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Fast Approximated Power Iteration
Subspace Tracking
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Abstract—This paper introduces a fast implementation of the
power iteration method for subspace tracking, based on an approx-
imation that is less restrictive than the well-known projection ap-
proximation. This algorithm, referred to as the fast approximated
power iteration (API) method, guarantees the orthonormality of
the subspace weighting matrix at each iteration. Moreover, it out-
performs many subspace trackers related to the power iteration
method, such as PAST, NIC, NP3, and OPAST, while having the
same computational complexity. The API method is designed for
both exponential windows and sliding windows. Our numerical
simulations show that sliding windows offer a faster tracking re-
sponse to abrupt signal variations.

Index Terms—Adaptive estimation, power iteration, projection
approximation, subspace tracking.

I. INTRODUCTION

THE interest in subspace-based methods stems from the fact
that they consist of splitting the observations into a set of

desired and a set of disturbing components, which can be viewed
in terms of signal and noise subspaces. These methods have ap-
plications in numerous domains, including the fields of adaptive
filtering, source localization, or parameter estimation [1]. The
estimation of the signal subspace is commonly based on the tra-
ditional eigenvalue decomposition (EVD) or singular value de-
composition (SVD). However, the main drawback of these de-
compositions is their inherent complexity. Therefore, there is a
real need for fast subspace tracking techniques in the context of
adaptive signal processing.

Due to this interest, a large number of approaches have al-
ready been introduced. A reference method is Karasalo’s algo-
rithm [2], which involves the full SVD of a small matrix. A fast
tracking method based on Givens rotations (the FST algorithm)
is proposed in [3]. Other approaches consist of interlacing a re-
cursive update of the estimated correlation matrix or the data
matrix with one or a few steps of a standard SVD or power it-
eration algorithm. This is the case in the Jacobi SVD method
[4], the transposed QR-iteration [5], the orthogonal/biorthog-
onal iteration [6], [7], and the power method [8]. Other matrix
decompositions have also successfully been used in subspace
tracking (for example, the rank-revealing QR factorization [9],
the rank-revealing URV decomposition [10], and the Lankzos
(bi)-diagonalization [11]). Other techniques rely on the noise
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and signal subspace averaging method [12], the maximum-like-
lihood principle [13], the operator restriction analysis [14], or
the perturbation theory [15].

The estimation of the signal subspace can also be viewed as a
constrained or unconstrained optimization problem [16]–[21],
for which the introduction of a projection approximation hy-
pothesis leads to fast subspace tracking methods (see, e.g., the
PAST [22] and NIC [23] algorithms). In [8], it is shown that
these subspace trackers are closely linked to the classical power
iteration method [24]. Several implementations of this method
based on QR factorizations are proposed in [6], among which
are the Loraf2 and Loraf3 algorithms. However, compared to
PAST and NIC, Loraf2 is more computationally demanding,
and the performance of Loraf3 is degraded. Another fast im-
plementation of the power iteration method, the NP3 algorithm,
which relies on rank-one matrix updates, is proposed in [8],
but our numerical simulations showed that this algorithm does
not converge in many situations. An orthonormal version of the
PAST algorithm, proposed in [25], can be seen as a fast imple-
mentation of the power method and outperforms PAST, NIC,
and NP3. Concurrently, the recent approximated power itera-
tion (API) method [26], based on the power iteration method
and on a new projection approximation, has the same compu-
tational complexity as the above-mentioned algorithms but pro-
vides a better estimation of the dominant subspace.

All of these adaptive techniques are designed for exponential
windows. Indeed, this choice tends to smooth the variations
of the signal parameters and, thus, allows a low-complexity
update at each time step. However, it is only suitable for
slowly changing signals. Conversely, a few subspace trackers
are based on sliding windows, which generally require more
computations, but offer a faster tracking response to sudden
signal changes [22], [27]–[30]. In particular, a sliding window
version of the API algorithm is proposed in [31].

This paper presents several fast implementations of the API
method. These algorithms present several advantages.

