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Toy example with 21 pages
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Nodes = web pages
Arcs = hyperlinks
21 : controlled page
1 : non controlled page
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Context

A webmaster controls a given number of pages:

• May add links

• Must respect the content

• Wishes to maximize:

- Sum of PageRank values of the site
- HITS authority score of the home page
- Sum of HOTS score values of the site

PageRank: Brin and Page, 1998
HITS: Kleinberg, 1998
HOTS: Tomlin, 2003
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Tomlin’s HOTS algorithm: irreducible case

A: adjacency matrix of the web graph (irreducible)
ρ: web traffic

max
ρ≥0
−
∑

i ,j∈[n]

ρi ,j(log(
ρi ,j

Ai ,j
)− 1)

∑
j∈[n]

ρi ,j =
∑

j∈[n]
ρj ,i , ∀i ∈ [n] (pi)∑

i ,j∈[n]
ρij = 1 (µ)

Optimal ρ while PageRank gives a specific ρ
(uniform probability is arbitrary)
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Dual problem: irreducible case

Minimize: θ(p, µ) :=
∑

i ,j∈[n]

Aije
pi−pj+µ − µ .

θ is convex and differentiable.

∂θ

∂µ
(p, µ) = 0⇒ µ = − log(

∑
i ,j∈[n]

Aije
pi−pj )

∂θ

∂p
(p, µ) = 0⇒ p is a fixed point of f , where

fi(x) =
1

2
log(AT ex)i −

1

2
log(Ae−x)i gi(d) =

(
(AT d)i

(Ad−1)i

)1/2

epi is interpreted as the temperature of page i
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The matrix balancing problem

Given a n× n matrix A, find a diagonal positive matrix D such
that X = DAD−1 verifies∑

j∈[n]

Xi ,j =
∑
k∈[n]

Xk,i ∀i ∈ [n]

Proposition (Eaves, Hoffman, Rothblum, H Schneider, 1985)

There exists v ∈ Rn such that f (v) = v and
∑

i∈[n] vi = 0
if and only if A has a diagonal similarity scaling
if and only if A is completely reducible.

If in addition A is irreducible, then v is unique.

v minimizes θ0(p) = θ(p, 0)
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Algorithms for matrix balancing

• Convex optimization algorithms

• Coordinate descent: (M Schneider and Zenios, 1989)
select a coordinate i and set

di ←
(

(AT d)i

(Ad−1)i

) 1
2

• DomEig (Johnson, Pitkin, Stanford, 2000)

min
{
λmax(A + diag(v)) |

∑
i∈[n]

vi = 0
}

= min
p∈Rn

θ0(p)
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Fixed point approach for matrix balancing

• Let f and g be the functions defined by

fi(x) =
1

2
log(AT ex)i −

1

2
log(Ae−x)i

gi(d) =

(
(AT d)i

(Ad−1)i

)1/2

• The solution of the matrix balancing problem verifies

x = f (x) or d = g(d)

• Ideal HOTS algorithm (irreducible case):

xk+1 = f (xk)

• Does it converge ? (Knight, 2008: not proved)
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Convergence of the fixed point scheme

The fixed point operator

f (x) =
1

2
(log(AT ex)− log(Ae−x))

is monotone, additively homogeneous.

Theorem
If A is irreducible and A + AT is primitive, then ∀x ∈ Rn,

lim sup
k→∞

(
‖f k(x)− v‖

) 1
k ≤ |λ2(P)|

P =
1

2

(
diag(AT ev )−1ATdiag(ev ) + diag(Ae−v )−1Adiag(e−v )

)
Proof
Nonlinear Perron-Frobenius theory (Nussbaum and followers)
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Comparison of algorithms

A =

[
ε 1
2 0

]
CMAP
1,500 p

NZ Uni
413,639 p

|λ2(P)| 0.9993 0.8739 0.9774
Matlab’s fminunc 0.015 s 948 s Out of memory
DomEig 0.5 s > 600 s > 600 s
Coordinate descent 0.001 s 0.03 s 6.06 s
Fixed point (HOTS) 0.004 s 0.02 s 7.52 s

A is nearly imprimitive.
CMAP website and surroundings
NZ Uni dataset: New Zealand Universities

Irreducibility by adding small positive values to all the entries
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Tomlin’s HOTS: handling reduciblity

Network flow model with constraints on the modified network

A′ =

[
A 1
1T 0

]
max
ρ≥0
−
∑

i ,j∈[n+1]

ρi ,j(log(
ρi ,j

A′i ,j
)− 1)

∑
j∈[n+1]

ρi ,j =
∑

j∈[n+1]
ρj ,i , ∀i ∈ [n + 1] (pi)∑

i ,j∈[n+1]
ρij = 1 (µ)∑

j∈[n]
ρn+1,j = 1− α (a)

1− α =
∑

i∈[n]
ρi ,n+1 (b)
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Dual function

θ(p, µ, a, b) =
∑

i ,j∈[n]

Aije
pi−pj+µ +

∑
i∈[n]

e−b−pn+1+pi+µ

+
∑
j∈[n]

ea+pn+1−pj+µ − (1− α)a − µ + (1− α)b

µ(p) = log(
2α− 1∑

i ,j∈[n] Ai ,jepi−pj
)

a(p) = log(
1− α

2α− 1

∑
i ,j∈[n] Ai ,je

pi−pj∑
j∈[n] epn+1−pj

)

b(p) = log(
1− α

2α− 1

∑
i ,j∈[n] Ai ,je

pi−pj∑
i∈[n] epi−pn+1

)

We denote λ(p) := (µ(p), a(p), b(p))
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Iterative scheme

