage/provenance

information, so as to ensure traceability
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Why probabilities?

▶ Not the only option: fuzzy set theory [Galindo et al., 2005],
Dempster-Shafer theory [Zadeh, 1986]

▶ Mathematically rich theory, nice semantics with respect to traditional
database operations (e.g., joins)

▶ Some applications already generate probabilities (e.g., statistical
information extraction or natural language probabilities)

▶ In other cases, we “cheat” and pretend that (normalized) confidence
scores are probabilities: see this as a first-order approximation



Objective of this talk

▶ Present data models for uncertain data management in general,
and probabilistic data management in particular:

▶ relational
▶ XML

▶ Briefly discuss querying of probabilistic data



Part II: Probabilistic Models of Uncertainty

▶ Probabilistic Relational Models
▶ Probabilistic XML



Possible worlds semantics

Possible world: A regular (deterministic) relational or XML database

Incomplete database: (Compact) representation of a set of possible
worlds

Probabilistic database: (Compact) representation of a probability
distribution over possible worlds, either:

finite: a set of possible worlds, each with their
probability

continuous: more complicated, requires defining a
σ-algebra, and a measure for the sets of
this σ-algebra



Part II: Probabilistic Models of Uncertainty

▶ Probabilistic Relational Models
▶ Probabilistic XML



The relational model

▶ Data stored into tables
▶ Every table has a precise schema (type of columns)
▶ Adapted when the information is very structured

Patient Examin. 1 Examin. 2 Diagnosis

A 23 12 α
B 10 23 β
C 2 4 γ
D 15 15 α
E 15 17 β



Codd tables, a.k.a. SQL NULLs

Patient Examin. 1 Examin. 2 Diagnosis

A 23 12 α
B 10 23 ⊥1

C 2 4 γ
D 15 15 ⊥2

E ⊥3 17 β

▶ Most simple form of incomplete database
▶ Widely used in practice, in DBMS since the mid-1970s!
▶ All NULLs (⊥) are considered distinct
▶ Possible world semantics: all (infinitely many under the open

world assumption) possible completions of the table
▶ In SQL, three-valued logic, weird semantics:

SELECT * FROM Tel WHERE tel_nr = ’333’ OR tel_nr <> ’333’



C-tables [Imielinski and Lipski, 1984]

Patient Examin. 1 Examin. 2 Diagnosis Condition

A 23 12 α
B 10 23 ⊥1

C 2 4 γ
D ⊥2 15 ⊥1

E ⊥3 17 β 18 < ⊥3 < ⊥2

▶ NULLs are labeled, and can be reused inside and across tuples
▶ Arbitrary correlations across tuples
▶ Closed under the relational algebra (Codd tables only closed

under projection and union)
▶ Every set of possible worlds can be represented as a database

with c-tables



Tuple-independent databases (TIDs)
[Lakshmanan et al., 1997, Dalvi and Suciu, 2007]

Patient Examin. 1 Examin. 2 Diagnosis Probability

A 23 12 α 0.9
B 10 23 β 0.8
C 2 4 γ 0.2
C 2 14 γ 0.4
D 15 15 α 0.6
D 15 15 β 0.4
E 15 17 β 0.7
E 15 17 α 0.3

▶ Allow representation of the confidence in each row of the table
▶ Impossible to express dependencies across rows
▶ Very simple model, well understood



Block-independent databases (BIDs)
[Barbará et al., 1992, Ré and Suciu, 2007]

Patient Examin. 1 Examin. 2 Diagnosis Probability

A 23 12 α 0.9
B 10 23 β 0.8
C 2 4 γ 0.2

}
⊕

C 2 14 γ 0.4
D 15 15 β 0.6

}
⊕

D 15 15 α 0.4
E 15 17 β 0.7

}
⊕

E 15 17 α 0.3

▶ The table has a primary key: tuples sharing a primary key are
mutually exclusive (probabilities must sum up to ≤ 1)

▶ Simple dependencies (exclusion) can be expressed, but not
more complex ones



Probabilistic c-tables [Green and Tannen, 2006]

Patient Examin. 1 Examin. 2 Diagnosis Condition

A 23 12 α w1

B 10 23 β w2

C 2 4 γ w3

C 2 14 γ ¬w3 ∧ w4

D 15 15 β w5

D 15 15 α ¬w5 ∧ w6

E 15 17 β w7

E 15 17 α ¬w7

▶ The wi’s are Boolean random variables
▶ Each wi has a probability of being true (e.g., Pr(w1) = 0.9)
▶ The wi’s are independent
▶ Any finite probability distribution of tables can be represented

using probabilistic c-tables



Two actual PRDBMS: Trio and MayBMS

Two main probabilistic relational DBMS:
Trio [Widom, 2005] Various uncertainty operators: unknown

value, uncertain tuple, choice between different possible
values, with probabilistic annotations. See example later on.

