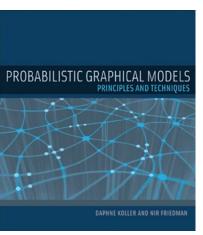
Introduction aux modèles graphiques probabilistes

Philippe LERAY philippe.leray@univ-nantes.fr

Equipe COnnaissances et Décision – LINA – UMR 6241 Site de l'Ecole Polytechnique de l'Université de Nantes

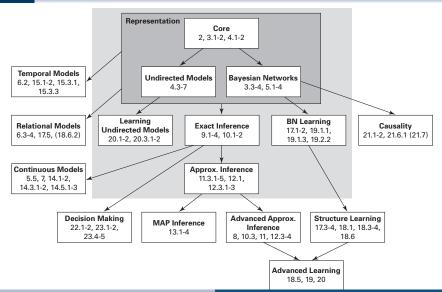
Introduction



Un domaine vaste

- Présentation et figures inspirées de [Koller & Friedman 09]
- $\simeq 1200p$. à résumer en mois d'une heure :-)

Un domaine vaste ... suite



Rappels

Modèles Inférence

Apprentissage

Plan

- Rappels : Probabilités et Graphes
- 3 étapes ...
 - représentation
 - ② inférence
 - apprentissage
- ... pour 3 familles de PGM
 - graphes dirigés : réseaux bayésiens
 - 2 graphes non dirigés : réseaux de Markov (MRF)
 - graphes partiellement dirigés : chain graphs

Inférence

Indépendance

• A et B sont indépendants ssi :

$$P(A, B) = P(A) \times P(B)$$

$$P(A|B) = P(A)$$

$$P(B|A) = P(B)$$

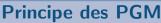
Indépendance conditionnelle

• A et B sont indépendants conditionnellement à C ssi : P(A|B,C) = P(A|C)

Rappels Graphes

Terminologie

- Un graphe = un ensemble de nœuds et d'arêtes
- Graphes orientés (dirigés), non dirigés, partiellement dirigés
- Graphes orientés sans circuit



Représentation des connaissances

Un graphe comme modèle d'indépendance

Raisonnement

 Des algorithmes d'inférence probabiliste tirant partie de la structure graphique du modèle

Construction

- Des connaissances a priori pouvant déterminer tout ou partie de la structure graphique
- Des algorithmes d'apprentissage déterminant le reste du modèle à partir de données

Inférence

Apprentissage

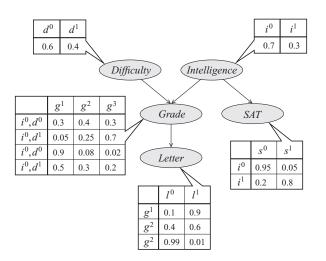
Plan

- Rappels : Probabilités et Graphes
- 3 étapes ...
 - représentation
 - 2 inférence
 - apprentissage
- ... pour 3 familles de PGM
 - graphes dirigés : réseaux bayésiens
 - 2 graphes non dirigés : réseaux de Markov (MRF)
 - graphes partiellement dirigés : chain graphs

Inférence

les réseaux bayésiens

[Pearl 88]



RB comme modèles d'indépendance

Inférence

La dépendance est symétrique, alors pourquoi utiliser un graphe orienté ?

Exemple avec 3 nœuds, et 3 structures simples

- $A \rightarrow C \rightarrow B$: connexion série
 - A et B sont dépendants,

mais indépendants conditionnement à C

- $A \leftarrow C \rightarrow B$: connexion divergente
 - pareil
- $A \rightarrow C \leftarrow B$: connexion convergente (V-structure)
 - A et B sont indépendants,

mais dépendants conditionnement à C

Factorisation de la loi jointe

Avantage

 Décomposition de la loi jointe (globale) en un produit de distributions conditionnelles locales

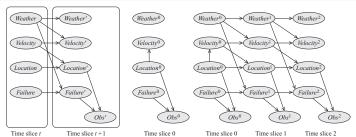
$$P(S) = \prod_{i=1}^{n} P(X_i | parents(X_i))$$

Philippe Leray

Des extensions

pour de nombreux problèmes

- Causalité : RB causal
- Variables continues : RB gaussien, hybride (CG)
- Temporalité : RB temporel , HMM, Filtre de Kalman
- Décision : Diagramme d'influence
- Classification : Naive Bayes, multinets, ...



