

Méthodes haute-résolution en analyse spectrale et localisation

Yves Grenier

TELECOM ParisTech

Novembre 2012

Plan

- Estimation de raies spectrales
- 2 Localisation de sources
- Overs la super resolution
- 4 Robustesse

< 17 ▶

< ∃⇒

Exemple, une note de piano Sommes de sinusoïdes Signaux aléatoires et densité spectrale Résolution fréquentielle

Une première formalisation

L'estimation de raies spectrales

Exemple, une note de piano Sommes de sinusoïdes Signaux aléatoires et densité spectrale Résolution fréquentielle

Un exemple de signal (note de piano, la2)

Exemple, une note de piano Sommes de sinusoïdes Signaux aléatoires et densité spectra le Résolution fréquentielle

Représentation temps-fréquence de cette note

Spectrogram of note (Piano, A2, ff)

Exemple, une note de piano Sommes de sinusoTdes Signaux aléatoires et densité spectrale Résolution fréquentielle

Sommes de sinusoïdes

Signal représenté comme somme de sinusoïdes amorties :

$$\tilde{y}(t) = \sum_{k=1}^{N} \tilde{A}_k e^{-\beta_k t} \sin(2\pi f_k t + \varphi_k)$$

L'amortissement peut être négligé si la fenêtre d'analyse est courte. On travaille dans $\mathbb C$:

$$\tilde{y}(t) = Re\left(\sum_{k=1}^{N} A_k e^{j2\pi f_k t}\right)$$

Puis si y(t) est la transformée de Hilbert de $\tilde{y}(t)$:

$$y(t) = \sum_{k=1}^{N} A_k e^{j2\pi f_k t}$$

Exemple, une note de piano Sommes de sinusoTdes Signaux aléatoires et densité spectrale Résolution fréquentielle

Échantillonnage du signal

Remplacer le signal à temps continu y(t) par le signal à temps discret y_n :

 $y_n = y(nT)$

Période d'échantillonnage T, fréquence d'échantillonnage $F_e = 1/T$.

Théorème

Théorème de Shannon : si le signal à temps continu y(t) a une transformée de Fourier à support borné ($\exists B : Y(f) = 0 \forall f t.q |f| >= B$) alors il peut être reconstruit parfaitement à partir de { y_n } si $F_e >= 2B$.

$$y(t) \to Y(f) = \int_{-\infty}^{+\infty} y(t) e^{-j2\pi f t} dt \quad y_n \to \tilde{Y}(\tilde{f}) = \sum_{n=-\infty}^{+\infty} y_n e^{-j2\pi \tilde{f} n}$$
$$\tilde{f} = \frac{f}{F_e}$$

Exemple, une note de piano Sommes de sinusoïdes Signaux aléatoires et densité spectrale Résolution fréquentielle

Signaux aléatoires

Variable aléatoire $X:\,\omega o x(\omega)$, densité de probabilité p(x) t.q. :

$$Prob(x \in B) = \int_{B} p(x) dx$$

Espérance mathématique :

$$E(f(x)) = \int f(x)p(x)dx$$

Considérer le signal $\{y_n\}$ comme une réalisation particulière du signal aléatoire $\{y_n(\omega)\}$, caractérisé par :

 $p(y_{n_1}, y_{n_2}, \ldots, y_{n_K}), \forall K > 0, \forall n_1, \forall n_2, \ldots, \forall n_K$ Pour un signal aléatoire du second ordre, $E(y_n)$ et $E(y_ny_{n'})$. Stationarité (moyenne, autocorrélation) :

$$E(y_n) = \mu, \quad E((y_n - \mu)(y_{n'} - \mu)) = R_{yy}(n - n')$$

Exemple, une note de piano Sommes de sinusoïdes Signaux aléatoires et densité spectrale Résolution fréquentielle

Densité spectrale de puissance

Définie comme la transformée de Fourier de l'autocorrélation R_{yy} :

$$R_{yy}(n) = E(y_t y_{t+n})
ightarrow S_{yy}(f) = \sum_{n=-\infty}^{+\infty} R_{yy}(n) e^{-j2\pi f n}$$

