Consensus and Universal Construction

INF346, 2014

© 2014 P. Kuznetsov

So far...

Shared-memory communication:

- safe bits => multi-valued atomic registers
- atomic registers => atomic/immediate snapshot

© 2012 B. Kuznotcov

2

Today

Reaching agreement in shared memory:

- Consensus
 - ✓Impossibility of wait-free consensus
- 1-resilient consensus impossibility
- Universal construction

© 2012 P. Kuznetsov

3

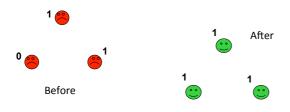
System model

- N asynchronous (no bounds on relative speeds) processes p₀,...,p_{N-1} (N≥2) communicate via atomic read-write registers
- Processes can fail by crashing
 - ✓A crashed process takes only finitely many steps (reads and writes)
 - ✓Up to t processes can crash: t-resilient system
 - √t=N-1: wait-free

4

Consensus

Processes *propose* values and must *agree* on a common decision value so that the decided value is a proposed value of some process



Consensus: definition

A process *proposes* an *input* value in V (IVI≥2) and tries to *decide* on an *output* value in V

- Agreement: No two process decide on different values
- Validity: Every decided value is a proposed value
- Termination: No process takes infinitely many steps without deciding

(Every correct process decides)

Optimistic (0-resilient) consensus

Consider the case t=0, no process fails

Shared: 1WNR register D, initially T (default value not in V)

Upon propose(v) by process p_i:

(every process decides on p₀'s input)

© 2012 P. Kuznetsov

Impossibility of wait-free consensus [FLP85,LA87]

Theorem 1 No wait-free algorithm solves consensus

We give the proof for N=2, assuming that p_0 proposes 0 and p_1 proposes 1

Implies the claim for all N≥2

8

Proof of Theorem 1

 We show that no 2-process wait-free solution exists for iterated read-write memory

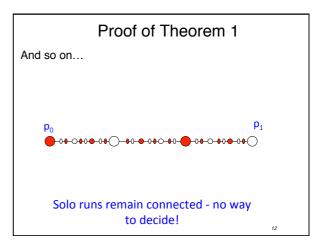
```
\begin{split} r &:= 0 \\ repeat \\ r &:= r+1; \\ R_{i\cdot} write(v_i); \\ v_i &:= R_{i-1}. read(); \\ until not decided (v_i) \end{split}
```

• The iterated memory is equivalent to non-iterated one for solving tasks

2012 P. Kuznetsov

Proof of Theorem 1 Initially each p_i only knows its input One round of IIS: p₀ p₀ p₀ reads before p₁ reads after p₀ writes p₁ writes p₀ writes p₁ reads before p₀ writes

Proof sketch for Theorem 1 Two rounds: Po P1



Proof of Theorem 1

Suppose p_i (i=0,1) proposes i

p_i must decide i in a solo run!
 Suppose by round r every process decides

There exists a run with conflicting decisions!

So...

- No algorithm can wait-free (N-resiliently) solve consensus
- We cannot tolerate N-1 failures: can we tolerate less?
 - ✓E.g., can we solve consensus 1-resiliently?

@ 2012 P. Kuznetsov

14

1-resilient consensus?

What if we have 1000000 processes and one of them can crash?

NO

We present a direct proof now (an indirect proof by reduction to the wait-free impossibility also exists)

2012 P. Kuznetsov

Impossibility of 1-resilient consensus [FLP85,LA87]

Theorem 2 No 1-resilient (assuming that one process might fail) algorithm solves consensus in read-write

Proof

By contradiction, suppose that an algorithm A solves 1-resilient binary consensus among $p_0, \dots p_{N-1}$

16

Proof

By contradiction, suppose that an algorithm A solves wait-free binary consensus among $p_0, \dots p_{N-1}$

A run of A is a sequence of atomic *steps* (reads or writes) applied to the initial state

A run of A can be seen as and initial input configuration (one input per process) and a sequence of process ids $i_1, i_2, \ldots i_k, \ldots$ (all registers are atomic)

Every correct (taking sufficiently many steps) process decides!

17

Proof: valence

Let R be a finite run

- We say that R is v-valent (for v in {0,1}) if v is decided in every infinite extension of R
- We say that R is bivalent if R is neither 0-valent nor 1-valent (there exists a 0-valent extension of R and a 1-valent extension of R)

Proof: valence claims

Claim 1 Every finite run is 0-valent, or 1-valent, or bivalent. (by Termination)

Claim 2 Any run in which some process decides v is v-valent

(by Agreement)

Corollary 1: No process can decide in a bivalent run (by Agreement).

