Probabilistic Databases: Models and Applications to Web Data

Pierre Senellart

Journées Télécom–UPS, 29 May 2015

Part I: Uncertainty in the Real World

Numerous sources of uncertain data:

- Measurement errors
- Data integration from contradicting sources
- Imprecise mappings between heterogeneous schemata
- Imprecise automatic process (information extraction, natural language processing, etc.)
- Imperfect human judgment
- Lies, opinions, rumors

Numerous sources of uncertain data:

- Measurement errors
- Data integration from contradicting sources
- Imprecise mappings between heterogeneous schemata
- Imprecise automatic process (information extraction, natural language processing, etc.)
- Imperfect human judgment
- Lies, opinions, rumors

Use case: Web information extraction

instance	iteration	date learned	confidence
arabic, egypt	406	08-sep-2011	(Seed) 100.0
chinese, republic of china	439	24-oct-2011	100.0
chinese, singapore	421	21-sep-2011	(Seed) 100.0
english, britain	439	24-oct-2011	100.0
english, canada	439	24-oct-2011	(Seed) 100.0
english, england001	439	24-oct-2011	100.0
arabic, morocco	422	23-sep-2011	100.0
cantonese, hong kong	406	08-sep-2011	100.0
english, uk	436	19-oct-2011	100.0
english, south vietnam	427	27-sep-2011	99.9
french, morocco	422	23-sep-2011	99.9
greek, turkey	430	07-oct-2011	99.9

Never-ending Language Learning (NELL, CMU), http://rtw.ml.cmu.edu/rtw/kbbrowser/

Use case: Web information extraction

G	oog	e squared	comedy movies Square				
com	comedy movies						
	Item Nar	ne 🔻	Language	V X	Director 🔍 🗙	Release Date	
X	The Mas	k	English		Chuck Russell	29 July 1994	
×	Scary M	English Ianguage for th www.infibeam.c	e mask om - all 9 source	<u>s »</u>	Chuck Russell directed by for The www.infibeam.com	• Mask - all 9 sources »	
		Other possible values			Other possible values		
×	Superba	English Langu language for Ma www.freebase.com	guage Low confidence Joh Mask dire b.com www		 John R. Dilworth director for The Ma www.freebase.com 	Low confidence ask	
×	Music	english, french Low confidence languages for the mask www.dvdreview.com		-	Fiorella Infascelli directed by for The www.freebase.com	Low confidence Mask - all 2 sources »	
X	Knocked	Italian Langua language for Th www.freebase.com	ge Low confidence ne Mask om	-	Charles Russell directed by for The www.freebase.com	Low confidence Mask - all 2 sources »	
		Search for more va	ues »		Search for more values	<u>; »</u>	

Google Squared (terminated), screenshot from [Fink et al., 2011]

Subject	Predicate	Object	Confidence
Elvis Presley	diedOnDate	1977-08-16	97.91%
Elvis Presley	isMarriedTo	Priscilla Presley	97.29%
Elvis Presley	influences	Carlo Wolff	96.25%

YAGO, http://www.mpi-inf.mpg.de/yago-naga/yago

Uncertainty in Web information extraction

- The information extraction system is imprecise
- The system has some confidence in the information extracted, which can be:
 - a probability of the information being true (e.g., conditional random fields)
 - an ad-hoc numeric confidence score
 - a discrete level of confidence (low, medium, high)
- What if this uncertain information is not seen as something final, but is used as a source of, e.g., a query answering system?

Two dimensions:

- Different types:
 - Unknown value: NULL in an RDBMS
 - Alternative between several possibilities: either A or B or C
 - Imprecision on a numeric value: a sensor gives a value that is an approximation of the actual value
 - Confidence in a fact as a whole: cf. information extraction
 - Structural uncertainty: the schema of the data itself is uncertain
- Qualitative (NULL) or Quantitative (95%, low-confidence, etc.) uncertainty

Objective

Not to pretend this imprecision does not exist, and manage it as rigorously as possible throughout a long, automatic and human, potentially complex, process.

Objective

Not to pretend this imprecision does not exist, and manage it as rigorously as possible throughout a long, automatic and human, potentially complex, process.