Exemple pour une sinusoïde :

$$y_n = A \sin(2\pi f_0 n + \varphi(\omega))$$
 ($\varphi(\omega)$ uniforme sur [0, 2 π])
 $R_{yy}(n) = A^2 \cos(2\pi f_0 n)$
 $S_{yy}(f) = A^2 [\delta(f - f_0) + \delta(f + f_0)]$

Exemple, une note de piano Sommes de sinusoïdes Signaux aléatoires et densité spectrale Résolution fréquentielle

Résolution fréquentielle

Sinusoïde observée sur une durée T :

$$\begin{split} \tilde{y}_{n} &= y_{n} \times 1_{[0,T-1]} \Rightarrow S_{\tilde{y}\tilde{y}}(n) = S_{yy}(n) * \left| T.F.(1_{[0,T-1]}) \right|^{2} \\ S_{\tilde{y}\tilde{y}}(n) &= A^{2} \left| \frac{\sin(\pi T(f-f_{0}))}{T\sin(\pi (f-f_{0}))} \right|^{2} \end{split}$$

Si y est la somme de deux sinusoïdes indépendantes à f_1 et f_2 :

$$S_{\tilde{y}\tilde{y}}(n) = A_1^2 \left| \frac{\sin(\pi T(f - f_1))}{T \sin(\pi (f - f_1))} \right|^2 + A_2^2 \left| \frac{\sin(\pi T(f - f_2))}{T \sin(\pi (f - f_2))} \right|^2$$

Un écart minimal entre f_1 et f_2 est nécessaire pour distinguer les deux sinusoïdes (approximativement $|f_1 - f_2| > 1/T$)

Traitement d'antenne Antenne linéaire uniforme Modèle après échantillonnage Localisation ou somme de sinusoïdes

Une seconde formalisation

Localisation de sources ponctuelles par un réseau de capteurs

Traitement d'antenne Antenne linéaire uniforme Modèle après échantillonnage Localisation ou somme de sinusoïdes

Antenne linéaire uniforme

Antenne monochromatique en champ lointain

Traitement d'antenne Antenne linéaire uniforme Modèle après échantillonnage Localisation ou somme de sinusoïdes

Problèmes du traitement d'antenne

- focaliser la réception dans une direction choisie de façon à rehausser le niveau du signal d'intérêt et à rejecter les brouilleurs,
- focaliser l'émission dans une direction choisie de façon à minimiser les interférences dans les secteurs voisins,
- estimer les directions d'arrivée (azimut, élévation) des sources reçues sur un réseau de capteurs.
- Les deux techniques utilisées sont :
 - I formation de voie (en réception ou en émission)
 - Ocalisation de sources

Traitement d'antenne Antenne linéaire uniforme Modèle après échantillonnage Localisation ou somme de sinusoïdes

Applications du traitement d'antenne :

- astronomie (VLT),
- Ommunications sans fil,
- guerre électronique,
- réseaux de microphones,
- imagerie médicale,
- études géologiques, sismique, etc.

Traitement d'antenne Antenne linéaire uniforme Modèle après échantillonnage Localisation ou somme de sinusoïdes

Angles et retards

Traitement d'antenne Antenne linéaire uniforme Modèle après échantillonnage Localisation ou somme de sinusoïdes

Hypothèse bande étroite

Dans l'hypothèse d'un signal s(t) à bande étroite :

$$s(t) = \alpha(t)e^{j2\pi f_0 t}$$

Enveloppe complexe lpha(t), porteuse f_0 . On aura pour tout n $(au_0=0)$:

$$\alpha(t-\tau_n)\simeq \alpha(t)$$

$$\begin{bmatrix} s(t) \\ s(t-\tau_1) \\ \vdots \\ s(t-\tau_n) \\ \vdots \\ s(t-\tau_{N-1}) \end{bmatrix} \simeq \begin{bmatrix} \alpha(t)e^{j2\pi f_0(t-\tau_0)} \\ \alpha(t)e^{j2\pi f_0(t-\tau_1)} \\ \vdots \\ \alpha(t)e^{j2\pi f_0(t-\tau_n)} \\ \vdots \\ \alpha(t)e^{j2\pi f_0(t-\tau_{N-1})} \end{bmatrix} \simeq \alpha(t)e^{j2\pi f_0 t} \begin{bmatrix} 1 \\ e^{-j2\pi f_0\tau_1} \\ \vdots \\ e^{-j2\pi f_0\tau_n} \\ \vdots \\ e^{-j2\pi f_0\tau_{N-1}} \end{bmatrix}$$