Define f λ to be the fixed point operator associated to the
matrix balancing problem on the matrix

A =

[
eµA ea+µ1

e−b+µ1T 0

]

Tomlin’s HOTS algorithm:

pk+1 = f λ(pk )(pk) = F (pk)

• F is homogeneous but not monotone

• Expansive in Thomson’s metric
(d(x , y) = maxi xi − yi −minj xj − yj)
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Elements of the proof

Theorem (Lyapounov function)

The ideal HOTS operator verifies θ0(f (p)) ≤ θ0(p)

Theorem (local contraction in projective space)

Denote F (p) = f λ(p)(p) and p∗ such that F (p∗) = p∗.
Then all the eigenvalues of ∇F (p∗) belong to (−1, 1]
and the eigenvalue 1 is simple.
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Convergence of HOTS algorithm

Theorem
If there exists a primal feasible point with the same pattern as
A, then the HOTS algorithm converges to the HOTS vector
(unique up to an additive constant) with a linear rate of
convergence equal to |λ2(∇F )|.

Proof
Use the Lyapunov function
Prove that all limit points (p̄, λ̄) minimize θ(p, λ)
Conclude thanks to the local contraction in projective space
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Optimization of link-based rankings

Effort concentrated on PageRank

- Avrachenkov and Litvak, 2006, one page

- Matthieu and Viennot, 2006, unconstrained problem

- de Kerchove, Ninove, van Dooren, 2008

- Ishii and Tempo, 2010

- Csáji, Jungers and Blondel, 2010

- F., Akian, Bouhtou, Gaubert, 2011

Perron vector optimization, HITS and HOTS optimization

- Fercoq, 2011 (arXiv:1111.2234)
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Tomlin’s HOTS optimization
Obligatory links O, optional links F , prohibited links I
N(p) := log(

∑
i∈[n] epi ), J is the set of hyperlinks selected

The HOTS optimization problem is:

max
J⊆F ,p∈Rn

{U(p) ; f λ(p)(A(J), p) = p , N(p) = 0 , }

Relaxed HOTS optimization problem:

max
A∈Rn×n,p∈Rn

U(p)

f λ(p)(A, p) = p , N(p) = 0

Ai ,j = 1 , ∀(i , j) ∈ O
Ai ,j = 0 , ∀(i , j) ∈ I

0 ≤ Ai ,j ≤ 1 , ∀(i , j) ∈ F
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Matrix of partial derivatives

Denote F (A, p) = f λ(p)(A, p).

Proposition
The derivative of U ◦ p is given by gi ,j =

∑
l wl

∂F l

∂Ai,j
where

w = (−∇UT + (∇UT e)∇NT )(∇pF − I )#

Moreover, the matrix (gi ,j)i ,j has rank at most 3.

Proposition
Let z = −∇UT + (∇UT e)∇NT and v s.t. vT∇pF = vT .
The fixed point scheme defined by

∀k ∈ N, wk+1 = (z + wk∇pF )(I − 1

vT e
evT )

converges in geometric speed to w.
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Polak’s Master algorithm model

• For any weighted adjacency matrix A, J(A) = U(p(A))
Jn(A) = U(pkn) where kn is the first nonnegative integer
k such that ‖pk+1 − pk‖ ≤ ∆(n)
Bn(A) an approximate gradient iteration

• Let ω ∈ (0, 1), σ′ ∈ (0, 1), n−1 ∈ N and A0 ∈ C,
For i ∈ N, compute Ai+1 and the smallest ni ∈ N s.t.

ni ≥ ni−1

Ai+1 = Bni
(Ai)

Jni
(Ai+1)− Jni

(Ai) ≤ −σ′(∆(ni))ω
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Interrupted Armijo line search

Let (M̄n)n≥0 be a sequence diverging to +∞, σ ∈ (0, 1),
α0 > 0, β ∈ (0, 1) and γ > 0.
Given n ∈ N, Jn = U(pkn) and gn is an approximate gradient.
Let mn be the first m ∈ N such that

Jn

(
PC(A− βmα0gn(A))

)
−Jn(A) ≤ −σ‖A− PC(A− βmα0gn(A))‖22

βmα0

If mn ≤ M̄n, then

Bn(A) = PC(x − βmnα0gn(A))

Otherwise Bn(A) = ∅.
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Convergence theorem for HOTS optimization

Theorem
Let (Ai)i≥0 be a sequence constructed by the Master
Algorithm Model for the resolution of the HOTS optimization
problem such that Bn(A) is the Interrupted Armijo line search

Then every accumulation point of (Ai)i≥0 is a stationary point
of the optimization problem.
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Web graph optimized for HOTS
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added links

HOTS score sum:
0.142 → 0.169
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Numerical results

CMAP NZ Uni
Gradient (linear system) 0.82 s/it out of memory
Gradient (iterative scheme) 0.12 s/it 62 s/it
Coupled iter. (master algo.) 0.04 s/it 2.9 s/it

Comparison of algorithms for HOTS optimization

CMAP website: 1,500 pages
New Zealand universities websites: (413,639 pages)

The iterative scheme formulation makes the problem scalable
The Master algorithm model gives a speedup from 3 to 30
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Locally optimal solution

Local optimal solution of
the HOTS optimization
problem on CMAP
website (1,500 pages)

Adjacency matrix
restricted to the set of
controlled pages

Pages sorted by w values

Squares: obligatory links
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Conclusion

• General convergence proof: nonexpansive maps,
nonlinear Perron-Frobenius theory

• Low rank property of derivatives
Iterative scheme to compute it
Scalable optimization algorithm

• Better understanding of HOTS algorithm:

- quality of the convergence rate
- spamming techniques / search engine optimizations
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