Shared memory basics

INF346, 2014
© 2014 P. Kuznetsov

Read-write register

- Stores values (in a value set V)
- Exports two operations: read and write \checkmark Write takes an argument in V and returns ok \checkmark Read takes no arguments and returns a value in V

Liveness

- An operation is complete if its invocation is followed by a matching response
\checkmark write(v) -> ok
\checkmark read() -> a value in V
- A process invoking an operation may fail (stop taking steps) before receiving a response
- A process is correct (in a given run) if it never fails

Under which condition a correct process makes progress?

Shared memory model

- Processes communicate by applying operations on and receiving responses from shared objects
- A shared object is a state machine \checkmark States
\checkmark Operations/Responses
\checkmark Sequential specification
- Examples: read-write registers, TAS,CAS,LLSC,...

Shared memory guarantees

Processes invoke operations on the shared objects and:

- Liveness: the operations eventually return something
- Safety: the operations never return anything incorrect

Wait-freedom: unconditional progress

Every operation invoked by a correct process eventually completes

All objects considered in this class are wait-free

We consider well-formed runs: a process never invokes an operation before returning from the previous invocation

Operation precedence

- Operation op1 precedes operation op2 in a run R if the response of op1 precedes (in global time) the invocation of op2 in R
- If neither op1 precedes op2 nor op2 precedes op1 than op1 and op2 are concurrent

Safety (registers)

Informally, every read operation returns the "last" written value (the argument of the "last" write operation)
\checkmark What does the "last" mean?
\checkmark What if operations overlap?

Safety criteria

- Safe registers: every read that does not overlap with a write returns the last written value
- Regular registers: every read returns the last written value, or the concurrently written value
(assuming one writer)
- Atomic registers: the operations can be totally ordered, preserving legality and precedence (linearizability)
$\checkmark \approx$ if read1 returns v, read2 returns v, and read1 precedes read2, then write(v^{\prime}) cannot precede write(v)

Space of registers

- Values: from binary $(\mathrm{V}=\{0,1\})$ to multi-valued
- Number of readers and writers: from 1-writer 1-reader (1W1R) to multi-writer multi-reader (NWNR)
- Safety criteria: from safe to atomic

1W1R binary safe registers can be used to implement
an NWNR multi-valued atomic registers!

Transformations

From 1W1R binary safe to 1 WNR multi-valued atomic
I. From safe to regular (1W1R)
II. From one-reader to multiple-reader (regular binary or multi-valued)
III. From binary to multi-valued (1WNR regular)
IV. From regular to atomic (1W1R)
v. From 1W1R to 1WNR (multi-valued atomic)

```
1WNR binary safe -> 1WNR binary regular
Let p1 be the only writer and 0 be the initial value
Code for process p1:
```

```
initially:
```

initially:
shared 1WNR safe register R := 0
shared 1WNR safe register R := 0
lv := 0
 last written value
lv := 0
 last written value
upon write(v)
upon write(v)
if v f lv then
if v f lv then
lv := v
lv := v
R.write(v)
R.write(v)
return ok
return ok
upon read()
upon read()
return R.read()

```
    return R.read()
```


Transformations

From 1W1R binary safe to $1 W$ NR multi-valued atomic
I. From safe to regular (1W1R)
II. From one-reader to multiple-reader (regular binary or multi-valued)
III. From binary to multi-valued (1WNR regular)
Iv. From regular to atomic (1W1R)
v. From 1W1R to 1WNR (multi-valued atomic)

1W1R (binary regular) -> 1WNR (binary

 regular)- Correctness:
\checkmark enough to consider a read that does not overlap with any write
\checkmark the last written value cannot be missed
- Works also for multi-valued and safe registers

What if 1W1R registers are atomic?