Traitement d'antenne Antenne linéaire uniforme Modèle après échantillonnage Localisation ou somme de sinusoïdes

Variété d'antenne

Avec l'expression du retard,

$$\tau_n = n \frac{d}{C} \sin(\theta)$$

le vecteur des signaux reçus devient

$$Y(t) = \begin{bmatrix} 1 \\ e^{-j2\pi f_0 \frac{d}{C} \sin(\theta)} \\ \vdots \\ e^{-j2\pi f_0 n \frac{d}{C} \sin(\theta)} \\ \vdots \\ e^{-j2\pi f_0 (N-1) \frac{d}{C} \sin(\theta)} \end{bmatrix} \alpha(t) e^{j2\pi f_0 t} = a(\theta)s(t)$$

Le vecteur $a(\theta)$ est appelé "vecteur directionnel" (steering vector). L'ensemble $\{a(\theta), \theta \in [-\pi/2, +\pi/2]\}$ est appelé "variété d'antenne" (array manifold).

Traitement d'antenne Antenne linéaire uniforme Modèle après échantillonnage Localisation ou somme de sinusoïdes

Signaux après échantillonnage

Pour une source unique et pour $t\in\mathbb{Z}$:

$$Y_t = a(\theta)s_t + b_t$$

Pour K sources, $\Theta = \left[\theta_1 \, \theta_2 \, \dots \, \theta_K\right]^T$:

$$Y_t = As_t + b_t$$

où

$$A = [a(\theta_1) a(\theta_1) \dots a(\theta_1)] \quad s_t = [s_{1,t} s_{2,t} \dots s_{K,t}]^T$$

Le vecteur b_t , de dimension $N \times 1$ représente l'enveloppe complexe du bruit sur les N capteurs.

 $\mathsf{Dimensions}: Y_t \leftrightarrow (\mathsf{N} \times 1), \ \mathsf{A} \leftrightarrow (\mathsf{N} \times \mathsf{K}), \ \mathsf{s}_t \leftrightarrow (\mathsf{K} \times 1), \ \mathsf{b}_t \leftrightarrow (\mathsf{N} \times 1).$

Traitement d'antenne Antenne linéaire uniforme Modèle après échantillonnage Localisation ou somme de sinusoïdes

Localisation ou somme de sinusoïdes?

La suite des coefficients d'un vecteur directionnel est celle des échantillons d'une sinusoïde :

$$a(\theta) = \begin{bmatrix} 1 \\ e^{-j2\pi f_0 \frac{d}{C} \sin(\theta)} \\ \vdots \\ e^{-j2\pi f_0 n \frac{d}{C} \sin(\theta)} \\ \vdots \\ e^{-j2\pi f_0 (N-1) \frac{d}{C} \sin(\theta)} \end{bmatrix} = \begin{bmatrix} 1 \\ e^{-j2\pi \nu_{\theta}} \\ \vdots \\ e^{-j2\pi \nu_{\theta} (N-1)} \\ \vdots \\ e^{-j2\pi \nu_{\theta} (N-1)} \end{bmatrix}$$

où λ est la longueur d'onde, et ν_{θ} est la fréquence spatiale.

Traitement d'antenne Antenne linéaire uniforme Modèle après échantillonnage Localisation ou somme de sinusoïdes

Deux formalisations

Dans les deux cas présentés :

- l'estimation de raies spectrales,
- Ia localisation de sources ponctuelles,

le problème devient celui d'estimer les fréquences en disposant d'un nombre réduit d'échantillons.

Comment parvenir à dépasser la limite de résolution imposée par la transformée de Fourier ?

