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Abstract—An experimental characterization of the grating cou-
plers for sub-micrometer silicon-on-insulator (SOI) waveguides
is presented. The grating couplers have been designed, realized,
and characterized for the +1 diffraction order at an operating
wavelength of 1.31 µm for TE polarization. At the resonant angle,
a coupling efficiency higher than 55% has been measured. The
angular coupling range and the wavelength tolerance have been
evaluated to 3◦ and 20 nm, respectively. The grating coupler is
followed by a taper, and about 50% of the input power at 1.31 µm
is coupled into sub-micrometer rib and strip SOI waveguides. The
ration between light power decoupled toward the cladding and
light power decoupled toward the substrate is about three.

Index Terms—Grating coupler, optical coupling, rib waveguide,
silicon-on-insulator (SOI).

I. INTRODUCTION

S ILICON-ON-INSULATOR (SOI) substrate shows great
potential for the fabrication of low-cost photonic integrated

optical circuits and optoelectronic devices such as optical mod-
ulators [1], [2], low loss optical waveguides [3]–[7], and pho-
todetectors [8], [9]. SOI substrate is an attractive platform as it
allows the miniaturization of waveguide cross-sectional area to
sub-micrometer scales due to the high refractive index contrast
between silicon and its oxide (∆n ∼ 2). One of the main ad-
vantages of the silicon technology is its full compatibility with
CMOS technology. SOI substrate is of prime importance for
integrated optoelectronic circuits with the potential monolithic
integration of optical and electronic functions on a single chip.

SOI is commercialized with buried oxide thickness typically
ranging from 50 nm to 3 µm and silicon film thickness from
a few tens of nanometers to 1.5 µm that can be well suited to
optical applications [10]. The thin upper silicon film is used as
an optical waveguide at telecommunication wavelengths larger
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than 1.2 µm, for which silicon is transparent. The buried silicon
oxide (BOX) thickness must be higher than 700 nm (respec-
tively 1 µm) to ensure negligible light leakage toward the Si
substrate at a wavelength of 1.3 µm (respectively 1.55 µm).

One of the main forecast applications is high-frequency clock
signal distribution in microelectronic integrated circuits [11].
The used wavelength λ = 1.3 µm and TE polarization are ad-
vantageously chosen for system compactness. The lateral field
confinement of the guided light can be obtained either by partial
etching or by complete etching of the silicon film to define
either rib or strip SOI waveguides. The optical propagation
losses are a few decibels per centimeter for strip waveguides
[4]–[6] and can be as small as 0.1 dB/cm for rib sub-micrometer
ones [7]. Compactness of the photonic devices leads to increase
light coupling difficulties into sub-micrometer structures and
became crucial for integrated devices that present transmittance
drops of a few tens of decibels like optical distributions to
several outputs [12], [13]. Thus, it is very important to reduce
all extra loss due to light injection into the input waveguide
1) to allow silicon nanophotonic development and 2) to allow
accurate characterizations.

The commonly used solution to couple light into a sub-
micrometer waveguide is to directly focus the laser beam from
a lensed fiber onto the end of the sub-micrometer waveguide
at the chip edge (butt coupling). Even with guides enlarged
near the facet to a few micrometers, this technique introduces
coupling losses typically higher than 12 dB.

Nanotapers for compact-mode conversion to couple light
from an optical fiber to a sub-micrometer waveguide at 1.55 µm
have been demonstrated without [14] and with polymer
waveguide on the silicon tip [15]. A high accuracy is required
for the fabrication of the nanometer-sized tip as well as for
the realization of the following cleaving step. A polarization-
insensitive three-dimensional (3-D) taper that reduces these
limitations has been proposed [16].

Another solution is to use grating couplers followed by a
taper to adjust the lateral size of the incident beam to the
sub-micrometer waveguide width. The main advantage of a
grating coupler is the possible use of test devices everywhere
on the die without any cleavage. Several grating couplers have
been demonstrated theoretically [17], [18] and experimentally
[19]–[21]. However, the highest coupling efficiency reported in
sub-micrometer rib and strip SOI waveguides does not exceed
40% [22].

This paper reports optimized one-dimensional (1-D) grating
couplers that present coupling efficiency into sub-micrometer
waveguides higher than 55%. Couplers have been designed,
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Fig. 1. (a) Schematic view of the grating coupler lightened by a Gaussian
beam. Pin is the input power, and Pt and Pr are, respectively, the transmitted
and reflected powers. Pinj is the injected power below the grating coupler.
w is the waist of the Gaussian beam. Λ is the period of the grating coupler.
(b) Example of test device for guided structure characterization. The waveguide
is inserted between two grating couplers with linear transitions. Pdt and Pdr

are, respectively, the transmitted and reflected output powers.

realized, and characterized at λ = 1.3 µm and used to
determine optical propagation losses in sub-micrometer strip
and rib SOI devices. The significant improvements carried out
to increase the coupling efficiency using grating couplers are,
in the first hand, the optimization of fabrication technology
leading to a better accuracy of all layer thicknesses, period,
and etching depth, and in the second hand, the optimization
of illumination conditions (input beam diameter optimization).
Section II reports the numerical simulation results of the
grating coupler efficiency. The technological realization is
described in Section III. In the last section, experimental results
about coupling efficiency, resonant angle, and wavelength
dependence are presented for two waveguide geometries.