Bivalent input

Claim 3 There exists a bivalent input configuration (empty

Proof

Suppose not

Consider sequence of input configurations $C_0,...,C_N$:

 C_i : $p_0,...,p_{i-1}$ propose 1, and $p_i,...,p_{N-1}$ propose 0

- · All Ci's are univalent
- C₀ is 0-valent (by Validity)
- C_N is 1-valent (by Validity)

Bivalent input

There exists i in $\{0,...N-2\}$ such that C_i is 0-valent and C_{i+1} is 1-valent!

 C_{i} and C_{i+1} differ only in the input value of p_{i} (it proposes 1 in C_{i} and 0 in $C_{i+1})$

Consider a run R starting from $C_{\rm i}$ in which $p_{\rm i}$ takes no steps (crashes initially): eventually all other processes decide 0

Consider R' that is like R except that it starts from C_{i+1}

- R and R' are indistinguishable!
- Thus, every process decides 0 in R' --- contradiction $(C_{i+1}$ is 1-valent)

© 2012 P. Kuznetsov

Critical run

Claim 4 There exists a critical (bivalent) finite run R and two processes p_i and p_i such that R.i is 0-valent and R.j.i is 1-valent (or vice versa)

Proof of Claim 4: By construction, take the bivalent empty run C (by Claim 3 it exists) We construct an ever-extending fair (giving

each process enough steps) run which results in R

Proof of Claim 4: critical run

repeat forever

take the next process p_i (in round-robin fashion) if for some R', an extension of R, R.i is bivalent then R:=R'.i

else stop

- If never stops ever extending (infinite) bivalent runs in which every process is correct (takes infinitely many steps - contradiction with termination
- If stops (suppose R.i is 0-valent) consider a 1-valent extension

✓ There is a critical configuration between R and © 2012 P. Kouznet

R

Proof (contd.)

Take a critical run R (exists by Claim 4) such that:

- R.0 is 0-valent
- R.1.0 is 1-valent

(without loss of generality, we can always rename processes or inputs appropriately (9)

Proof (contd.): the next steps in R

Four cases, depending on the next steps of p_0 and p_1 in R

- p₀ and p₁ are about to access different objects in R
- p₁ reads X and p₀ reads X
- p₀ writes in X
- p₁ reads X

© 2012 P. Kouznetsi

25

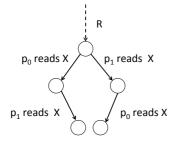
Proof (contd.): cases and contradiction

$$p_0$$
-> X
 p_1 -> Y
 p_0 -> X

26

Proof (contd.): cases and contradiction

 p₀ and p₁ are about to read the same object X R.0.1 and R.1.0 are indistinguishable

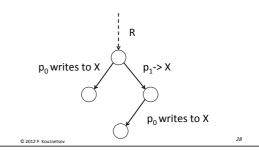


012 P. Kouznetsov

Proof (contd.): cases and contradiction

p₀ is about to write to X

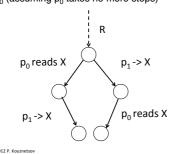
Extensions of R.0 and R.1.0 are indistinguishable for all except p₁ (assuming p₁ takes no more steps)



Proof (contd.): cases and contradiction

p₀ is about to read to X

 \checkmark Extensions of R.0.1 and R.1.0 are indistinguishable for all but p_0 (assuming p_0 takes no more steps)



Thus

- No critical run exists
- A contradiction with Claim 4
 - ⇒ 1-resilient consensus is impossible in read-write

© 2012 P. Kuznetsov

Next

- Combining registers with stronger objects
 - √Consensus and test-and-set (T&S)
 - √Consensus and queues
- Universality of consensus
 - √Consensus can be used to implement any object
- Consensus number
- Message-passing in shared memory

© 2012 P. Kuznetso

31

Test&Set atomic objects

Exports one operation test&set() that returns a value in {0,1}

Sequential specification:

The first atomic operation on a T&S object returns 1, all other operations return 0

© 2012 P. Kuznetsov

32

2-process consensus with T&S

Shared objects:

T&S TS

Atomic registers R[0] and R[1]

Upon propose(v) by process p_i (i=0,1):

R[i] := v

if TS.test&set()=1 then

return R[i]

else

return R[1-i]

© 2012 P. Kuznetsov

3-process consensus with T&S?