Nous considérerons le problème de la localisation et supposerons que :

- Ie nombre K des sources est connu,
- 3 il y a moins de sources que de capteurs (K < M)

Traitement d'antenne Antenne linéaire uniforme Modèle après échantillonnage Localisation ou somme de sinusoïdes

Modèles

Reprenons l'équation : $Y_t = As_t + b_t$ Le signal s_t est un processus aléatoire gaussien complexe, centré, de covariance

$$E(s_t s_{t'}^H) = R_{ss} \delta_{t,t'}$$

Le bruit b_n est supposé, gaussien complexe, centré, blanc.

$$E(b_n) = 0, \quad E(b_n b_{n'}^H) = \sigma_b^2 I \delta_{n,n'}.$$

On suppose que, pout tout couple (t, t'), b_t et $s_{t'}$ sont indépendants. On en déduit que Y_t est gaussien complexe, centré, de covariance :

$$R_{YY} = E(Y_t Y_t^H) = A R_{ss} A^H + \sigma_b^2 I$$

Avec T tirs (snapshots), la covariance empirique sera :

$$\hat{R}_{YY} = \frac{1}{T} \sum_{t=1}^{T} Y_t Y_t^H$$

Méthode de Bartlett Méthode de Capon, MVDR Méthode par sous-espace, MUSIC Méthode par invariance, ESPRIT

Localisation par formation de voie

Utiliser une formation de voies (filtrage spatial) et balayer l'ensemble des directions possibles \iff rechercher les maxima de la fonction $J(\theta)$:

$$J(\theta) = \sum_{t=1}^{T} |w^{H}(\theta)Y_{t}|^{2}$$

Notons que $E(J(\theta)) = w^H R_{YY} w$ où $R_{YY} = E(Y_t Y_t^H)$.

Essentiellement deux méthodes :

 la formation de voie classique qui ne prend pas en compte les données,

a formation de voie dépendant des données (MVDR).

En pratique R_{YY} est remplacé par \hat{R}_{YY} estimé à partir d'une suite de T observations.

Méthode de Bartlett Méthode de Capon, MVDR Méthode par sous-espace, MUSIC Méthode par invariance, ESPRIT

Méthode de Bartlett (1/2)

Choisir $w(\theta)$ qui maximise $w^H R_{YY} w$ sous contrainte que $w^H w = 1$. On en déduit que w est le vecteur propre de R_{YY} associé à la plus grande valeur propre.

Dans le cas d'une source unique on a :

$$Y_t = as_t + b_t$$
$$\implies R_{YY} = E(Y_t Y_t^H) = \sigma_s^2 aa^H + \sigma_b^2 I$$

Le vecteur propre associé à la plus grande valeur propre est a(heta) :

$$w = rac{1}{\sqrt{a^H(heta)a(heta)}} a(heta)$$

Le choix de w ne dépend pas des observations.

Méthode de Bartlett Méthode de Capon, MVDR Méthode par sous-espace, MUSIC Méthode par invariance, ESPRIT

Méthode de Bartlett (2/2)

Pour localiser les sources, on cherchera le maximum de la fonction $J(\theta)$:

$$J(\theta) = \frac{1}{a^{H}(\theta)a(\theta)} \frac{1}{N} \sum_{t=1}^{T} |a^{H}(\theta)Y_{t}|^{2}$$

Connaissant la matrice de covariance spatiale, cela donne :

$$J(\theta) = \frac{1}{N^2} a^{H}(\theta) \hat{R}_{YY} a(\theta)$$

Méthode de Bartlett Méthode de Capon, MVDR Méthode par sous-espace, MUSIC Méthode par invariance, ESPRIT

Méthode de Capon, MVDR

La méthode de Capon ou formation de voie MVDR prend en compte les observations. Elle minimise $w(\theta)R_{YY}w(\theta)$ sous la contrainte $w(\theta)^{H}a(\theta) = 1$:

$$w(\theta) = rac{1}{a(\theta)^H R_{YY}^{-1} a(\theta)} R_{YY}^{-1} a(\theta)$$

La valeur de la fonction de localisation devient :

$$J(\theta) = \frac{1}{a(\theta)^{H} R_{YY}^{-1} a(\theta)}$$

En remplaçant R_{YY} par \hat{R}_{YY} , il vient :

$$J(\theta) = \frac{1}{a(\theta)^{H} \hat{R}_{YY}^{-1} a(\theta)}$$

Méthode de Bartlett Méthode de Capon, MVDR **Méthode par sous-espace, MUSIC** Méthode par invariance, ESPRIT