- -

Modèles Inférence

Apprentissage

Plan

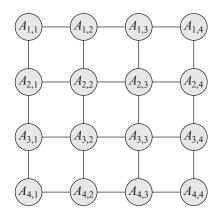
• Rappels : Probabilités et Graphes

Rappels

- 3 étapes ...
 - représentation
 - ② inférence
 - apprentissage
- ... pour 3 familles de PGM
 - 1 graphes dirigés : réseaux bayésiens
 - graphes non dirigés : réseaux de Markov (MRF)
 - 3 graphes partiellement dirigés : chain graphs

les MRF

...[Kindermann & Snell 80]



Avantage

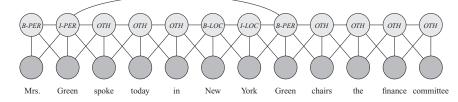
- Décomposition de la loi jointe (globale) en un produit de potentiels locaux
- Z constante de normalisation globale

$$P(S) = \frac{1}{Z} \prod_{c=1}^{n_c} \phi(X_c)$$

Des extensions

pour de nombreux problèmes

- Des structures "historiques" : modèle d'Ising, machine de Boltzmann
- + Var. latentes : Deep Belief Networks
- Variables continues : Gaussian MRF
- Temporalité : Dynamic MRF
- Classification : Conditional Random Field



Rappels N

Modèles Inférence

Apprentissage

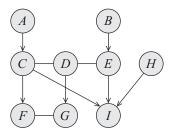
Plan

- Rappels : Probabilités et Graphes
- 3 étapes ...
 - représentation
 - 2 inférence
 - apprentissage
- ... pour 3 familles de PGM
 - 1 graphes dirigés : réseaux bayésiens
 - 2 graphes non dirigés : réseaux de Markov (MRF)
 - 3 graphes partiellement dirigés : chain graphs

..[Lauritzen 96]

Modèle partiellement dirigé

• représentation de la loi jointe par un produit de facteurs "conditionnels"



Rappels

Modèles Inférence

Apprentissage

Plan

- Rappels : Probabilités et Graphes
- 3 étapes ...
 - représentation
 - 2 inférence
 - apprentissage
- ... pour 3 familles de PGM
 - 1 graphes dirigés : réseaux bayésiens
 - 2 graphes non dirigés : réseaux de Markov (MRF)
 - 3 graphes partiellement dirigés : chain graphs

RB, MRF, ... même combat

- problème NP-difficile
- heureusement, c'est dans le pire des cas
- o pour des problèmes réels, il existe des algorithmes efficaces

inférence exacte

- élimination de variables
- conditionnement
- arbre de jonction

inférence approchée

- simulation : MCMC, filtrage particulaire, ...
- approximations variationnelles : Mean field, ...

Exemple: arbre de jonction

Principe

- convertir le PGM en un arbre de jonction de cliques
- faire circuler des messages dans cet arbre

A noter

- généralisation d'un "vieux" principe
 - HMM : forward-backward [Rabiner 89]
 - BN Polyarbres : Message Passing [Pearl 88]
- complexité : exponentielle par rapport à la taille des cliques

Modèles 0000000000

Inférence

Apprentissage

Plan

• Rappels : Probabilités et Graphes

Rappels

- 3 étapes ...
 - représentation
 - ② inférence
 - apprentissage
- ... pour 3 familles de PGM
 - 1 graphes dirigés : réseaux bayésiens
 - 2 graphes non dirigés : réseaux de Markov (MRF)
 - 3 graphes partiellement dirigés : chain graphs

Apprentissage: deux "philosophies"

Inférence

Trouver le modèle optimal qui ...