Especially:

- Represent all different forms of uncertainty
- Use probabilities to represent quantitative information on the confidence in the data
- Query data and retrieve uncertain results
- Allow adding, deleting, modifying data in an uncertain way
- Bonus (if possible): Keep as well lineage/provenance information, so as to ensure traceability

- Not the only option: fuzzy set theory [Galindo et al., 2005], Dempster-Shafer theory [Zadeh, 1986]
- Mathematically rich theory, nice semantics with respect to traditional database operations (e.g., joins)
- Some applications already generate probabilities (e.g., statistical information extraction or natural language probabilities)
- In other cases, we "cheat" and pretend that (normalized) confidence scores are probabilities: see this as a first-order approximation

- Present data models for uncertain data management in general, and probabilistic data management in particular:
 - relational
 - XML
- Briefly discuss querying of probabilistic data

Part II: Probabilistic Models of Uncertainty

Probabilistic Relational Models

Probabilistic XML

Possible world: A regular (deterministic) relational or XML database Incomplete database: (Compact) representation of a set of possible worlds

Probabilistic database: (Compact) representation of a probability distribution over possible worlds, either:

finite: a set of possible worlds, each with their probability continuous: more complicated, requires defining a σ -algebra, and a measure for the sets of this σ -algebra

Part II: Probabilistic Models of Uncertainty

- Probabilistic Relational Models
- Probabilistic XML

- Data stored into tables
- Every table has a precise schema (type of columns)
- Adapted when the information is very structured

Patient	Examin. I	Examin. 2	Diagnosis
А	23	12	α
В	10	23	eta
С	2	4	γ
D	15	15	lpha
Е	15	17	eta

Patient	Examin. I	Examin. 2	Diagnosis
А	23	12	α
В	10	23	\perp_1
С	2	4	γ
D	15	15	\perp_2
Е	\perp_3	17	eta

- Most simple form of incomplete database
- Widely used in practice, in DBMS since the mid-1970s!
- All NULLs (\perp) are considered distinct
- Possible world semantics: all (infinitely many under the open world assumption) possible completions of the table
- In SQL, three-valued logic, weird semantics: SELECT * FROM Tel WHERE tel_nr = '333' OR tel_nr <> '333'

Patient	Examin. I	Examin. 2	Diagnosis	Condition
Α	23	12	α	
В	10	23	\perp_1	
С	2	4	γ	
D	\perp_2	15	\perp_1	
Е	\perp_3	17	eta	$18 < \bot_3 < \bot_2$

- NULLs are labeled, and can be reused inside and across tuples
- Arbitrary correlations across tuples
- Closed under the relational algebra (Codd tables only closed under projection and union)
- Every set of possible worlds can be represented as a database with c-tables

Tuple-independent databases (TIDs)

[Lakshmanan et al., 1997, Dalvi and Suciu, 2007]

Patient	Examin. I	Examin. 2	Diagnosis	Probability
Α	23	12	α	0.9
В	10	23	eta	0.8
С	2	4	γ	0.2
С	2	14	γ	0.4
D	15	15	α	0.6
D	15	15	β	0.4
Е	15	17	β	0.7
Е	15	17	α	0.3

- Allow representation of the confidence in each row of the table
- Impossible to express dependencies across rows
- Very simple model, well understood

Block-independent databases (BIDs)

[Barbará et al., 1992, Ré and Suciu, 2007]

Patient	Examin. I	Examin. 2	Diagnosis	Probability
A	23	12	α	0.9
В	10	23	β	0.8
С	2	4	γ	0.2
С	2	14	γ	0.4∫ [⊕]
D	15	15	β	0.6 Ĵ
D	15	15	α	0.4∫ [⊕]
Е	15	17	β	0.7 Ĵ
Е	15	17	α	0.3∫⊕

- ► The table has a primary key: tuples sharing a primary key are mutually exclusive (probabilities must sum up to ≤ 1)
- Simple dependencies (exclusion) can be expressed, but not more complex ones

Patient	Examin. I	Examin. 2	Diagnosis	Condition
А	23	12	α	w_1
В	10	23	eta	W_2
С	2	4	γ	W ₃
С	2	14	γ	$ eg w_3 \wedge w_4$
D	15	15	eta	W_5
D	15	15	α	$ eg w_5 \wedge w_6$
Е	15	17	eta	W 7
Е	15	17	α	$\neg w_7$