Assume A solves consensus among three-processes $p_0,\,p_1,\,p_2,$ using registers and T&S objects

Consider the *critical bivalent* run R of A: every onestep extension of R is univalent (HW: show that it exists)

W.L.O.G., assume that

- R.p₀ is 0-valent
- R.p₁ is 1-valent

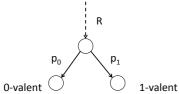
We establish a case where some process cannot distinguish a 0-valent state from a 1-valent one

P. Kuznetsov

3-process consensus with T&S?

If p_0 and p_1 access different objects at the end of R, or p_0 and p_1 access the same *register* in R, then we come back to the read-write case (p_0 or p_1 cannot decide in some solo extension)

Thus, p₀ and p₁ are about to access the same T&S object



valent C I valent

3-process consensus with T&S

Suppose p₀ and p₁ access the same T&S object

 \checkmark p₂ cannot distinguish R.p₀ and R.p₁ in a solo extension (T&S returns 0 and all other objects have the same states) => p₂ can never decide

=> T&S and registers cannot (wait-free) solve 3-process consensus

© 2012 P. Kuznetsov

FIFO Queues

Exports two operations enqueue() and dequeue()

- enqueue(v) adds v to the end of the queue
- dequeue() returns the first element in the queue

(LIFO queue returns the last element)

© 2012 P. Kuznetso

37

2-process consensus with queues

Shared

Queue Q, initialized (winner,loser) Atomic registers R[0] and R[1]

Upon propose(v) by process p_i (i=0,1):

R[i] := v
if Q.dequeue()=winner then
return R[i]
else

return R[1-i]

38

3-process consensus with queues?

- Let A solve consensus among p₀, p₁, p₂, using registers and queues
- Similarly, there exists a critical run R in which the same queue is about to be accessed by p₀, p₁, p₂
- Suppose R. p₀ is 0-valent, R. p₁ is 1-valent, and p₀ and p₁ access the same queue
 - √The decision is "encoded" in the queue
 - ✓ But the queue can only be accessed with dequeue() and enqueue()
 - ✓ At least one process is confused
 - => Consensus power of a queue is 2 (similar for stacks)

© 2012 P. Kuznetsov

But why consensus is interesting?

Because it is universal!

- If we can solve consensus among N processes, then we can implement any object shared by N processes
 - √T&S and queues are universal for 2 processes
- A key to implement a generic fault-tolerant service (replicated state machine)

© 2012 P. Kuznetsov

40

What is an *object*?

Object O is defined by the tuple (Q,O,R,σ) :

- Set of states Q
- Set of operations O
- Set of outputs R
- Sequential specification σ, a subset of OxQxRxQ:
 - \checkmark (o,q,r,q') is in σ ⇔ if operation o is applied to an object in state q, then the object *can* return r and change its state to q'
 - √Total on OxQ (defined for all o and q)

© 2012 P. Kuznetsov

41

Deterministic objects

- An operation applied to a *deterministic* object results in exactly one (output,state) in RxQ, i.e., σ can be seen a function OxQ -> RxQ
- E.g., queues, counters, T&S are deterministic
- Unordered set (put/get) non-deterministic

© 2012 P. Kuznetsov

Example: queue

Let V be the set of possible elements of the queue

Q=V* (all sequences with elements in V)

 $O=\{enq(v)_{v in V}, deq()\}$

R=V U {Ø} U {ok}

 $\sigma(enq(v),q)=(ok,q.v)$

 $\sigma(deq(),v.q)=(v,q)$

 $\sigma(deq(), \emptyset) = (\emptyset, \emptyset)$

© 2012 P. Kuznetsov

43

Implementation: definition

A distributed algorithm A that, for each operation o in O and for every p_i, describes a concurrent procedure o_i using base objects

A run of A is *well-formed* if no process invokes a new operation on the implemented object before returning from the old one (we only consider well-formed runs)

© 2012 P. Kuznetsov

44

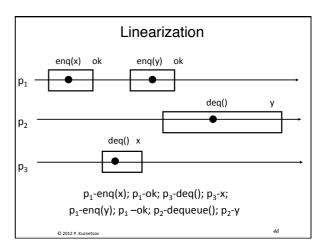
Implementation: correctness

A (wait-free) implementation A is correct if in every well-formed run of A

- Wait-freedom: every operation run by p_i returns in a finite number of steps of p_i
- Linearizability ≈ operations "appear" instantaneous (the corresponding history is linearizable)

D 2012 P. Kuznetsov

45



Universal construction

Theorem 1 [Herlihy, 1991] If N processes can solve consensus, then N processes can (waitfree) implement every object O=(Q,O,R,σ)

© 2012 P. Kuznetsov

47

A moment of meditation

Suppose you are given an unbounded number of consensus objects and atomic read-write registers

You want to implement an object $O=(Q,O,R,\sigma)$

How would you do it?