Apprentissage génératif

- approache le mieux P(X, Y)
- pas de variable cible

Apprentissage génératif

- modèle plus général ⇒ biais
- meilleur traitement des données incomplètes

Apprentissage discriminant

- approche le mieux P(Y|X)
- une variable cible Y privilégiée

Apprentissage génératif

- modèle plus spécifique
- meilleurs résultats si données importantes

Taxonomie des tâches d'apprentissage

MGP = un graphe et des paramètres

- apprentissage des paramètres / structure donnée
- apprentissage de la structure

... à partir de données

- données complètes
- données incomplètes
- variables latentes ?

GRCE

00

Modèles Inférence

Apprentissage

Plan

Rappels : Probabilités et Graphes

Rappels

- 3 étapes ...
 - représentation
 - 2 inférence
 - apprentissage
- ... pour 3 familles de PGM
 - graphes dirigés : réseaux bayésiens
 - 2 graphes non dirigés : réseaux de Markov (MRF)
 - graphes partiellement dirigés : chain graphs

Inférence

App. génératif et RB

Estimation de paramètres

Données complètes \mathcal{D}

• Approche statistique classique = max. de vraisemblance (MV)

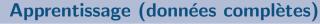
$$\hat{\theta}^{MV} = \operatorname{argmax} P(\mathcal{D}|\theta)$$

 Probabilité d'un événement = fréquence d'apparition de l'événement

Maximum de vraisemblance (MV)

$$\hat{P}(X_i = x_k | Pa(X_i) = x_j) = \hat{\theta}_{i,j,k}^{MV} = \frac{N_{i,j,k}}{\sum_k N_{i,j,k}}$$

 $N_{i,j,k} = \text{nb d'occurences de } \{X_i = x_k \text{ et } Pa(X_i) = x_i\}$



Autre approche

• Approche bayésienne = max. à posteriori (MAP)

$$\hat{\theta}^{MAP} = \operatorname{argmax} P(\theta|\mathcal{D}) = \operatorname{argmax} P(\mathcal{D}|\theta)P(\theta)$$

- ullet besoin d'une loi a priori sur les paramètres P(heta)
- souvent distribution conjuguée à la loi de X
- si P(X) multinomiale, $P(\theta)$ conjuguée = Dirichlet :

$$P(\theta) \propto \prod_{i=1}^{n} \prod_{j=1}^{q_i} \prod_{k=1}^{r_i} (\theta_{i,j,k})^{\alpha_{i,j,k}-1}$$

où $\alpha_{i,j,k}$ sont les cœfficients de la distribution de Dirichlet associée au coefficient $\theta_{i,i,k}$

Apprentissage (données complètes)

Inférence

Maximum a Posteriori (MAP)

$$\hat{P}(X_i = x_k | Pa(X_i) = x_j) = \hat{\theta}_{i,j,k}^{MAP} = \frac{N_{i,j,k} + \alpha_{i,j,k} - 1}{\sum_k (N_{i,j,k} + \alpha_{i,j,k} - 1)}$$

Autre approche bayésienne

• espérance à posteriori (EAP) : calculer l'espérance a posteriori de $\theta_{i,i,k}$ au lieu du max.

$$\hat{P}(X_i = x_k | Pa(X_i) = x_j) = \hat{\theta}_{i,j,k}^{EAP} = \frac{N_{i,j,k} + \alpha_{i,j,k}}{\sum_k (N_{i,j,k} + \alpha_{i,j,k})}$$

Algorithme Expectation Maximisation

Apprentissage avec données incomplètes

Principe très général [Dempster 77]

Principe

- Algorithme itératif
 - initialiser les paramètres $\theta^{(0)}$
 - - = calculer $P(X_{manquant}|X_{mesurés})$ dans le RB actuel
 - = faire des inférences
 - $\boxed{\mathsf{M}}$ ré-estimer les paramètres $\theta^{(t+1)}$ à partir des données complétées
 - o en utilisant MV, MAP, ou EAP

Inférence

Génératif ou discriminant ?