1WNR binary safe -> 1WNR binary regular

- Correctness:
$\checkmark R$ is touched only to change its value
\checkmark both 0 and 1 are legal values in case of concurrency!


```
1W1R (binary regular) -> 1WNR (binary
    regular)
Let p 1 be the only writer and 0 be the initial value
Code for process pi:
initially:
    shared \(R[1 . . \mathrm{N}]\) (1W1R binary regular registers) \(:=0^{\mathrm{N}}\)
        // R[i] is written by p1 and read by pi
upon read()
    return \(\mathrm{R}[\mathrm{i}]\).read()
upon write(v) // if \(i=1\)
    for all j do \(\mathrm{R}[\mathrm{j}]\).write(v)
    return ok
```


1W1R (binary regular) -> 1WNR (binary regular)

```
Let p1 be the only writer and 0 be the initial value
Code for process pi:
initially:
shared \(R[1 . . N]\) (1W1R binary regular registers) \(:=0^{N}\) // R[i] is written by p1 and read by pi
upon read()
return \(R[i]\).read()
upon write(v) // if i=1
return ok

\section*{Transformations}

From 1W1R binary safe to 1WNR multi-valued atomic
I. From safe to regular (1W1R)
II. From one-reader to multiple-reader (regular binary or multi-valued)
III. From binary to multi-valued (1WNR regular)
IV. From regular to atomic (1W1R)
v. From 1W1R to 1WNR (multi-valued atomic)
© 2012 P. Kuznetsov
24
\begin{tabular}{|c|}
\hline lary \(->\) M-valued (1WNR regu \\
\hline \multirow[t]{6}{*}{Code for process pi:
```

initially:
shared array R[0,..M-1] of 1WNR registers := [1,0,···,0]
upon read()
for j = 0 to M-1 do
if R[j].read() = 1 then return j
upon write(v) // if i=1
R[v].write(1)
for j=v-1 down to 0 do R[j].write(0)
return ok

```} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

\section*{Binary -> M-valued (1WNR regular)}
- Correctness:
\(\checkmark\) only the last or concurrently written value can be returned
\(\checkmark\) every operation returns in \(O(M)\) steps

\section*{Quiz 1: what if?}

Code for process pi:
initially:
shared array \(\mathrm{R}[0, . . \mathrm{M}-1]\) of 1 WNR registers := \([1,0, \ldots, 0]\)
upon read()
for \(\mathrm{j}=0\) to \(\mathrm{M}-1\) do
if \(\mathrm{R}[\mathrm{j}]\) read ()\(=1\) then return
upon write(v) // if \(\mathrm{i}=1\)
\(\mathrm{R}[\mathrm{v}]\).write(1)
for \(\mathrm{j}=0\) to v -1 do \(\mathrm{R}[\mathrm{j}]\).write(0)
return ok

\section*{Transformations}

From 1W1R binary safe to 1WNR multi-valued atomic
I. From safe to regular (1W1R)
II. From one-reader to multiple-reader (regular binary or multi-valued)
III. From binary to multi-valued (1WNR regular)
IV. From regular to atomic (1W1R)
v. From 1W1R to 1WNR (multi-valued atomic)
© 2012 P. Kuznetsov

\section*{Histories}

A history is a sequence of invocation and responses
E.g., p1-write(0), p2-read(),p1-ok,p2-0,...

A history is sequential if every invocation is immediately followed by a corresponding response
E.g., p1-write(0), p1-ok, p2-read(),p2-0,...
(A sequential history has no concurrent operations)


\section*{Complete operations and completions}

Let H be a history
An operation op is complete in H if H contains both the invocation and the response of op
A completion of H is a history \(\mathrm{H}^{\prime}\) that includes all complete operations of H and a subset of incomplete operations of H followed with matching responses


\section*{Legal histories}

A sequential history is legal if it satisfies the sequential specification of the shared object

Read-write registers:
Every read returns the argument of the last write
(well-defined for sequential histories)

Complete operations and completions



\section*{Equivalence}

Histories \(\mathrm{H}^{\prime}\) and \(\mathrm{H}^{\prime}\) are equivalent if for all pi \(H^{\prime \prime} p_{i}=H^{\prime} \mid p_{i}\)

\section*{E.g.:}
\(\mathrm{H}=\mathrm{p}_{1}\)-write(0); \(\mathrm{p}_{1}\)-ok; p3-read(); \(\mathrm{p}_{3}-3\)
\(H^{\prime}=p_{1}\)-write(0); \(p_{3}\)-read(); \(p_{1}-\) ok; \(p_{3}-3\)

Complete operations and completions


\section*{Linearizability (atomicity)}

A history H is linearizable if there exists a sequential legal history S such that:
- S is equivalent to some completion of H
- S preserves the precedence relation of H : op1 precedes op2 in \(\mathrm{H}=>\) op1 precedes op2 in S

What if: define a completion of H as any any complete extension of H ?

\section*{Linearizability is compositional!}
- Any history on two linearizable objects \(A\) and \(B\) is a history of a linearizable composition (A,B)
- A composition of two registers \(A\) and \(B\) is a two-field register (A,B)



\section*{Linearizability as safety}
- Prefix-closed: every prefix of a linearizable history is linearizable
- Limit-closed: the limit of a sequence of linearizable histories is linearizable
(see Chapter 2 of the lecture notes)

An implementation is linearizable if and only if all its finite histories are linearizable



1W1R regular -> 1W1R atomic
Code for process pi:
```