MayBMS [Koch, 2009] Implementation of the probabilistic c-tables
model. In addition, uncertain tables can be constucted using
a REPAIR-KEY operator, similar to BIDs.
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▶ Probabilistic XML



The semistructured model and XML

A

B C

D

<a>
<b>...</b>
<c>
<d>...</d>

</c>
</a>

▶ Tree-like structuring of data
▶ No (or less) schema constraints
▶ Allow mixing tags (structured data) and text (unstructured

content)
▶ Particularly adapted to tagged or heterogeneous content



Why Probabilistic XML?

▶ Extensive literature about probabilistic relational
databases [Dalvi et al., 2009, Widom, 2005, Koch, 2009]

▶ Different typical querying languages: conjunctive queries vs XPath and
tree-pattern queries (possibly with joins)

▶ Cases where a tree-like model might be appropriate:
▶ No schema or few constraints on the schema
▶ Independent modules annotating freely a content warehouse
▶ Inherently tree-like data (e.g., mailing lists, parse trees) with

naturally occurring queries involving the descendant axis

Remark
Some results can be transferred from one model to the other. In other
cases, connection much trickier! [Amarilli and Senellart, 2013]



Web information extraction [Senellart et al., 2008]

table / articles

tr / article

td / title

token / title

#text

td / authors

token / author

#text

Y1

Y2

Y3 Y4

Y5

Y6 Y7

Y8

▶ Annotate HTML Web pages with
possible labels

▶ Labels can be learned from a corpus
of annotated documents

▶ Conditional random fields for XML:
estimate probabilities of annotations
given annotations of neighboring
nodes

▶ Provides probabilistic labeling of
Web pages



Uncertain version control
[Abdessalem et al., 2011, Ba et al., 2013]

Use trees with probabilistic annotations to represent the uncertainty
in the correctness of a document under open version control (e.g.,
Wikipedia articles)



Probabilistic summaries of XML corpora
[Abiteboul et al., 2012a,b]

qq2qq0 qq1

publish
ppublish

next
1-ppublish

present
ppresent

$
1-ppresent

▶ Transform an XML schema
(deterministic top-down tree
automaton) into a probabilistic
generator (probabilistic tree
automaton) of XML documents

▶ Probability distribution optimal with
respect to a given corpus

▶ Application: Optimal
auto-completions in an XML editor



Incomplete XML [Barceló et al., 2009]

r

manager Y

name tel_nr name tel_nr name
“Mary” x “John” x “Bob”

*

▶ Models all XML documents where these patterns exist (i.e., this
subtree can be matched)

▶ Can be used for query answering, etc.



Simple probabilistic annotations

A

B C

D

0.24

0.70

▶ Probabilities associated to tree nodes
▶ Express parent/child dependencies
▶ Impossible to express more complex

dependencies
▶ ⇒ some sets of possible worlds are not

expressible this way!



Annotations with event variables

A

B C

D

w1,¬w2

w2

Event Prob.

w1 0.8
w2 0.7

semantics

A

C

D

p2 = 0.70

A

C

p1 = 0.06

A

B C

p3 = 0.24

▶ Expresses arbitrarily complex dependencies

▶ Obviously, analogous to probabilstic c-tables
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A general probabilistic XML model
[Abiteboul et al., 2009]

root

sensor

id

i25

mes
e

t

1

vl

30

mes

t

2

vl

N(70, 4)

sensor

id

i35

mes
e

t

1

vl

mux

17
.6

23
.1

20
.3

▶ e: event “it did not
rain” at time 1

▶ mux: mutually
exclusive options

▶ N(70, 4): normal
distribution

▶ Compact representation of a set of possible worlds
▶ Two kinds of dependencies: global (e) and local (mux)
▶ Generalizes all previously proposed models of the literature



Recursive Markov chains [Benedikt et al., 2010]

<!ELEMENT directory (person*)>
<!ELEMENT person (name,phone*)>

• •

• • •

D: directory

P

1

0.8

1

0.2

• • • • • •

•

P: person

N T1 1 0.5

1

0.5

▶ Probabilistic model that extends PXML with local dependencies
▶ Allows generating documents of unbounded width or depth



Part III: Querying Probabilistic Databases

▶ Semantics
▶ Lineage computation and #P-Hardness
▶ Special tractable case within Probabilistic XML
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Semantics Of Query Answering: Example

name city probability
Ivan Moscow 0.3
Jean Paris 0.8

Pedro Madrid 0.4

Query:
SELECT name FROM Person 

Person

Wednesday, October 26, 2011
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P = 0.3 P = 0.2 P = 0.5

