

Applications des méthodes Haute-Résolution

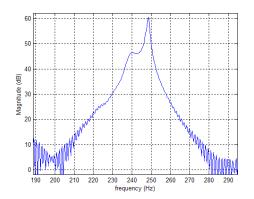
En acoustique musicale et signaux audiofréquences

B. DAVID

Télécom ParisTech Département Traitement du Signal et des Images Groupe Audio

> Cours LIESSE 5 novembre 2012

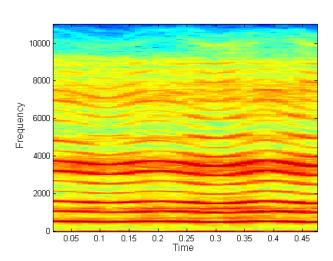
Problématiques



- Observé couramment pour piano, guitare, clavecin,...
- Comment estimer les fréquences et amortissements ?
- · Comment automatiser les mesures?
- Validité du modèle (non-linéarités ?), ordre du modèle
- attaques / extinctions / vibratos / glissanos ...

Problématiques

voice



la plupart des paysages sonores sont instationnaires.

Problématique : décomposition

Son de piano

- Une note de piano
- Modèle de signal : harmoniques + bruit

Autres utilisations

- estimation : paramètres pour la synthèse, estimation de hauteur (M. Cristensen par exemple)
- · analyse modale,
- · segmentation,
- décompositions (H+N) : pour l'analyse/synthèse, pour le rythme (M. Alonso),...

Journée méthodes HR / SFA / TP, décembre 2011

- 10h00 Introduction de la journée (B. David)
- 10h30 Méthodes HR et représentations adaptatives : R. Badeau, B. David
- 11h30 Prétraitements : R. Badeau, B. David
- 11h45 Première table ronde : estimation de l'ordre des modèles
 - principe d'Ester R. Badeau
 - B. Elie et les plaques vibrantes
- 12h45 Repas
- 14h00 Table ronde modes proches
 - Intro B. David
 - Mélodie Monteil : séparation de modes proches dans les sons de steelpans
 - J-L Le Carrou, identification de modes sympathiques : cas de la harpe de concert
- 15h30 Interlude : Méthodes HR avec échantillonnage non uniforme (G. Chardon)
- 16h00 Table ronde analyse modale :
 - intro et contexte : Jean-Loic Le Carrou
 - méthode d'identification modale en moyennes fréquences : Kerem Ege
 - · applications : B. Elie
 - K. Ege: Comportement vibratoire d'une table d'harmonie de piano en BF et MF
 - M. Rébillat : Estimation des paramètres d'élasticité et d'amortissement d'une plaque "sandwich"
 - A. Sirdey
- 17h00 Une autre application aux vibrations: J. Drouet (LVA, INSA de Lyon): Estimation paramétrique d'un filtre de Wiener mesuré sur moteur Diesel

Quelques jalons

- Méthodes Haute-résolution: Prony (1795), Kumaresan (années 80), ESPRIT (Roy, 86),
- application à la musique : Laroche (93)
- contexte adaptatif : Duvaut (SinTrack, 96), Strobach (Loraf, 97 nr^2), Abed-Meraim (OPAST, 2000, nr), Badeau (FAPI, 2004, nr)

Structure de l'exposé

- 1. Rappels : analyse spectrale HR et modèle sous-jacent
- 2. Application à l'estimation de modes propres proches
- 3. Décomposition Harmoniques/Bruit
- 4. Méthodes adaptatives

Modélisation

Modèle de signal avec bruit additif

- signal non bruité : $x(t) = \sum_{k=0}^{r-1} a_k e^{j2\pi f_k t + \phi_k} = \sum_{k=0}^{r-1} b_k z_k^t$
- bruit blanc, gaussien, complexe, $p_b(\eta(t)) = \frac{1}{\pi \sigma^2} e^{-\frac{|\eta(t)|^2}{\sigma^2}}$
- modèle de signal $s(t) = x(t) + \eta(t)$

Notations vectorielles

$$\mathbf{x} = \begin{bmatrix} x(0) \\ x(1) \\ \vdots \\ x(N-1) \end{bmatrix}, \quad \mathbf{v}(z) = \begin{bmatrix} 1 \\ z \\ \vdots \\ z^{N-1} \end{bmatrix}, \quad \mathbf{V} = \begin{bmatrix} \mathbf{v}(z_0) & \mathbf{v}(z_1) & \dots & \mathbf{v}(z_{r-1}) \end{bmatrix}$$