initially:
shared 1W1R regular register R := 0
local variables t := 0, x := 0
upon read()
(t', x') := R.read()
if t' > t then t:=t'; x:=x';
return(x)
upon write(v) // if i=1
t:=t+1
R.write(t,v)

```

\section*{Transformations-I}

From safe to regular (binary 1W1R)
- Writer touches shared memory only to change
- A concurrent read is allowed to return any value (0 or 1)

\section*{Transformations-III}

From binary to M-valued (1WNR regular)
- Every value in \(\{0, \ldots, \mathrm{M}-1\}\) is assigned a dedicated 1WNR register
- Write(v) sets R[v] to 1 and sets \(\mathrm{R}[\mathrm{v}-1] \ldots \mathrm{R}[0]\) to 0
- Read returns the smallest \(v\) such that \(R[v]=1\)

\section*{Transformations}

From 1W1R binary safe to 1WNR multi-valued atomic
I. From safe to regular (1W1R)
II. From one-reader to multiple-reader (regular binary or multi-valued)
III. From binary to multi-valued (1WNR regular)
IV. From regular to atomic (1W1R)
v. From 1W1R to 1WNR (multi-valued atomic)
\(\qquad\)

\section*{Transformations-II}

From one-reader to multiple-reader (regular binary or multi-valued)
- Every reader is assigned a dedicated register to read
- Writer writes in all
- Reader reads its own register

O2012 P. Kuznetsov
\({ }^{58}\)

\section*{Transformation IV}

\section*{From regular to atomic (1W1R multi-valued)}
- Write a timestamp with a value
- The reader returns the latest value and ignores the old one


\section*{Transformation V}
upon read() // code for pi
for all \(j=1, \ldots, N\) do (t[j],x[j]) := RR[i][j].read()
( \(\mathrm{t}[0], \mathrm{x}[0]\) ) \(:=\mathrm{WR}[i] \cdot \operatorname{read}()\)
(tmax, xmax) \(:=\) highest \((t, x)\)
for all j do RR[j][i].write([tmax, xmax]);
return (xmax)
(Here highest \((\mathrm{t}, \mathrm{x})\) computes the value \(\mathrm{x}[\mathrm{j}]\) written with the highest timestamp t[j])


\section*{Transformation V}
shared:
matrix RR[1..N][1..N] of 1 W1R atomic registers \(:=0^{\mathrm{N} \times N}\)
// for all i,j, RR[i][j] is read by pi and written by pj
array \(W R[1 . . N]\) of \(1 W 1 R\) atomic registers \(:=0^{N}\)
// for all i WR[i] is written by pl and read by pi
upon write(v) // code for p1
ts:=ts+1
for all \(j\) do WR[j].write([v,ts])
return ok

2012 P. Kuznetsov
\({ }^{64}\)

\section*{Transformation V: correctness}

If read1 returns \(v\) and read1 precedes read2 then read2 cannot return a value that is older than \(v\) - sufficient for proving that a one-writer regular register is linearizable
- What if the reader does not write?
- What about multiple writers?

\section*{Bibliographic project}
- Team of two: 10 mins presentation of a research paper +5 mins discussion
\(\checkmark\) What is the problem? What is its motivation?
\(\checkmark\) What is the idea of the solution?
\(\checkmark\) What is new and what is interesting here?
- Technical details: unnecessary
- Final grade \(=1 / 3\) for the presentation (April 30, May 5 and 6 ) \(+2 / 3\) written exam (May 7 )
- The list of papers (with pdfs) and the link to a form to submit your choice:
\(\checkmark\) http://perso.telecom-paristech.fr/~kuznetso/INF346/ \(\checkmark\) By April 2, 2014
© 2014 P . Kuznetsov

\section*{Next time: a quiz session}
- March 28, 15h15-16h45
- A few problems on read-write shared memory model
- Bring some paper with you```