Structure de la matrice de covariance

La matrice de covariance admet deux décompositions :

$$R_{YY} = E(Y_t Y_t^H) = AR_{ss}A^H + \sigma_b^2 I = U_s \Lambda_s U_s^H + \sigma_b^2 U_b U_b^H$$

Si les sources sont indépendantes, R_{ss} est de rang K, on en déduit que :

- span{ $u_{s,1}\cdots u_{s,K}$ } = span{ $(AR_{ss})_1\cdots (AR_{ss})_K$ } span{ $a(\theta_1)\cdots a(\theta_K)$ },
- **2** $S = \text{span}\{a(\theta_1) \cdots a(\theta_K)\}$ est appelé le *sous-espace-signal*;
- U_b est de dimension $N \times (N K)$ et $\Pi_b = U_b U_b^H$ est un projecteur orthogonal défini sur \mathbb{C}^N et à valeurs dans un sous-espace de dimension (N R) appelé le *sous-espace-bruit*,

Méthode de Bartlett Méthode de Capon, MVDR **Méthode par sous-espace, MUSIC** Méthode par invariance, ESPRIT

MUSIC (1/2)

Dans le cas où R_{ss} est de rang plein K, le sous-espace engendré par $U_s = [u_{s,1} \cdots u_{s,K}]$ coïncide avec le sous-espace engendré par A, ce qui s'écrit :

$$\operatorname{span}\{u_{s,1}\cdots u_{s,K}\}=\operatorname{span}\{a(\theta_1)\cdots a(\theta_K)\}$$

Par conséquent

$$\Pi_A \Pi_b = 0$$

où $\Pi_A = A(A^H A)^{-1} A^H$ et $\Pi_b = U_b U_b^H$.

Si A et U_s engendrent le même sous-espace, il existe une matrice P telle que :

$$U_s = AP$$

Méthode de Bartlett Méthode de Capon, MVDR **Méthode par sous-espace, MUSIC** Méthode par invariance, ESPRIT

MUSIC (2/2)

Si on connaît l'espace-bruit, on peut alors chercher les directions d'arrivée telles que leur vecteur directionnel est orthogonal au sous-espace bruit :

$$u_B^H a(\theta) = 0$$

où u_B désigne un vecteur de l'espace-bruit.

Plutôt que minimiser ces quantités, on maximisera leur inverse :

$$J(\theta) = \frac{1}{a(\theta)^{H} \prod_{b} a(\theta)} = \frac{1}{a(\theta)^{H} U_{b} U_{b}^{H} a(\theta)}$$

Méthode de Bartlett Méthode de Capon, MVDR Méthode par sous-espace, MUSIC Méthode par invariance, ESPRIT

ESPRIT, décomposition en sous-antennes

ESPRIT : Estimation of Signal Parameters via Rotational Invariant Techniques

Décomposition de l'antenne en deux sous-antennes de même taille :

$$\begin{aligned} \mathbf{a}(\theta) &= \begin{bmatrix} 1\\ e^{j2\pi\nu_{\theta}}\\ \vdots\\ e^{j2\pi\nu_{\theta}(N-2)}\\ e^{j2\pi\nu_{\theta}(N-1)} \end{bmatrix} \\ \mathbf{a}_{1}(\theta) &= \begin{bmatrix} I_{N-1} & 0\\ 0 & I_{N-1} \end{bmatrix} \mathbf{a}(\theta) \\ \mathbf{a}(\theta) \end{bmatrix} \Longrightarrow \mathbf{a}_{2}(\theta) = \mathbf{a}_{1}(\theta)e^{j2\pi\nu_{\theta}} \end{aligned}$$

Pour K sources

$$A_1 = \begin{bmatrix} I_{N-1} & 0 \end{bmatrix} A$$
 et $A_2 = \begin{bmatrix} 0 & I_{N-1} \end{bmatrix} A \implies A_2 = A_1 \Omega$

$$\Omega = \mathsf{diag}(e^{j2\pi\nu_{\theta_1}}, \dots, e^{j2\pi\nu_{\theta_{\kappa}}})$$

Méthode de Bartlett Méthode de Capon, MVDR Méthode par sous-espace, MUSIC Méthode par invariance, ESPRIT