V Matrice de Vandermonde

on en déduit $\mathbf{x} = \mathbf{V}\mathbf{b}$

Maximum de vraisemblance

- vraisemblance $L(\theta) = f_{\theta}(\mathbf{x}|\theta)$
- Maximiser la vraisemblance peut se ramener à maximiser la fontion

$$\mathcal{J}(z_0,\ldots,z_{(K-1)}) = \boldsymbol{s}(t)^H \boldsymbol{V} \left(\boldsymbol{V}^H \boldsymbol{V}^N\right)^{-1} \boldsymbol{V}^{NH} \boldsymbol{s}(t)$$

- en général très difficile (optimiser une fonction de K variables), pas de solution analytique,
- nombreux maxima locaux
- MV = Moindres carrés pour estimer les amplitudes b (MC linéaires) et σ^2
- Pour des composantes bien séparées : Maximiser \mathcal{J} c'est trouver les K plus grands maxima du périodogramme.

Méthodes HR

- la limite de résolution de Fourier contraint la méthode par ML,
- intérêt des méthodes HR: affranchies de cette limitation, peuvent distinguer les composantes proches,
- · dans la pratique :
 - analyse/synthèse : pouvoir réduire les tailles de fenêtres,
 - estimation de composantes amorties.
- défauts :
 - coût de calcul ($\propto N^3$)
 - · bruit non blanc, préprocessing
 - pb de "résolution" (lié à RSB $\neq +\infty$)

Principes de base

Prony et prédiction linéaire (1795)

- rappel du modèle non bruité : $x(t) = \sum_{k=0}^{r-1} b_k z_k^t$
- une seule composante : $x(t) = z_0x(t-1)$
- à r composantes : $x(t) = -\sum_{k=1}^{r} p_k x(t-k)$
- polynôme annulateur : $P(z) = z^r + \sum_{k=1}^r p_k z^{r-k} = \prod_{k=0}^r (z-z_k)$

Idée de Prony

- le pb de trouver les z_k est non-linéaire
- le pb de trouver les p_k est *linéaire* (prédiction)
- · algo:
 - 1. minimiser l'erreur de prédiction (en présence de bruit) $\epsilon(t) = \sum_{k=0}^{r} p_k s(t-k), \hookrightarrow \hat{p}_k$
 - 2. chercher les racines du polynôme $P \hookrightarrow \hat{z}_k$

Méthodes sous-espace : réduction de rang

Exemple simple

• signal non bruité : $x(t) = b_0 z_0^t + b_1 z_1^t$, $z_k = e^{-\delta_k + j2\pi f_k}$

$$\bullet \text{ en matriciel } \mathbf{x} = \begin{bmatrix} x(0) \\ x(1) \\ \vdots \\ x(n-1) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ z_0 & z_1 \\ \vdots & \vdots \\ z_0^{n-1} & z_1^{n-1} \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \end{bmatrix} = \mathbf{V} \mathbf{b}$$

- sous-espace signal : $\mathbf{x} \in \operatorname{span} \mathbf{V} = \mathcal{E}_{\operatorname{sig}}$
- $z_0 \neq z_1$, dim $\mathcal{E}_{\text{sig}} = 2$

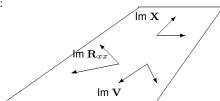
• pour une fenêtre d'analyse de l+n points la matrice de données est maintenant de dimension $n\times l$ avec n,l>r.

$$\mathbf{X} = \begin{bmatrix} x(0) & \cdots & x(l-1) & x(l) \\ x(l) & \cdots & x(l) & x(l+1) \\ \vdots & \ddots & \vdots & \vdots \\ x(n-1) & \cdots & x(l+n-1) & x(l+n-1) \end{bmatrix}$$

- ullet cette matrice est de rang r
- matrice de covariance des données non bruitées $\mathbf{R}_{xx} = \frac{1}{l}\mathbf{X}\mathbf{X}^H$: $n \times n$

$$\bullet \ | \ \mathbf{R}_{xx} = \mathbf{V}\mathbf{P}\mathbf{V}^H$$

Sous-espace signal:



Méthodes sous-espace : décomposition sous-espace signal/bruit

Base propre orthonormée de l'espace signal

- W base propre o.n. de \mathbf{R}_{xx} (en général \neq V)
- W associée à r v.p. $\lambda_k > 0$
- \mathbf{W}_{\perp} , complémentaire orth. associée à n-r v.p =0
- W base propre o.n de $\mathbf{R}_{ss} = \mathbb{E}\hat{\mathbf{R}}_{ss}$ associée aux v.p $\lambda_k + \sigma^2$