II. NUMERICAL SIMULATIONS

The simulated structure is schematically depicted in
Fig. 1(a). It consists of an SOI substrate covered with a 700-nm-
thick SiO2 cladding layer. The coupling efficiency strongly
depends on the thickness of both the silicon film (n = 3.505)
and the BOX (n = 1.45). The mode is resonantly excited when
the phase matching condition is fulfilled, i.e.,

kin sin(θin) + p
2π

Λ
= β′ (1)

where kin = 2π/λ is the module of the incident wave vector, λ
is the wavelength, θin is the incident angle, p is the diffraction
order (here p = +1), Λ is the grating period, β′ = (2π/λ)neff

is the real part of the propagation constant, and neff is the
effective index of the guided mode. The calculations are based
on a differential analysis [23] allowing the determination of
the optical field under the grating for the input plane wave
case. With this plane wave approach, the power attenuation

Fig. 2. Coupling efficiency as a function of silicon waveguide and BOX
thicknesses. The period is 430 nm, and the etching depth 30 nm, without silica
cladding.

coefficient (1/Lc) under the grating (or grating characteristic
length Lc) is

Lc =
λ

4πn′′
eff

(2)

where n′′
eff is the imaginary part of the effective index of

the mode.
The geometrical parameters of the grating, thickness of the

BOX, crystalline silicon, SiO2 cladding thicknesses, and etched
depth are determined for optimum light coupling. Furthermore,
this 1-D model allows the determination of the optimal laser
beam waist that has to be used for the given grating coupler
parameters

ω0 = 1.37Lc cos(θin) (3)

and of the optimal distance d between the center of the input
laser beam and the end of the grating coupler (beginning of the
waveguide)

d = Lc. (4)

Then, the use of a beam propagation method (BPM), in-
cluding forced excitation, allows the characterization of the
diffracted field (i.e., the guided mode) propagating in the corru-
gated waveguide for a 3-D Gaussian incident beam illuminating
the grating. The module and direction of the incident wave
vector are taken into account on each point of the device. At the
end of the grating coupler, the field values are added up over the
entire cross section of the guide. The division by the incident
power gives the coupling efficiency [18]. Fig. 2 shows the
coupling efficiency versus buried oxide silicon and silicon film
thicknesses for a given grating coupler. The period is 430 nm,
and the etching depth is 30 nm. The coupling efficiency strongly
depends on both the silicon film and the buried oxide thick-
nesses. The maximum efficiency is the convolution between
the Gaussian and the decoupled profile. Eighty-two percent is
achieved for an exponential profile. Nevertheless, when Lc is
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Fig. 3. SEM top and side views of an example of grating coupler.

small enough (about 10 µm), the decoupled power profile is not
quite exponential, and its convolution with a Gaussian profile
allows coupling efficiencies slightly higher than 82% [24]. For
a 700-nm-thick buried oxide, a coupling efficiency close to 85%
can be theoretically achieved for both 200- and 380-nm-thick
silicon films.

According to the characteristic length (10–20 µm), the grat-
ing coupler length must be large enough (typically 100 µm) in
order to ensure that all the power is decoupled.

III. REALIZATION

The integrated devices have been fabricated on specific Uni-
bond 200-mm wafers provided by SOITEC, Grenoble, France,
fabricated by the smart cut process [10]. The crystalline silicon
and the BOX thicknesses are 400 and 700 nm, respectively.
Two waveguide heights are used for this study: 380 nm (the
initial silicon thickness slightly reduced during the process) and
200 nm (obtained by thermal oxidation). The grating couplers
are defined using e-beam lithography. The global size is 30 µm
wide and 100 µm long. The grating period is 430 and 500 nm
for 380- and 200-nm waveguide thicknesses, respectively. The
etching depths of the grating coupler groves are 70 and 30 nm
for the 380- and 200-nm waveguide thicknesses, respectively.
Etching is performed by a reactive ion etching (RIE) process.
Thermal oxidation is performed to reduce the surface rough-
ness, and a 700-nm-thick silicon oxide cladding layer is then
deposited. Fig. 3 shows the top and side views of the grating
coupler obtained with a scanning electron microscope (SEM).
The waveguide height and the groove depth are 380 and 70 nm,
respectively. The darker region below the silicon grating is the
700-nm-thick buried SiO2 layer. At the end of the process,
an antireflection coating for λ = 1.31 µm is added on the
polished back side of the silicon substrate in order to correctly
determine the laser beam intensities reflected and transmitted
by the grating.