ESPRIT, décomposition du sous-espace signal

De même que $A_2 = A_1 \Omega$ avec $\Omega = \text{diag}(e^{j2\pi\nu_{\theta_1}}, \ldots, e^{j2\pi\nu_{\theta_k}})$, décomposons U_s :

On a vu qu'il existe P tel que $U_s = AP$. Par conséquent :

$$V_{1} = \begin{bmatrix} I_{N-1} & 0 \\ V_{2} &= \begin{bmatrix} 0 & I_{N-1} \\ 0 & I_{N-1} \end{bmatrix} AP = A_{1}P$$
$$\implies V_{2} = V_{1}P^{-1}\Omega P$$
$$\implies (V_{1}^{H}V_{1})^{-1}V_{1}^{H}V_{2} = P^{-1}\Omega P$$

Les matrices Ω et $V_1^{\#}V_2$ sont semblables $(V_1^{\#} = (V_1^H V_1)^{-1} V_1^H$ est la pseudo-inverse de V_1) : elles ont mêmes valeurs propres.

Méthode de Bartlett Méthode de Capon, MVDR Méthode par sous-espace, MUSIC Méthode par invariance, ESPRIT

ESPRIT : résumé de l'algorithme

- estimer la matrice de covariance R_{YY} ,
- 2 diagonaliser la matrice R_{YY} ,
- former U_s avec les K vecteurs propres associés aux K plus grandes valeurs propres,
- extraire de U_s les matrices V_1 et V_2 ,
- diagonaliser $V_1^{\#}V_2$, les valeurs propres sont les $e^{j2\pi\nu_k}$.

Avantages : facile à calculer (pas de recherche de maxima), ne nécessite pas une procédure de calibration de la réponse d'antenne $a(\theta)$. **Inconvénients** : nécessite des géométries particulières d'antennes (par exemple linéaire uniforme), nécessite que les deux sous-antennes soient parfaitement identiques.

Résolution avec faible bruit Résolution dans un bruit fort Résolution pour un signal noyé dans le bruit

Robustesse au bruit

Comment les méthodes résistent-elles au bruit?

< ∃ >

H 5

Résolution avec faible bruit Résolution dans un bruit fort Résolution pour un signal noyé dans le bruit Non-robustesse aux erreurs de modèle

Méthode de Bartlett, deux sources, SNR=+20 dB

Résolution avec faible bruit Résolution dans un bruit fort Résolution pour un signal noyé dans le bruit Non-robustesse aux erreurs de modèle

Méthode de Capon, deux sources, SNR=+20 dB

Résolution avec faible bruit Résolution dans un bruit fort Résolution pour un signal noyé dans le bruit Non-robustesse aux erreurs de modèle

Méthode MUSIC, deux sources, SNR=+20 dB

Résolution avec faible bruit Résolution dans un bruit fort Résolution pour un signal noyé dans le bruit Non-robustesse aux erreurs de modèle

Méthode de Capon, deux sources, SNR=0 dB

Résolution avec faible bruit Résolution dans un bruit fort Résolution pour un signal noyé dans le bruit Non-robustesse aux erreurs de modèle

Méthode MUSIC, deux sources, SNR=0 dB

Résolution avec faible bruit Résolution dans un bruit fort Résolution pour un signal noyé dans le bruit Non-robustesse aux erreurs de modèle

Méthode de Capon, deux sources, SNR=-10 dB

Résolution avec faible bruit Résolution dans un bruit fort **Résolution pour un signal noyé dans le bruit** Non-robustesse aux erreurs de modèle

Méthode MUSIC, deux sources, SNR=-10 dB

Résolution avec faible bruit Résolution dans un bruit fort **Résolution pour un signal noyé dans le bruit** Non-robustesse aux erreurs de modèle

Méthode MUSIC, deux sources, SNR=-20 dB

Résolution avec faible bruit Résolution dans un bruit fort Résolution pour un signal noyé dans le bruit Non-robustesse aux erreurs de modèle

Méthode MUSIC, deux ou trois sources?

Résolution avec faible bruit Résolution dans un bruit fort Résolution pour un signal noyé dans le bruit Non-robustesse aux erreurs de modèle

Merci pour votre attention

Des questions?

Yves Grenier Méthodes haute-résolution en analyse spectrale et localisation

< A