• They can be applied either on an infinite exponential
window or on a truncated window (e.g., a sliding window
that may have an exponential decrease).

• An orthonormal subspace basis is computed at each time
step, which is required for some subspace-based estima-
tion methods, such as MUSIC [32].

• They rely on a new projection approximation, less restric-
tive than the classical one, that leads to better tracking re-
sults. In particular, it is shown that the PAST and OPAST
subspace trackers can be viewed as approximations of the
fast API method.
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The paper is organized as follows. In Section II, we introduce
the various window shapes applied to the data. In Section III, the
classical power iteration method is reviewed; then, the projec-
tion approximation is discussed in Section IV. Our API method
is introduced in Section V, and a fast implementation of this al-
gorithm is proposed in Section VI. In Section VII, it is shown
that both PAST and OPAST can be seen as approximations of
the fast API algorithm. In Section VIII, the performance of this
method is compared to that of several subspace trackers, among
which are PAST and OPAST. Finally, the main conclusions of
this paper are summarized in Section IX.

II. DATA WINDOWING

Let be a sequence of -dimensional data vectors.
We are interested in computing the dominant subspace spanned
by its correlation matrix. This matrix can be estimated according
to the nature of the data window.

A. Exponential Window

The estimated correlation matrix is defined as

where is the forgetting factor. It can be recursively
updated according to the following scheme:

(1)

B. Truncated Window

The correlation matrix is estimated on a window
of length

(2)

where . The case corresponds to a rectangular
(or sliding) window. This matrix can be recursively updated ac-
cording to the following scheme:

(3)

C. Unified Formalization

Both (1) and (3) can be written in the form

(4)

where and are defined according to the window shape

• in the exponential window case

(5)

(6)

• in the truncated window case

(7)

(8)

Let be the rank of the update involved in (4). Since in
the exponential window case and in the truncated window
case, characterizes the window shape. In particular, is a

matrix, and is a matrix.

III. CLASSICAL POWER ITERATION METHOD

The power iteration method [8] tracks the dominant subspace1

of dimension spanned by the matrix . At
each time step, a basis of this subspace is computed, represented
by an orthonormal matrix of dimension . The com-
putation of consists of a data compression step (9) and an
orthonormalization step (10) of the compressed matrix at each
iteration

(9)

(10)

where can be considered as a correlation matrix
between the -dimensional data vectors and the -dimen-
sional compressed data vectors

(11)

The orthonormalization step (10) involves a matrix
, such that , where is the

positive definite matrix . Consequently,
is a square root of . In particular, is equal to the
positive definite square root of , right multiplied by a uni-
tary matrix.2 For example, can be triangular [6] or positive
definite [8].

If remains constant and if its first eigenvalues are
strictly larger than the th others, the power iteration
method converges globally and exponentially to the principal
subspace [8], [24, pp. 410–411]. Note that the multiplication
in step (9) involves operations, and the orthonormaliza-
tion step (10) requires operations.3 Because of its high
computational cost, this algorithm is not suitable for real-time
processing.

IV. PROJECTION APPROXIMATION

We are now looking for an approximation that will allow us to
reduce the complexity. Suppose that exactly spans the
-dimensional dominant subspace of . Then, (9) yields

(12)

1The r-dimensional dominant subspace of the positive semidefinite matrix
CCC (t) is the subspace spanned by the r eigenvectors of CCC (t) associated to
the r eigenvalues of highest magnitude (which are supposed to be strictly greater
than the n � r others).

2If TTT is a positive definite matrix, a square root of TTT is any matrix SSS of the
same dimension such that SSS SSS = TTT . Such a matrix is denoted SSS = TTT .
There is only one positive definite square root of TTT . The other square roots are
obtained by right multiplying this positive definite square root by any unitary
transform. The notation SSS can denote any of them.