- The w_i's are Boolean random variables
- Each w_i has a probability of being true (e.g., $Pr(w_1) = 0.9$)
- The w_i's are independent
- Any finite probability distribution of tables can be represented using probabilistic c-tables

Two actual PRDBMS: Trio and MayBMS

Two main probabilistic relational DBMS:

- Trio [Widom, 2005] Various uncertainty operators: unknown value, uncertain tuple, choice between different possible values, with probabilistic annotations. See example later on.
- MayBMS [Koch, 2009] Implementation of the probabilistic c-tables model. In addition, uncertain tables can be constucted using a REPAIR-KEY operator, similar to BIDs.

Two actual PRDBMS: Trio and MayBMS

```
test=# select * from R;
Two m dummy | weather | ground | p
       dummy |
               rain
                                  0.35
                        wet
                                                               own
       dummy | rain | dry
                                  0.05
                                                               ible
       dummy | no rain | wet
                                   0.1
       dummy | no rain | dry
                                   0.5
                                                               ter on.
       (4 rows)
    Ma
                                                               bles
       test=# create table S as
                                                               d using
       repair key Dummy in R weight by P:
      SELECT
       test=# select Ground, conf() from S group by Ground;
       around | conf
       drv
               0.55
                0.45
       wet
       (2 rows)
```

Part II: Probabilistic Models of Uncertainty

Probabilistic Relational Models

Probabilistic XML

The semistructured model and XML

- Tree-like structuring of data
- No (or less) schema constraints
- Allow mixing tags (structured data) and text (unstructured content)
- Particularly adapted to tagged or heterogeneous content

- Extensive literature about probabilistic relational databases [Dalvi et al., 2009, Widom, 2005, Koch, 2009]
- Different typical querying languages: conjunctive queries vs XPath and tree-pattern queries (possibly with joins)
- Cases where a tree-like model might be appropriate:
 - No schema or few constraints on the schema
 - Independent modules annotating freely a content warehouse
 - Inherently tree-like data (e.g., mailing lists, parse trees) with naturally occurring queries involving the descendant axis

Remark

Some results can be transferred from one model to the other. In other cases, connection much trickier! [Amarilli and Senellart, 2013]

Web information extraction [Senellart et al., 2008]

- Annotate HTML Web pages with possible labels
- Labels can be learned from a corpus of annotated documents
- Conditional random fields for XML: estimate probabilities of annotations given annotations of neighboring nodes
- Provides probabilistic labeling of Web pages

Uncertain version control [Abdessalem et al., 2011, Ba et al., 2013]

Use trees with probabilistic annotations to represent the uncertainty in the correctness of a document under open version control (e.g., Wikipedia articles)

Probabilistic summaries of XML corpora [Abiteboul et al., 2012a,b]

3 Qu	W183016	lined.	* 8 × 8 ± 6 8
<u> </u>	<journal> <title <authorized< th=""><th>nge> >Introduction to something</th></authorized<></title r>Martha B. Jones</journal>	nge> >Introduction to something	, ,
da	ub tab tab tab tab tab tab tab ta	96	Auférauoio > >
*	<pre>cproceedir <tile cautho <autho <autho <oonfe <th><pre>q> >On the scmething of scmethingr>Marry C. David<author> raMarris B. Jones</author> rence>SIGMOD nqr></pre></th><th>itle></th></oonfe </autho </autho </tile </pre>	<pre>q> >On the scmething of scmethingr>Marry C. David<author> raMarris B. Jones</author> rence>SIGMOD nqr></pre>	itle>
2 d	ublicational scool/cati	offears	
bernepage and	C myQata xm		n 6 ····
Des Das Desdase	reflace Rolect	© % ▲ (S O S S () + 2 ▲ 2 O ▲ (Re: Manzes Reb	· · · · · · · · · · ·
C XM Marthaut kom	a basiley and graps and	(+Echon	

- Transform an XML schema (deterministic top-down tree automaton) into a probabilistic generator (probabilistic tree automaton) of XML documents
- Probability distribution optimal with respect to a given corpus
- Application: Optimal auto-completions in an XML editor

Incomplete XML [Barceló et al., 2009]

- Models all XML documents where these patterns exist (i.e., this subtree can be matched)
- Can be used for query answering, etc.