MUSIC

- MUSIC : $\frac{1}{\|\text{proj. sur l'espace bruit}\|^2}$
- $P_{\text{music}} = \frac{1}{\|\mathbf{W}_{\perp}^H \mathbf{v}(z)\|^2}$
- ullet souvent plus efficace : $\mathbf{W}_{\perp}\mathbf{W}_{\perp}^{H}=\mathbf{I}-\mathbf{W}\mathbf{W}^{H}$

ESPRIT

- Utilise une propriété supplémentaire : l'invariance rotationnelle,
- Estime directement les pôles.

Méthode ESPRIT

Invariance rotationnelle

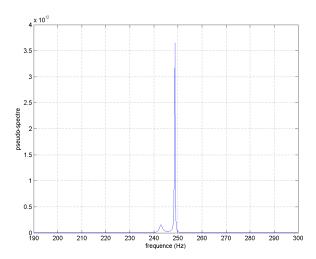
$$\bullet \begin{bmatrix} 1 & 1 \\ z_0 & z_1 \\ \vdots & \vdots \\ z_0^{n-2} & z_1^{n-2} \end{bmatrix} \begin{bmatrix} z_0 & 0 \\ 0 & z_1 \end{bmatrix} = \begin{bmatrix} z_0 & z_1 \\ z_0^2 & z_1^2 \\ \vdots & \vdots \\ z_0^{n-1} & z_1^{n-1} \end{bmatrix}$$

- ullet $\mathbf{V}_{\downarrow}\mathbf{D}=\mathbf{V}_{\uparrow}$
- V et W engendre le même sous-espace $\Rightarrow \exists \Phi$ telle que $W_{\downarrow}\Phi = W_{\uparrow}$ avec $\Phi = \mathbf{C}\mathbf{D}\mathbf{C}^{-1}$

Algorithme

- on estime ${f W}$ à partir de la SVD de $\hat{{f R}}_{ss}$
- ullet on estime $oldsymbol{\Phi} = \mathbf{W}_{\perp}^{\dagger} \mathbf{W}_{\uparrow}$
- on estime les z_k comme v.p. de Φ (matrice spectrale)

Application de MUSIC à un partiel de guitare

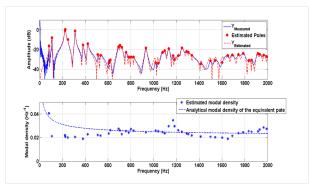


ANR PAFI

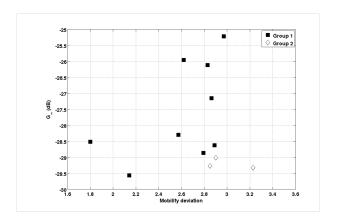
- travail de plus de 10 ans avec les facteurs d'instrument
- cadre d'un projet ANR : PAFI (Plate Forme d'Aide à la Facture Instrumentale)
- développement d'outil d'investigation et d'analyse
- Démonstration

Analyse en moyennes fréquences

- Mesures d'admittance au chevalet : $\gamma(\nu) = \frac{\hat{v}(\nu)}{\hat{F}(\nu)}$
- modélisation par ESPRIT



Analyse en moyennes fréquences



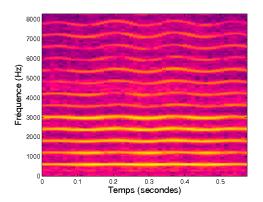
Application de ESPRIT à un son de piano

L'un des deux est une resynthèse

- son1
- son2

Exemple du vibrato de violon

son de violon



Transformée, peak picking, lien a posteriori

- TFCT, Serra (sms, 90)
- HMM, Depalle (93)
- filtrage particulaire, Dubois (2005)

mise à jour directe par LMS adaptatif, SINTRACK (Duvaut 96, David 2002)

Rappel, équation de prédiction : $\epsilon(t) = \sum_{k=0}^r p_k s(t-k) = \mathbf{p}^T \mathbf{s}(t)$

Algorithme

Init : Matrix-pencil + calcul des p_k (coeff. du polynome prédicteur)

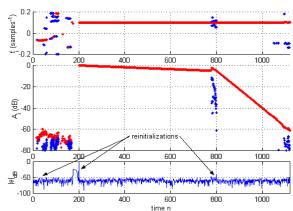
- 1. calcul de l'erreur de prédiction $\epsilon(t)$
- 2. $\operatorname{si} \epsilon(t) > \operatorname{seuil}$: reinitialisation
- 3. gradient adaptatif sur $\mathbf{p} : \mathbf{p}(t+1) = \mathbf{p}(t) \mu \epsilon(t) \mathbf{s}(t)$
- 4. calcul des poles comme racines du polynôme

avantages et inconvénients

- très rapide (pour la partie lms)
- pas une "vraie" mise a jour des pôles
- réglages de l'algo : seuil, nombre de composantes, pas du lms.