Probabilistic DB:

Semantics Of Query Answering

P = 0.3 P = 0.2 P = 0.5

Probabilistic DB:

Possible Answers Semantics Possible Tuples Semantics

Wednesday, October 26, 2011
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Possible Answer vs Possible Tuple Semantics

• Possible answers semantics: 

• Precise

• Can be used to compose queries 

• Difficult user interface

• Possible tuples semantics:

• Less precise, but simple; sufficient for most apps

• Cannot be used to compose queries 

• Simple user interface

[Dalvi,Suciu’09]

Wednesday, October 26, 2011
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Wednesday, October 26, 2011
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P = 0.3 P = 0.2 P = 0.5

Q Q Q

Probabilistic DB: Representation
of Prob DB:

Q

(a, 0.8), (b, 0.5)

Goals of Query Answering

• There may be EXP many worlds ➜ naive evaluation is exponential

• Can we do better?

{a} {a,b}

(a, 0.8), (b, 0.5)Answer:

theory practice

sem antics

• Goal: to find out how to query representation system directly

Wednesday, October 26, 2011



Part III: Querying Probabilistic Databases

▶ Semantics
▶ Lineage computation and #P-Hardness
▶ Special tractable case within Probabilistic XML



General Lineage: Examples of Operators (1) 

ID person car Lineage

31 Jimmy Toyota x ⋀ y

32 Jimmy Honda y

33 Hank Honda x ⋁ z

Drivers
ID witness car Lineage

21 Cathy Honda w

Saw

Project = πperson (Drives) Select = σcar=”honda” (Drives)

Pr(x is true) =  0.2    Pr(z is true) =  0.8
Pr(y is true) =  0.4    Pr(w is true) =  0.5

person Lineage

Jimmy (x ⋀ y) ⋁ y

Hank x ⋁ z

Project

person car Lineage

Jimmy Honda y

Hank Honda x ⋁ z

Select

Wednesday, October 26, 2011
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General Lineage: Examples of Operators (2)

ID person car Lineage

31 Jimmy Toyota x ⋀ y

32 Jimmy Honda y

33 Hank Honda x ⋁ z

Drivers
ID witness car Lineage

21 Cathy Honda w

Saw

Pr(x is true) =  0.2    Pr(z is true) =  0.8
Pr(y is true) =  0.4    Pr(w is true) =  0.5

Join Several

Join = Saw ⋈car Drives Several = πperson(σperson=”Hank” (Saw ⋈car Drives)

person car witness Lineage

Jimmy Honda Cathy y ⋀ w

Hank Honda Cathy (x ⋁ z) ⋀ w

person Lineage

Hank (x ⋁ z) ⋀ w

Wednesday, October 26, 2011
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General Lineage: Examples of Operators (3)

ID witness car Lineage

21 Cathy Honda w

Saw-night

Pr(x is true) =  0.2    Pr(z is true) =  0.8
Pr(y is true) =  0.4    Pr(w is true) =  0.5

Union

Union = Saw-day ⋃ Saw-night

ID witness car Lineage

31 Cathy Honda z

32 Bob BMW y ⋀ w

Saw-day

witness car Lineage

Cathy Honda z ⋁ w

Bob BMW y ⋀ w

Difference = Saw-day \ Saw-night

Difference
witness car Lineage

Cathy Honda z ⋀ (¬w)

Bob BMW y ⋀ w

Wednesday, October 26, 2011
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Query Probabilities from Lineage
Join

Join = Saw ⋈car Drives
person car witness Lineage

Jimmy Honda Cathy y ⋀ w

Hank Honda Cathy (x ⋁ z) ⋀ w
Pr(x is true) =  0.2    Pr(z is true) =  0.8
Pr(y is true) =  0.4    Pr(w is true) =  0.5

Theorem:     SPJUD-query evaluation over PrRBDs with 
   boolean-formulas lineage is #P-hard, i.e. intractable

Wednesday, October 26, 2011
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Query Probabilities from Lineage
Join

Join = Saw ⋈car Drives
person car witness Lineage

Jimmy Honda Cathy y ⋀ w

Hank Honda Cathy (x ⋁ z) ⋀ w
Pr(x is true) =  0.2    Pr(z is true) =  0.8
Pr(y is true) =  0.4    Pr(w is true) =  0.5

= Pr(x⋁z) x Pr (w)
= [ Pr(x) + Pr(z) - Pr(x⋀z) ] x 0.5
= [ Pr(x) + Pr(z) - Pr(x) x Pr(z) ] x 0.5
= [ 0.2 + 0.8 - 0.2 x 0.8 ] x 0.5 = 0.42