2012 P. Kuznetsov

Universal construction: idea

Every process that has a pending operation does the following:

- Publish the corresponding request
- Collect published requests and use consensus instances to serialize them: the processes agree on the order in which the requests are executed
- Processes agree on the order in which the published requests are executed

Universal construction: variables

Shared abstractions:

N atomic registers R[0,...,N-1], initially Ø N-process consensus instances C[1], C[2], ...

Local variables for each process pi:

integer seq, initially 0

// the number of p_i's requests executed so

integer k, initially 0

// the number of batches of

// all requests executed so far

sequence linearized, initially empty

//the serial order of executed requests

Universal construction: algorithm

Code for each process p_i: implementation of operation op

sea++ R[i] := (op,i,seq)repeat

// publish the request

V := read R[0,...,N-1]

// collect all requests requests := V-{linearized} //choose not yet linearized requests

if requests≠Ø then

decided:=C[k].propose(requests)

linearized := linearized.decided
//append decided request in some deterministic order

until (op,i,seq) is in linearized

return the result of (op,i,seq) in linearized

// using the sequential specification σ

Universal construction: correctness

- Linearization of a given run: the order in which operations are put in the linearized list
 - ✓ Agreement of consensus: all linearized lists are related by containment (one is a prefix of the other)
- Real-time order: if op1 precedes op2, then op2 cannot be linearized before op1
 - √ Validity of consensus: a value cannot be decided unless it was previously proposed

Universal construction: correctness

- Wait-freedom:
 - √Termination and validity of consensus: there exists k such that the request of pi gets into reg list of every processes that runs C[k].propose(req)

© 2012 P. Kuznetso

Another universal abstraction: CAS

Compare&Swap (CAS) stores a value and exports operation CAS(u,v) such that:

- If the current value is u, CAS(u,v) replaces it with vand returns u
- Otherwise, CAS(u,v) returns the current value

A variation: CAS returns a boolean (whether the replacement took place) and an additional operation read() returns the value

© 2012 P. Kuznetso

N-process consensus with CAS

Shared objects:

CAS CS initialized Ø
// Ø cannot be an input value

Code for each process p_i (i=0,...,N-1):

 $v_i := input value of p_i$ $v := CS.CAS(\emptyset, v_i)$

 $V := CS.CAS(\emptyset, V_i)$ if $V = \emptyset$

return v_i

else return v

55

M-consensus object

M-consensus stores a value in {Ø} U V and exports operation propose(v), v in V:

For 1st to Mth propose() operations:

- If the value is \mathcal{O} , then propose(v) sets the value to v and returns v
- Otherwise, returns the value

All other operations do not change the value and return Ø

@ 2012 P. Kuznetsov

56

M-process consensus with M-consensus

Immediate: every process p_i simply invokes C.propose(input of p_i) and returns the result of it

(M+1)-consensus using M-consensus?

Impossible: (M+1)-th process is confused

P. Kuznetsov

Consensus number

An object O has consensus number k (we write cons(O)=k) if

- k processes can solve consensus using registers and any number of copies of O
- but k+1 processes cannot

If no such number k exists for O, then $cons(O)=\infty$

(k=cons(O) is the maximal number of processes that can be perfectly synchronized using copies of O and registers)

© 2012 P. Kuznetsov

58

Consensus numbers

- cons(register)=1
- cons(T&S)=cons(queue)=2
- ...
- cons(N-consensus)=N
 ✓N-consensus is N-universal!
- .
- cons(CAS)=∞

© 2012 P. Kuznetsov

59

Open questions

Robustness

Suppose we have two objects A and B, cons(A)=cons(B)=k

Can we solve (k+1)-consensus using registers and copies of A and B?

 Can we implement an object of consensus power k shared by N processes (N>k) using k-consensus objects?

© 2012 P. Kuznetsov