Simple probabilistic annotations

- Probabilities associated to tree nodes
- Express parent/child dependencies
- Impossible to express more complex dependencies
- Some sets of possible worlds are not expressible this way!

Annotations with event variables

Annotations with event variables

- Expresses arbitrarily complex dependencies
- Obviously, analogous to probabilistic c-tables

A general probabilistic XML model

[Abiteboul et al., 2009]

- e: event "it did not rain" at time I
- mux: mutually exclusive options
- N(70,4): normal distribution

- Compact representation of a set of possible worlds
- Two kinds of dependencies: global (e) and local (mux)
- Generalizes all previously proposed models of the literature

Recursive Markov chains [Benedikt et al., 2010]

<!ELEMENT directory (person*)> <!ELEMENT person (name,phone*)>

- Probabilistic model that extends PXML with local dependencies
- Allows generating documents of unbounded width or depth
Part III: Querying Probabilistic Databases

- Semantics
- Lineage computation and #P-Hardness
- Special tractable case within Probabilistic XML

Part III: Querying Probabilistic Databases

Semantics

- Lineage computation and #P-Hardness
- Special tractable case within Probabilistic XML

Semantics Of Query Answering: Example

Person

name	city	probability
lvan	Moscow	0.3
Jean	Paris	0.8
Pedro	Madrid	0.4

Query: SELECT name FROM Person

Semantics Of Query Answering: Example

Person

name	city	probability
Ivan	Moscow	0.3
Jean	Paris	0.8
Pedro	Madrid	0.4

Pr = 0.3*0.8*0.4

nar

0.3~0.8	3*0.4	
ne	ci	ty

lvan	Moscow
Jean	Paris
Pedro	Madrid

Query: SELECT name FROM Person

$$Pr = 0.3*0.2*0.4$$

name	city
Ivan	Moscow
Pedro	Madrid

 $\bullet \bullet \bullet$

Semantics Of Query Answering: Example

Possible answers: ({Ivan, Juan, Pedro}, 0.3*0.8*0.4), ({Ivan, Pedro}, 0.3*0.2*0.4), ...

Possible tuples:

(Ivan, 0.3), (Jean, 0.8), (Pedro, 0.4)

Possible Answers Semantics

Probabilistic DB:

Possible Tuples Semantics

Possible Answers Semantics

Probabilistic DB:

Possible Tuples Semantics

Probabilistic DB: Ć P = 0.2 P = 0.5 P = 0.3Q {a} {a,b}

Possible Answers Semantics

Answer: $({a}, 0.3); ({a,b}, 0.5)$

Possible Tuples Semantics

Possible Answers Semantics

Probabilistic DB:

Possible Tuples Semantics

Probabilistic DB:

Answer: $({a}, 0.3); ({a,b}, 0.5)$

Probability distribution on sets of tuples

Answer: $({a}, 0.3); ({a,b}, 0.5)$

Probability distribution on sets of tuples

Possible Answer vs Possible Tuple Semantics

[Dalvi,Suciu'09]

- Possible answers semantics:
 - Precise
 - Can be used to compose queries
 - Difficult user interface
- Possible tuples semantics:
 - Less precise, but simple; sufficient for most apps
 - Cannot be used to compose queries
 - Simple user interface

Answer: (a, 0.8), (b, 0.5)

- There may be EXP many worlds → naive evaluation is exponential
- Can we do better?

- There may be EXP many worlds \rightarrow naive evaluation is exponential
- Can we do better?

- There may be EXP many worlds -> naive evaluation is exponential
- Can we do better?

- There may be EXP many worlds -> naive evaluation is exponential
- Can we do better?
- Goal: to find out how to query representation system directly

Part III: Querying Probabilistic Databases

Semantics

- Lineage computation and #P-Hardness
- Special tractable case within Probabilistic XML

General Lineage: Examples of Operators (1)

Drivers

ID	person	car	Lineage
31	Jimmy	Toyota	$\mathbf{x} \wedge \mathbf{y}$
32	Jimmy	Honda	у
33	Hank	Honda	$x \lor z$