3In this paper, operations counts are expressed in terms of multiply/accumu-
late (MAC) operations, herein referred to as flops. Whenever a specific matrix
function is used, such as orthonormalization, inversion, or square rooting, only
the order of the operations count is presented, since the exact operations count
depends on the way this function is implemented. Nevertheless, r is supposed to
be much lower than n, so that the dominant cost of the power iteration method
is that of the first step, whose exact operations count is known to be (n r).
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where the matrix can be
seen as the correlation matrix of the compressed data vectors.
In this case, and are two orthonormal matrices
spanning the range space of ; thus

(13)

where is a orthonormal matrix.
Substituting (12) into (10) and left multiplying by yields
the polar decomposition of

(14)

where is the positive definite factor, and is the or-
thonormal factor. Now, suppose that approximately
spans the dominant subspace of . Then, (13) and (14)
become approximations

(15)

(16)

where the matrix is nearly orthonormal.
Compared to (15), the classical projection approximation [22]

is equivalent to at each time step.4 The va-
lidity of this approximation additionally requires that is
close to the identity matrix (herein denoted ). In this
case, (16) shows that must be nearly positive definite.5

Consequently, the choice of the square root of is
restricted (e.g., can no longer be upper triangular, as it was
in [6]).

The NP3 implementation of the power method [8] is based on
this approximation, but this algorithm relies on a matrix ,
which deviates from the positive definite structure constraint.
Therefore, the classical projection approximation does not
stand, and this subspace tracker is not guaranteed to converge.

Concurrently, the algorithms presented in Section V do not
have to face this limitation, since they rely on the less restrictive
approximation (15). Also note that (15) is the best approxima-
tion of in terms of mean-square error, since the solution
to the minimization problem

is , where is supposed to be
orthonormal.

V. API

The complexity of the power iteration method can be reduced
by introducing approximation (15) at time in step (9). Then,
the matrix can be computed recursively, as shown
in Section V-A, and factorization (10) can be updated, as shown
in Section V-C. This fast update requires the introduction of a

auxiliary matrix , introduced in Section V-B.

4In fact, the projection approximation in [22] is defined as WWW (t ) xxx(t) �

WWW (t� 1) xxx(t) = y(t)8t � t. It was shown in [8, p. 301] that this approxi-
mation is equivalent to WWW (t) 'WWW (t � 1) at each time step.

5Conversely, ifRRR(t) is chosen close to the only positive definite square root
of ���(t), the approximate polar decomposition (16) shows that ���(t) ' III , so
that (15) yields WWW (t) ' WWW (t � 1).

A. Recursion for the Matrix

It is shown in this section that the matrix can be
updated in the same way as the matrix in (4)

(17)

In the exponential window case, (17) involves a rank-one up-
date [ and are vectors, and is a scalar], whereas in
the truncated window case, it involves a rank-two update [
and are two-column matrices, and is a 2 2 matrix].

1) Truncated Window: First, (2) can be written

(18)

where is
the data matrix, and is the diagonal matrix
diag .

Substituting (18) into (9) yields

(19)

where is the compressed data
matrix. Now, let us show recursions for matrices and .
The first one is straightforward

(20)

Then, left multiplying (20) by yields

(21)

where , defined in (11), and

(22)

are -dimensional compressed data vectors. Applying approx-
imation (15) at time to (21) yields the recursion

, where is the com-
pressed data matrix

(23)

From now on, the exact definition of is, therefore, re-
placed by

(24)

where the -dimensional vector , defined by the first
column in the left side of (24), is an approximation of the vector

. Equations (19), (20), (23), and (24) finally yield

(25)
This recursion can be seen as a particular case of (17), where
and are defined in (7) and (8), and the (with )

matrix

(26)

is an approximation of

(27)
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2) Exponential Window: Substituting (1) into (9) yields

(28)

Applying the projection approximation (15) at time , (28)
can be replaced by the following recursion:

(29)

This recursion can be seen as a particular case of (17), where
and are defined in (5) and (6), and the (with )
matrix is now equal to the vector

.