IV. EXPERIMENTAL RESULTS

In order to measure coupling efficiencies and integrated
structure characteristics, sub-micrometer SOI rib or strip de-
vices are inserted between input and output grating couplers
[Fig. 1(b)]. A 1-mm linear transition from the 30-µm width
of the grating coupler to sub-micrometer SOI waveguide
is used. This transition ensures reduced insertion losses for

Fig. 4. Decoupled power of a grating coupler as a function of the distance on
the grating for the 200-nm-thick rib SOI waveguide. The dotted curve is the fit
by a linear curve allowing the determination of the coupling length.

slightly etched rib structures. The power Pinj injected into the
waveguide under the grating is

Pinj = Pin − (Pr + Pt) (5)

where Pin is the input power from the laser source at 1.31 µm,
while Pr and Pt are the power fractions reflected and transmit-
ted by the grating coupler, respectively. The coupling efficiency
is then given by Pinj/Pin. The guided wave is decoupled by
the output grating on both sides of the waveguide. The total
light power decoupled at the waveguide output is equal to Pd =
Pdr + Pdt, where Pdr and Pdt are the parts of the decoupled
power toward cladding and substrate, respectively. Using a
100-µm-long grating coupler, all of the power is decoupled
either on the transmitted side (Pdt) or the reflected side (Pdr).
Light power is measured on each of the four beams for a given
incident intensity Pin [Fig. 1(b)].

In order to determine the grating characteristics, the coupling
length (Lc) is first measured with a linear infrared camera. The
decoupled power is proportional to exp(−z/Lc). Fig. 4 shows
the decoupled power as a function of the distance on the grating
for a 200-nm-thick waveguide. The obtained value for Lc is
equal to 13 ± 1 µm. Lc is directly linked to the laser beam
waist (ω), which has to be used to obtain the maximum grating
coupler efficiency (3). The corresponding waist thus ranges
from 16 to 19 µm. By considering the grating size (30 µm
wide and 100 µm long), a waist of 16 µm has been chosen.
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Fig. 5. Coupled power as a function of the incident angle for the 200-nm-thick
rib SOI waveguide.

Fig. 6. Coupled power as a function of wavelength for the 200-nm-thick rib
SOI waveguide.

The injected power Pinj = Pin − (PR + PT ) below the grat-
ing coupler as a function of the incidence angle of the laser
beam is plotted in Fig. 5 for the 200-nm-thick SOI waveguide.
The measured optimum incidence angle (θ) is 13.9◦ ± 0.2◦.
This corresponds to a maximum of the coupled power in a
200-nm-thick SOI waveguide of about 56%. The width at
half maximum of the angular response is then 3◦, which
corresponds to the angle tolerance range of the grating cou-
pler. Similar results have been obtained for 380-nm-thick SOI
waveguides with coupling efficiencies close to 60%. In the
case of a plane wave simulation, the angular coupling range
is given by λ/4πLc cos(θ) and is about 0.5◦. The differ-
ence between measured and calculated values is due to the
input Gaussian beam divergence. Indeed, the measurements
correspond to the convolution between the Lorentzian profile
characterizing the grating coupler and the angular Gaussian
repartition of the plane wave decomposition. For small waist
spots, the angular acceptance of the coupling is given by the
Gaussian beam divergence.

Coupling efficiency is plotted in Fig. 6 as a function of
wavelength. The optimum wavelength that corresponds to
the maximum coupling efficiency is 1.31 µm, which is the
wavelength aimed at in the grating coupler design. The wave-

length acceptance (measured at half maximum) is close to
20 nm. Sub-micrometer SOI devices could be tested from 1.3
to 1.32 µm with a coupling efficiency higher than 25%.

To characterize sub-micrometer rib and strip SOI wave-
guides using grating couplers, tapers are used at the input and
output. They enable to reduce the light beamwidth from the
grating size (30 µm) to a waveguide width of 1 µm or 380 nm
for rib or strip waveguides, respectively. One-millimeter-long
linear transitions are used in order to carry out mode converter.
Using field mode matching simulations,1 transition losses from
grating to waveguides have been estimated. Theoretically, 95%
of the power injected in the taper can be coupled into rib SOI
structures (1 µm wide), while about 75% is coupled into strip
structures (380 nm wide). Mode conversions are observed at the
end of the taper, leading to the decrease of the output power into
single-mode waveguides. Experimentally, the measured taper
transmissions are ∼92% for rib SOI waveguides and ∼62% for
strip ones [7].

The decoupled power proportion toward the cladding is
defined as η = Pdr/(Pdr + Pdt). For both 200- and 380-nm
SOI waveguide thicknesses, η is of about 75%.

V. CONCLUSION

A high-efficiency grating coupler used to measure optical
loss in sub-micrometer SOI devices for TE polarization at
1.31-µm wavelength has been presented. Coupling length (Lc)
has been measured to determine the optimum beam waist to
be used in the experimental setup. Experimentally, coupling
efficiencies close to 55% to 60% for both 200- and 380-nm
waveguide thicknesses have been measured. The angular align-
ment tolerance of 3◦ is mainly related to the laser beam diver-
gence. The wavelength tolerance is 20 nm at half maximum.
By using tapers from grating couplers to sub-micrometer SOI
waveguides, a coupled power higher than 50% is achieved
in sub-micrometer rib and strip waveguides. Furthermore, the
measured decoupled power proportion toward the cladding is
close to 75%, leading to carry out efficient coupling toward the
optical fiber.
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