Saw

ID	witness	car	Lineage
21	Cathy	Honda	w

$$Pr(x \text{ is true}) = 0.2 \quad Pr(z \text{ is true}) = 0.8$$
$$Pr(y \text{ is true}) = 0.4 \quad Pr(w \text{ is true}) = 0.5$$

Project =
$$\pi_{person}$$
 (Drives)

Project

person	Lineage	
Jimmy	$(x \land y) \lor y$	
Hank	$x \lor z$	

Select =
$$\sigma_{car="honda"}$$
 (Drives)

Select

person	car	Lineage
Jimmy	Honda	У
Hank	Honda	$x \lor z$

General Lineage: Examples of Operators (1)

Drivers

ID	person	car	Lineage
31	Jimmy	Toyota	$\mathbf{x} \wedge \mathbf{y}$
32	Jimmy	Honda	у
33	Hank	Honda	$x \lor z$

Saw

ID	witness	car	Lineage
21	Cathy	Honda	w

$$Pr(x \text{ is true}) = 0.2 \quad Pr(z \text{ is true}) = 0.8$$
$$Pr(y \text{ is true}) = 0.4 \quad Pr(w \text{ is true}) = 0.5$$

Project =
$$\pi_{person}$$
 (Drives)

Project

person	Lineage	
Jimmy	$(x \land y) \lor y$	
Hank	$x \lor z$	

Select =
$$\sigma_{car="honda"}$$
 (Drives)

Select

person	car	Lineage
Jimmy	Honda	У
Hank	Honda	$x \lor z$

General Lineage: Examples of Operators (2)

Drivers

ID	person	car	Lineage
31	Jimmy	Toyota	x \wedge y
32	Jimmy	Honda	у
33	Hank	Honda	$x \lor z$

Saw

ID	witness	car	Lineage
21	Cathy	Honda	W

$$Pr(x \text{ is true}) = 0.2 \quad Pr(z \text{ is true}) = 0.8$$
$$Pr(y \text{ is true}) = 0.4 \quad Pr(w \text{ is true}) = 0.5$$

Join = Saw
$$\bowtie_{car}$$
 Drives

Several =
$$\pi_{person}(\sigma_{person="Hank"}(Saw \bowtie_{car} Drives))$$

Join

person	car	witness	Lineage
Jimmy	Honda	Cathy	y∧w
Hank	Honda	Cathy	$(x \lor z) \land w$

Several

person	Lineage
Hank	$(x \lor z) \land w$

General Lineage: Examples of Operators (2)

Drivers

ID	person	car	Lineage
31	Jimmy	Toyota	x \wedge y
32	Jimmy	Honda	у
33	Hank	Honda	$x \lor z$

Saw

ID	witness	car	Lineage
21	Cathy	Honda	W

$$Pr(x \text{ is true}) = 0.2 \quad Pr(z \text{ is true}) = 0.8$$
$$Pr(y \text{ is true}) = 0.4 \quad Pr(w \text{ is true}) = 0.5$$

Join = Saw
$$\bowtie_{car}$$
 Drives

Several =
$$\pi_{person}(\sigma_{person="Hank"}(Saw \bowtie_{car} Drives))$$

Join

person	car	witness	Lineage
Jimmy	Honda	Cathy	y∧w
Hank	Honda	Cathy	$(x \lor z) \land w$

Several

person	Lineage
Hank	$(x \lor z) \land w$

General Lineage: Examples of Operators (3)

Saw-day

ID	witness	car	Lineage
31	Cathy	Honda	Z
32	Bob	BMW	$\mathbf{y} \wedge \mathbf{w}$

Saw-night

ID	witness	car	Lineage
21	Cathy	Honda	w

$$Pr(x \text{ is true}) = 0.2 \quad Pr(z \text{ is true}) = 0.8$$
$$Pr(y \text{ is true}) = 0.4 \quad Pr(w \text{ is true}) = 0.5$$

Union

witness	car	Lineage
Cathy	Honda	z V w
Bob	BMW	$\mathbf{y} \wedge \mathbf{w}$

Difference

witness	car	Lineage
Cathy	Honda	z ∧ (¬w)
Bob	BMW	$\mathbf{y} \wedge \mathbf{w}$

General Lineage: Examples of Operators (3)

Saw-day

ID	witness	car	Lineage
31	Cathy	Honda	Z
32	Bob	BMW	$\mathbf{y} \wedge \mathbf{w}$