apprentissage (génératif) des paramètres des RB

- données complètes
 - forme close calculable en une itération (MV, MAP, EAP)
- données incomplètes
 - algorithme itératif (EM), optimum local

apprentissage (discriminant) des paramètres des RB

- données complètes
 - algorithme itératif de type descente de gradient
- données incomplètes
 - algorithme "doublement" itératif (EM), optimum local

Deux problèmes :

Taille de l'espace de recherche

• le nombre de structures possibles à partir de n nœuds est super-exponential [Robinson 77]

$$NS(5) = 29281$$

$$NS(5) = 29281$$
 $NS(10) = 4.2 \times 10^{18}$

- Les données reflètent la loi jointe et ses dépendances / indépendances entre variables
- Equivalence de Markov : plusieurs graphes peuvent représenter un même modèle d'indépendance
- Suffisance causale : et s'il y avait des variables latentes ?

Inférence

Algorithmes existants

Apprentissage de la structure - données complètes

- Recherche d'indépendances conditionnelles dans les données
- Méthodes d'optimisation d'une fonction de score avantage : score décomposable localement
- Méthodes hybrides de recherche de voisinage locale + optimisation globale

et ensuite?

- données incomplètes
 - EM dans l'espace des structures (SEM) [Friedman 97]
- variables latentes
 - heuristiques de découverte + recherche gloutonne pour fixer leur cardinalité

Inférence

Apprentissage

Plan

• Rappels : Probabilités et Graphes

Rappels

- 3 étapes ...
 - représentation
 - ② inférence
 - apprentissage
- ... pour 3 familles de PGM
 - 1 graphes dirigés : réseaux bayésiens
 - graphes non dirigés : réseaux de Markov (MRF)
 - graphes partiellement dirigés : chain graphs

Et là, ca se complique ...

Apprentissage des paramètres, données complètes

RB

- $P(S) = \prod_i P(X_i | pa(X_i))$
- chaque terme est une distribution de probabilité estimable séparément

MRF

- $P(S) = \frac{1}{Z} \Pi_c \phi(X_c)$
- la constante Z globale empêche l'estimation locale

Seule une classe de MRF (MRF cordaux) équivalente aux RB s'apprend aussi facilement que les RB.

App. génératif et MRF

Estimation de paramètres

Données complètes \mathcal{D}

- la fonction log-vraisemblance est unimodale
- problème : pas de forme close du maximum pour les MRF
- ⇒ descente de gradient et convergence vers optimum global
 - problème : le calcul du gradient nécessite une étape d'inférence dans le réseau
 - possibilité d'utiliser des méthodes d'inférence approchées ou d'utiliser une approximation de la vraisemblance plus sympathique (pseudo-likelihood, marge ...)

Et les données incomplètes ?

- perte de la concavité du log-vraisemblance
- utilisation possible d'EM mais convergence locale (idem. RB)

Inférence

Et dans le cas discriminant

Données complètes \mathcal{D}

- la fonction log-vraisemblance conditionnelle est aussi unimodale
- par contre, le conditionnement par rapport à la variable cible nécessite plusieurs étapes d'inférence dans le réseau
- plus d'étapes d'inférence
- + inférences avec conditionnement sur $Y \Rightarrow$ calculs plus simples

Et la structure ?

Apprentissage de la structure - données complètes

- Recherche d'indépendances conditionnelles dans les données
 - plus simple que pour les RB, car les indépendances se traduisent plus simplement en terme graphique
 - même problème de fiabilité du test / taille des données
- Méthodes d'optimisation d'une fonction de score
 - problème : les scores sont basés sur la vraisemblance donc calculables plus difficilement et ne sont plus décomposables
 - nécessité d'approcher l'impact (variation de score) des opérateurs classiques permettant de parcourir l'espace des MRF

Pour conclure ...

Domaine vaste ... très vaste

- principes généraux
- spécificités liées à la nature de ces modèles
- peu de références indiquées
- ⇒ un bon point de départ = [Koller & Friedman 09]

Ce n'est qu'une introduction ... à suivre :

- des modèles spécifiques (MRF, CRF, Deep BN ...)
- appliqués à vos domaines d'intérêt :-)

Des questions ?