Theorem:     SPJUD-query evaluation over PrRBDs with 
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• Pr( Jimmy ∈ (Saw ⋈car Drives)) = Pr(y⋀w) = Pr(y) x Pr(w) = 0.4 x 0.5 =0.2

Wednesday, October 26, 2011



Query Probabilities from Lineage
Join

Join = Saw ⋈car Drives
person car witness Lineage

Jimmy Honda Cathy y ⋀ w

Hank Honda Cathy (x ⋁ z) ⋀ w
Pr(x is true) =  0.2    Pr(z is true) =  0.8
Pr(y is true) =  0.4    Pr(w is true) =  0.5

= Pr(x⋁z) x Pr (w)
= [ Pr(x) + Pr(z) - Pr(x⋀z) ] x 0.5
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= [ 0.2 + 0.8 - 0.2 x 0.8 ] x 0.5 = 0.42

Theorem:     SPJUD-query evaluation over PrRBDs with 
   boolean-formulas lineage is #P-hard, i.e. intractable

In general:
Pr(lineage) = Pr(φ)
where φ is a prop. formula

• Pr( Hank ∈ (Saw ⋈car Drives)) = Pr((x⋁z) ⋀ w)) 

• Pr( Jimmy ∈ (Saw ⋈car Drives)) = Pr(y⋀w) = Pr(y) x Pr(w) = 0.4 x 0.5 =0.2
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#P Functions

• Probability computation is a function and not a decision problem 

• Usually complexity is studied for decision problems: P(x) = yes/no

• Complexity classes for probability computation are
for classes of functions

• #P functions: f(x) = n

• there is a PTIME non-deterministic Turing machine Mf

• n = the number of accepting runs of Mf on x, i.e., of Mf(x)

• #P functions are counting counterparts of NP decision problems

• Example of #P-complete function: 
#2DNF: count number of evaluations for 2DNF propositional formulas

• #P-comp. functions are counter counterparts of NP-comp. problems

Wednesday, October 26, 2011



Part III: Querying Probabilistic Databases

▶ Semantics
▶ Lineage computation and #P-Hardness
▶ Special tractable case within Probabilistic XML



Algorithm for TP over local dependencies
[Kimelfeld and Sagiv, 2007]

Bottom-up dynamic programming algorithm. Query: /A//B

A1

D2

mux3
0.8

B4

0.3

C5

0.7

B6

0.6

A1 D2 mux3 B4 C5 B6

/B

0 0 0.3

1 0 1
//B

0.696 0.696 0.3

1 0 1
/A//B

0.696 0 0

0 0 0

mux convex sum

ordinary inclusion-exclusion

Pr(D2 |= //B) = 1− (1− 0.8× Pr(mux3 |= /B))× (1− 0.6× Pr(B6 |= /B))

= 1− (1− 0.8× 0.3)× (1− 0.6) = 0.696
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Algorithm for TP over local dependencies
[Kimelfeld and Sagiv, 2007]

Bottom-up dynamic programming algorithm. Query: /A//B

A1

D2

mux3
0.8

B4

0.3

C5

0.7

B6

0.6

A1 D2 mux3 B4 C5 B6

/B 0 0 0.3 1 0 1
//B 0.696 0.696 0.3 1 0 1
/A//B 0.696 0 0 0 0 0

mux convex sum

ordinary inclusion-exclusion

Pr(D2 |= //B) = 1− (1− 0.8× Pr(mux3 |= /B))× (1− 0.6× Pr(B6 |= /B))

= 1− (1− 0.8× 0.3)× (1− 0.6) = 0.696



Part IV: To go further



Systems

Trio http://infolab.stanford.edu/trio/, useful to
see lineage computation

MayBMS http://maybms.sourceforge.net/, full-fledged
probabilistic relational DBMS, on top of PostgreSQL,
usable for actual applications.

ProApproX http://www.infres.enst.fr/~souihli/
Publications.html to play with various
approximation and exact query evaluation methods for
probabilistic XML.

http://infolab.stanford.edu/trio/
http://maybms.sourceforge.net/
http://www.infres.enst.fr/~souihli/Publications.html
http://www.infres.enst.fr/~souihli/Publications.html


Reading material

▶ An influential paper on incomplete databases [Imielinski and
Lipski, 1984]

▶ A book on probabilistic relational databases, focused around
TIDs/BIDs and MayBMS [Suciu et al., 2011]

▶ An in-depth presentation of MayBMS [Koch, 2009]
▶ A gentle presentation of relational and XML probabilistic models

[Kharlamov and Senellart, 2011]
▶ A survey of probabilistic XML [Kimelfeld and Senellart, 2013]



Merci.
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