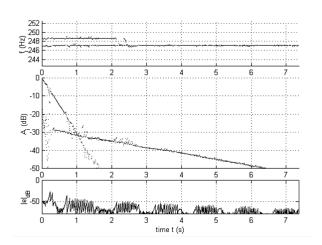
Simulations

Cas d'un composante simple à double décroissance

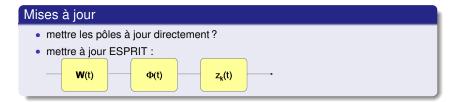


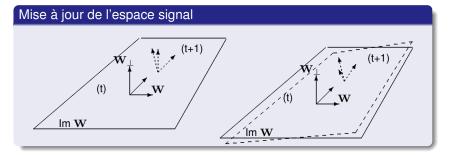
Résultats sur signaux réels

Résultats pour le Mi grave d'une guitare : 48 kHz, 3ème partiel, pincé, prétraitement (filtrage)

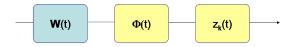


Suivre les poles





Rendre ESPRIT adaptatif



Références

- Thèse R. Badeau (2005), FAPI (IEEE TSP, 2004) : mise à jour de $\mathbf{W}(t)$,
- B. David : mise à jour des z_k (lcassp, 2006)

Suivi du sous-espace

• mise à jour de la matrice de corrélation :

$$l\hat{\mathbf{R}}_{ss} = \mathbf{C}_{ss}(t) = \beta \mathbf{C}_{ss}(t-1) + \mathbf{s}(t)\mathbf{s}(t)^H$$

- Itération orthogonale appliquée séquentiellement
- Approximation de projection $\mathbf{W}(t)\mathbf{W}(t)^H \approx \mathbf{W}(t-1)\mathbf{W}(t-1)^H$

FAPI (Badeau, 2004)

Initialization:

$$W(0) = \begin{bmatrix} I_r \\ 0_{(n-r)\times r} \end{bmatrix}, \ Z(0) = I_r$$

For each time step do

. or each time stop do	
Input vector: $x(t)$	
FAPI main section	Cost (MAC)
$y(t) = W(t-1)^H x(t)$	nr
h(t) = Z(t-1)y(t)	r2
$g(t) = rac{h(t)}{eta + y(t)^H h(t)}$	2r
$\varepsilon^{2}(t) = \ x(t)\ ^{2} - \ y(t)\ ^{2}$	n+r
$\tau(t) = \frac{\varepsilon^2(t)}{1 + \varepsilon^2(t) \ g(t)\ ^2 + \sqrt{1 + \varepsilon^2(t) \ g(t)\ ^2}}$	r
$\eta(t) = 1 - \tau(t) \ g(t)\ ^2$	1
$y'(t) = \eta(t) y(t) + \tau(t) g(t)$	2r
$h'(t) = Z(t-1)^H y'(t)$	r^2
$\epsilon(t) = rac{ au(t)}{\eta(t)} ig(Z(t-1) oldsymbol{g}(t) - ig(oldsymbol{h}'(t)^H oldsymbol{g}(t) ig) oldsymbol{g}(t) ig)$	$r^2 + 3r$
$Z(t) = \frac{1}{eta} \left(Z(t-1) - g(t) h'(t)^H + \epsilon(t) g(t)^H ight)$	$2r^2$
$e(t) = \eta(t) x(t) - W(t-1) y'(t)$	nr + n
$W(t) = W(t-1) + e(t)g(t)^H$	nr

FAPI (Badeau, 2004)

$$\boldsymbol{y}(t) = \boldsymbol{W}(t-1)^H \boldsymbol{x}(t)$$

$$\boldsymbol{W}(t) = \boldsymbol{W}(t-1) + \boldsymbol{e}(t) \, \boldsymbol{g}(t)^H$$

Applications de la mise à jour de W

Décomposition harmoniques/bruit

- projecteurs:
 sur l'espace signal P_s = WW^H,
 sur l'espace bruit P_b = W_⊥W^H,
- permet de séparer sans calcul explicite des amplitudes

Application: sons musicaux

 piano: piano, piano bruit. piano bruit. ech., piano vibrato saxo, saxo harmo. saxo bruit., saxo bruit. ech.