Saw-night

ID	witness	car	Lineage
21	Cathy	Honda	w

$$Pr(x \text{ is true}) = 0.2 \quad Pr(z \text{ is true}) = 0.8$$
$$Pr(y \text{ is true}) = 0.4 \quad Pr(w \text{ is true}) = 0.5$$

Union

witness	car	Lineage
Cathy	Honda	z V w
Bob	BMW	$\mathbf{y} \wedge \mathbf{w}$

Difference

witness	car	Lineage
Cathy	Honda	z ∧ (¬w)
Bob	BMW	$\mathbf{y} \wedge \mathbf{w}$

Join = Saw
$$\bowtie_{car}$$
 Drives

 $Pr(x \text{ is true}) = 0.2 \quad Pr(z \text{ is true}) = 0.8$ $Pr(y \text{ is true}) = 0.4 \quad Pr(w \text{ is true}) = 0.5$

Join

person	car	witness	Lineage
Jimmy	Honda	Cathy	y∧w
Hank	Honda	Cathy	$(x \lor z) \land w$

Theorem:

Join = Saw
$$\bowtie_{car}$$
 Drives

 $Pr(x \text{ is true}) = 0.2 \quad Pr(z \text{ is true}) = 0.8$ $Pr(y \text{ is true}) = 0.4 \quad Pr(w \text{ is true}) = 0.5$

person	car	witness	Lineage
Jimmy	Honda	Cathy	y∧w
Hank	Honda	Cathy	$(x \lor z) \land w$

• Pr(Jimmy \in (Saw \bowtie_{car} Drives)) = Pr(y \land w) = Pr(y) \times Pr(w) = 0.4 \times 0.5 = 0.2

Join

Join = Saw
$$\bowtie_{car}$$
 Drives

 $Pr(x \text{ is true}) = 0.2 \quad Pr(z \text{ is true}) = 0.8$ $Pr(y \text{ is true}) = 0.4 \quad Pr(w \text{ is true}) = 0.5$

person	car	witness	Lineage
Jimmy	Honda	Cathy	y∧w
Hank	Honda	Cathy	$(x \lor z) \land w$

• $Pr(Jimmy \in (Saw \bowtie_{car} Drives)) = Pr(y \land w) = Pr(y) \times Pr(w) = 0.4 \times 0.5 = 0.2$

Join

• $Pr(Hank \in (Saw \bowtie_{car} Drives)) = Pr((x \lor z) \land w))$

=
$$Pr(x \lor z) \times Pr(w)$$

= $[Pr(x) + Pr(z) - Pr(x \land z)] \times 0.5$
= $[Pr(x) + Pr(z) - Pr(x) \times Pr(z)] \times 0.5$
= $[0.2 + 0.8 - 0.2 \times 0.8] \times 0.5 = 0.42$

Theorem:

Join = Saw
$$\bowtie_{car}$$
 Drives

 $Pr(x \text{ is true}) = 0.2 \quad Pr(z \text{ is true}) = 0.8$ $Pr(y \text{ is true}) = 0.4 \quad Pr(w \text{ is true}) = 0.5$

person	car	witness	Lineage
Jimmy	Honda	Cathy	y∧w
Hank	Honda	Cathy	$(x \lor z) \land w$

• $Pr(Jimmy \in (Saw \bowtie_{car} Drives)) = Pr(y \land w) = Pr(y) \times Pr(w) = 0.4 \times 0.5 = 0.2$

oin

• $Pr(Hank \in (Saw \bowtie_{car} Drives)) = Pr((x \lor z) \land w))$

In general: $Pr(lineage) = Pr(\phi)$ where ϕ is a prop. formula = $Pr(x \lor z) \times Pr(w)$ = $[Pr(x) + Pr(z) - Pr(x \land z)] \times 0.5$ = $[Pr(x) + Pr(z) - Pr(x) \times Pr(z)] \times 0.5$ = $[0.2 + 0.8 - 0.2 \times 0.8] \times 0.5 = 0.42$

Theorem:

#P Functions

- Probability computation is a function and not a decision problem
- Usually complexity is studied for decision problems: P(x) = yes/no
- Complexity classes for probability computation are for classes of functions
- #P functions: f(x) = n
 - there is a PTIME non-deterministic Turing machine M_f
 - $n = the number of accepting runs of M_f on x, i.e., of M_f(x)$
- #P functions are counting counterparts of NP decision problems
- Example of #P-complete function: #2DNF: count number of evaluations for 2DNF propositional formulas
- #P-comp. functions are counter counterparts of NP-comp. problems

Part III: Querying Probabilistic Databases

- Semantics
- Lineage computation and #P-Hardness
- Special tractable case within Probabilistic XML

Bottom-up dynamic programming algorithm. Query: /A//B

	A_1	D_2	mux_3	B_4	C_5	B_6
/B				Ι	0	Ι
//B				T	0	I
/A//B				0	0	0
	mux co	nvex su	ım			

ordinary inclusion-exclusion

Bottom-up dynamic programming algorithm. Query: /A//B

	A_1	D_2	mux ₃	B_4	C_5	B_6
/B			0.3	I	0	Ι
//B			0.3	I	0	I
/A//B			0	0	0	0

mux convex sum

ordinary inclusion-exclusion

Bottom-up dynamic programming algorithm. Query: /A//B

 $\Pr(D_2 \models //B) = 1 - (1 - 0.8 \times \Pr(\mathsf{mux}_3 \models /B)) \times (1 - 0.6 \times \Pr(B_6 \models /B))$ $= 1 - (1 - 0.8 \times 0.3) \times (1 - 0.6) = 0.696$

Bottom-up dynamic programming algorithm. Query: /A//B

	A_1	D_2	mux ₃	B_4	C_5	B_6
/B	0	0	0.3	I	0	Ι
//B	0.696	0.696	0.3	I	0	I
/A//B	0.696	0	0	0	0	0

mux convex sum

ordinary inclusion-exclusion
Trio http://infolab.stanford.edu/trio/, useful to see lineage computation

MayBMS http://maybms.sourceforge.net/, full-fledged probabilistic relational DBMS, on top of PostgreSQL, usable for actual applications.

ProApproX http://www.infres.enst.fr/~souihli/
Publications.html to play with various
approximation and exact query evaluation methods for
probabilistic XML.

- An influential paper on incomplete databases [Imielinski and Lipski, 1984]
- A book on probabilistic relational databases, focused around TIDs/BIDs and MayBMS [Suciu et al., 2011]
- An in-depth presentation of MayBMS [Koch, 2009]
- A gentle presentation of relational and XML probabilistic models [Kharlamov and Senellart, 2011]
- A survey of probabilistic XML [Kimelfeld and Senellart, 2013]

Merci.

Talel Abdessalem, M. Lamine Ba, and Pierre Senellart. A probabilistic XML merging tool. In Proc. EDBT, pages 538–541, Uppsala, Sweden, March 2011. Demonstration.

- Serge Abiteboul, Benny Kimelfeld, Yehoshua Sagiv, and Pierre Senellart. On the expressiveness of probabilistic XML models. VLDB Journal, 18(5):1041–1064, October 2009.
- Serge Abiteboul, Yael Amsterdamer, Daniel Deutch, Tova Milo, and Pierre Senellart. Finding optimal probabilistic generators for XML collections. In *Proc. ICDT*, pages 127–139, Berlin, Germany, March 2012a.
- Serge Abiteboul, Yael Amsterdamer, Tova Milo, and Pierre Senellart. Auto-completion learning for XML. In *Proc. SIGMOD*, pages 669–672, Scottsdale, USA, May 2012b. Demonstration.
- Antoine Amarilli and Pierre Senellart. On the connections between relational and XML probabilistic data models. In *Proc. BNCOD*, pages 121–134, Oxford, United Kingdom, July 2013.

- M. Lamine Ba, Talel Abdessalem, and Pierre Senellart. Uncertain version control in open collaborative editing of tree-structured documents. In *Proc. DocEng*, Florence, Italy, September 2013.
- Daniel Barbará, Hector Garcia-Molina, and Daryl Porter. The management of probabilistic data. *IEEE Transactions on Knowledge and Data Engineering*, 4(5):487–502, 1992.
- Pablo Barceló, Leonid Libkin, Antonella Poggi, and Cristina Sirangelo. XML with incomplete information: models, properties, and query answering. In *Proc. PODS*, pages 237–246, New York, NY, 2009. ACM.
- Michael Benedikt, Evgeny Kharlamov, Dan Olteanu, and Pierre Senellart. Probabilistic XML via Markov chains. *Proceedings of the VLDB Endowment*, 3(1):770–781, September 2010. Presented at the VLDB 2010 conference, Singapore.
- Omar Benjelloun, Anish Das Sarma, Alon Y. Halevy, and Jennifer Widom. Uldbs: Databases with uncertainty and lineage. In *VLDB*, pages 953–964, 2006.

- Nilesh Dalvi, Chrisopher Ré, and Dan Suciu. Probabilistic databases: Diamonds in the dirt. *Communications of the ACM*, 52(7), 2009.
- Nilesh N. Dalvi and Dan Suciu. Efficient query evaluation on probabilistic databases. In VLDB, pages 864–875, 2004.
- Nilesh N. Dalvi and Dan Suciu. Efficient query evaluation on probabilistic databases. VLDB Journal, 16(4), 2007.
- Robert Fink, Andrew Hogue, Dan Olteanu, and Swaroop Rath. SPROUT²: a squared query engine for uncertain web data. In *SIGMOD*, 2011.
- José Galindo, Angelica Urrutia, and Mario Piattini. Fuzzy Databases: Modeling, Design And Implementation. IGI Global, 2005.
- Todd J. Green and Val Tannen. Models for incomplete and probabilistic information. In *Proc. EDBT Workshops, IIDB*, Munich, Germany, March 2006.
- Tomasz Imielinski and Witold Lipski. Incomplete information in relational databases. *Journal of the ACM*, 31(4):761–791, 1984.

- Evgeny Kharlamov and Pierre Senellart. Modeling, querying, and mining uncertain XML data. In Andrea Tagarelli, editor, XML Data Mining: Models, Methods, and Applications. IGI Global, 2011.
- Evgeny Kharlamov, Werner Nutt, and Pierre Senellart. Updating probabilistic XML. In *Proc. Updates in XML*, Lausanne, Switzerland, March 2010.
- B. Kimelfeld and Y. Sagiv. Matching twigs in probabilistic XML. In *Proc. VLDB*, Vienna, Austria, September 2007.
- Benny Kimelfeld and Pierre Senellart. Probabilistic XML: Models and complexity. In Zongmin Ma and Li Yan, editors, Advances in Probabilistic Databases for Uncertain Information Management, pages 39–66. Springer-Verlag, May 2013.
- Benny Kimelfeld, Yuri Kosharovsky, and Yehoshua Sagiv. Query evaluation over probabilistic XML. *VLDB J.*, 2009.
- Christoph Koch. MayBMS: A system for managing large uncertain and probabilistic databases. In Charu Aggarwal, editor, *Managing and Mining Uncertain Data*. Springer-Verlag, 2009.

- Laks V. S. Lakshmanan, Nicola Leone, Robert B. Ross, and V. S. Subrahmanian. ProbView: A flexible probabilistic database system. ACM Transactions on Database Systems, 22(3), 1997.
- Dan Olteanu, Jiewen Huang, and Christoph Koch. Approximate confidence computation in probabilistic databases. In *Proc. ICDE*, 2010.
- Christopher Ré and Dan Suciu. Materialized views in probabilistic databases: for information exchange and query optimization. In *Proc. VLDB*, 2007.
- Pierre Senellart, Avin Mittal, Daniel Muschick, Rémi Gilleron, and Marc Tommasi. Automatic wrapper induction from hidden-Web sources with domain knowledge. In *Proc. WIDM*, pages 9–16, Napa, USA, October 2008.
- Asma Souihli and Pierre Senellart. Optimizing approximations of DNF query lineage in probabilistic XML. In *Proc. ICDE*, pages 721–732, Brisbane, Australia, April 2013.
- Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic Databases. Morgan & Claypool, 2011.

- Jennifer Widom. Trio: A system for integrated management of data, accuracy, and lineage. In *Proc. CIDR*, Asilomar, CA, USA, January 2005.
- Lotfi A. Zadeh. A simple view of the Dempster-Shafer theory of evidence and its implication for the rule of combination. *Al Magazine*, 7(2), 1986.