Application : remix de la partie bruit

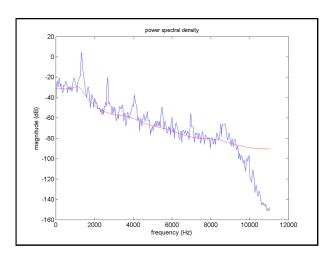
Démo du logiciel minimix de O. Gillet

Applications à la détection du rythme

- jazz, Brad Mehldau
- Salsa, Maraca
- Country, Lyle Lovet

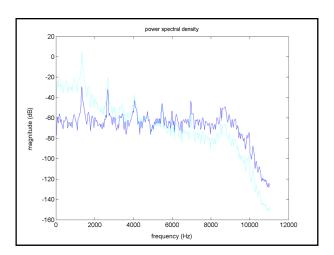
Prétraitement

Filtrage médian + modélisation AR-12



Prétraitement

Filtrage médian + modélisation AR-12

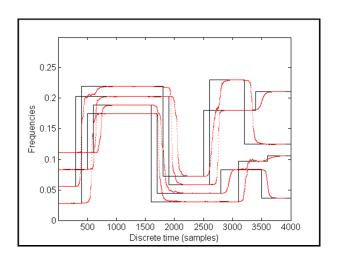


Mise à jour de la matrice spectrale

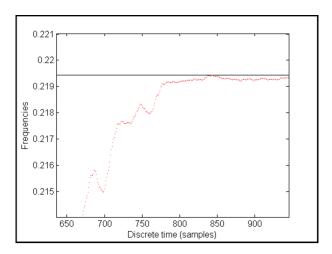
Décomposition et mise à jour

- $\bullet \ \, \text{D\'ecomposition} \,\, \Phi(t) = \underbrace{(\mathbf{W}_{\downarrow}(t)^H \mathbf{W}_{\downarrow}(t))^{-1}}_{\Omega(t)} \underbrace{\mathbf{W}_{\downarrow}(t)^H \mathbf{W}_{\uparrow}(t)}_{\Psi(t)}$
- Récursion sur $\mathbf{W}\hookrightarrow$ récursion sur $\mathbf{\Psi}\hookrightarrow$ récursion sur $\mathbf{\Phi}$: $\mathbf{\Phi}(t) = \mathbf{\Psi}(t) + \frac{1}{1-\parallel \boldsymbol{\nu}(t)\parallel^2} \boldsymbol{\nu}(t) \boldsymbol{\varphi}(t)^H$
- coût : 2nr (pour Ψ) et r^2 pour le produit $\nu(t)\varphi(t)^H$.

Résultats de simulation

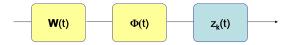


Résultats de simulation



Lignes spectrale adaptative

Suivi des pôles



Gradient adaptatif pour $\Phi(t)V(t) = V(t)\Lambda(t)$

- mise à jour séquentielle de
 - 1. la matrice des valeurs propres : $\Lambda(t) = \operatorname{diag}\{z_k(t)\}$
 - 2. la matrice des vecteurs propres $\mathbf{V}(t)$
- fonctions de coût

$$J(\mathbf{\Lambda}) = \operatorname{tr}\{\mathbf{E}_L(\mathbf{\Lambda})^H \mathbf{E}_L(\mathbf{\Lambda})\}\$$

$$J(\mathbf{V}) = \operatorname{tr}\{\mathbf{E}_V(\mathbf{V})^H \mathbf{E}_V(\mathbf{V})\}\$$

Calcul du gradient

Pour les valeurs propres

- Matrice d'erreur : $E_L(\mathbf{\Lambda}) = \mathbf{\Lambda} \mathrm{diag}\left(\mathbf{V}(t-1)^{-1}\mathbf{\Phi}(t)\mathbf{V}(t-1)\right)$
- Calcul du gradient de $J(\mathbf{\Lambda})$:

$$\Lambda(t) = (1 - \mu_L)\Lambda(t - 1) + \mu_L \operatorname{diag} (V(t - 1)^{-1}\Phi(t)V(t - 1))$$

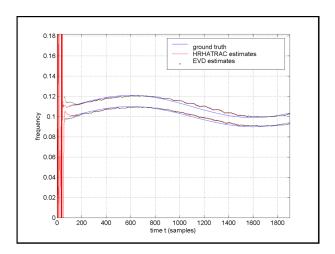
Pour les vecteurs propres

- Matrice d'erreur : $oldsymbol{E}_V(oldsymbol{V}) = oldsymbol{V} oldsymbol{\Phi}(t) oldsymbol{V} oldsymbol{\Lambda}(t)^{-1}$
- · calcul du gradient :

$$V(t) = (1 - \mu_V)V(t - 1) + \mu_V (\Phi(t)V(t - 1)\Lambda(t)^{-1} + \Phi(t)^H E_V(V(t - 1))\Lambda(t)^{-H})$$

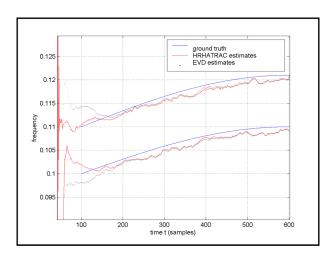
Résultats de simulation sur 2 sinus modulés

 $\nu_1 = 0.1, \, \nu_2 = 0.11, \, \text{Trans. de Hilbert, n=31, r=2.}$

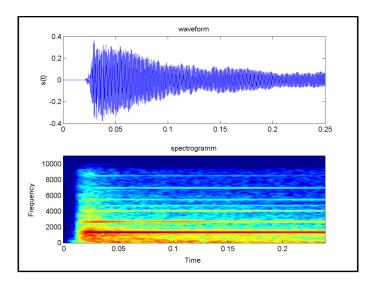


Résultats de simulation sur 2 sinus modulés

 $\nu_1 = 0.1, \, \nu_2 = 0.11, \, \text{Trans. de Hilbert, n=31, r=2.}$

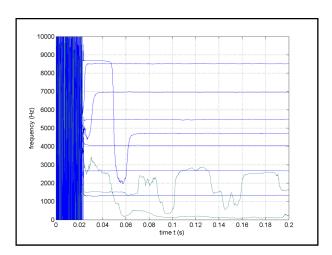


Application à une note de piano



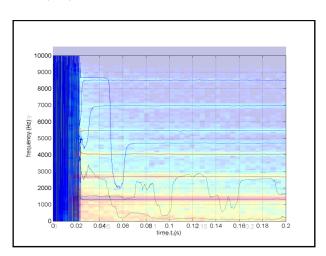
Résultats du suivi de lignes

n=101 (5ms), r=9

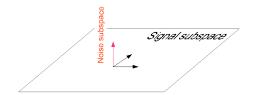


Résultats du suivi de lignes

n=101 (5ms), r=9



Représentation temps-fréquence adaptative



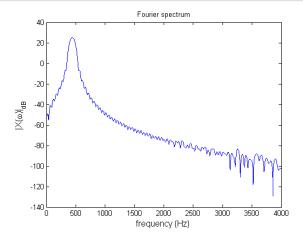
Principles

- low rank approximation of signals (sines + noise)
- (projection onto noise subspace)⁻¹ : MUSIC pseudo-spectrum

Illustration

A two components example

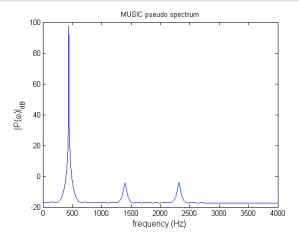
- 440 Hz, 445Hz
- 20 ms, sampling at 8kHz



Illustration

A two components example

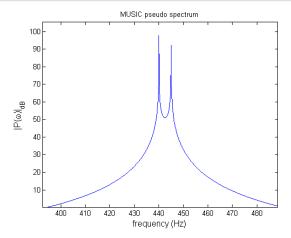
- 440 Hz, 445Hz
- 20 ms, sampling at 8kHz



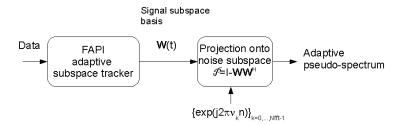
Illustration

A two components example

- 440 Hz, 445Hz
- 20 ms, sampling at 8kHz

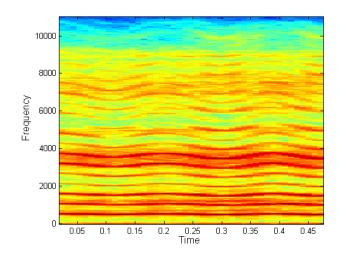


Adaptive MUSIC: block Diagram



Enhancing the readibility of tf representation: singing voice

voice



Enhancing the readibility of tf representation : singing voice

voice