B. Recursion for the Matrix

Now, we aim at updating factorization (10) by means of (17).
This calculation requires the introduction of an auxiliary matrix,
denoted . Let , and suppose
that the matrix is nonsingular. Then, let

(30)

Proposition 5.1: The matrix

(31)

is nonsingular if and only if the matrix
is nonsingular, where

(32)

has dimension . In this case, the matrix

(33)

satisfies the recursion

(34)

where is the matrix

(35)

Proof: Substituting (10) into (17) and left multiplying by
leads to

(36)

Next, the following matrix inversion lemma [33, pp. 18–19] will
be applied to invert the right member of this equality. The in-
terest of this approach is that the matrix inversion problem
is converted into a smaller matrix inversion (with
or 2).

Lemma 5.2: Let be a nonsingular complex matrix.
Consider the matrix , where , , and
have dimensions , , and , and is supposed
to be nonsingular. Then, is nonsingular if and only if

is nonsingular, and in this case

Lemma 5.2 applied to (36) shows that the matrix
is nonsingular if and only if the matrix

is nonsingular (which provides a fast way
of detecting the singularity of or ). In the nonsingular
case, lemma 5.2 leads to the equation

Finally, left multiplying the complex conjugate transpose of this
last equation by and right multiplying it by
yields recursion (34).

C. Recursion for the Matrix

Next, proposition 5.3 introduces a fast update for the subspace
weighting matrix.

Proposition 5.3: If the matrix is
nonsingular, satisfies the recursion

(37)

where is the matrix

(38)

Proof: Substituting (10) into (17) and right multiplying by
shows that satisfies the recursion

Substituting (36) and (38) into the above equation yields

(39)

However, left multiplying (36) by and replacing
by its definition in (35) leads to

(40)

Then, (30) and (32) show that

(41)

Substituting (41) into (40) yields

(42)

Finally, substituting (42) into (39) and right multiplying by
yields (37).

Note that if is singular, and
can no longer be updated with (34) and (37). In practice, we
never encountered this rank-deficiency case in our numerical
simulations.6

Since is orthonormal, is orthogonal to .
Moreover, the orthonormality of , associated to (37), yields

(43)

Therefore, is an inverse square root of the positive
definite matrix . The choice of this

6A solution consists in computingWWW (t) andRRR(t) by means of an SVD or a
QR factorization ofCCC (t). Then, ���(t) =WWW (t� 1) WWW (t) can be deduced.
Note that the whole processing requiresO(nr ) operations; this technique must
be used whileRRR(t) or���(t) remains singular. When bothRRR(t) and���(t) become
nonsingular again, then ZZZ(t) can be computed, and the algorithm can switch
back to the fully adaptive processing.
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TABLE I
EXPONENTIAL WINDOW API ALGORITHM

inverse square root does not affect the subspace tracking perfor-
mance.7

The pseudo-code of the exponential window API algorithm
is presented in Table I, and that of the truncated window API al-
gorithm (TW-API) is presented in Table II. It can be noted that
the first section of API is exactly the same as that of the PAST
subspace tracker [22]; it requires only operations
per time step, while the rest of the algorithm has a
computational complexity. In the same way, the first section of
TW-API is similar to that of the sliding window version of PAST
[29]; it requires only , while the rest of the
algorithm has a computational complexity.
Note that the implementations of API and TW-API presented in
Tables I and II are of limited interest, since a number of faster
subspace trackers have already been proposed in the literature,

7Let��� (t) be the only positive definite inverse square root. Then,���(t) can
be written in the form

���(t) = ��� (t)UUU(t) (44)

where UUU(t) is a r � r orthonormal matrix. Substituting (44) into (37) yields

WWW (t) = WWW (t� 1) + eee(t)ggg(t) ��� (t) UUU(t):

It can be readily seen in this last equation thatUUU(t) does not affect the subspace
spanned by WWW (t); it only affects the particular orthonormal basis WWW (t) of this
subspace. Consequently, the choice of a particular inverse square root���(t) has
no impact on the subspace tracking performance.

which have a complexity (among which [3], [22], [23],
[25], [29], and [34] are illustrated in Section VIII). A faster im-
plementation of API and TW-API is proposed in Section VI.

VI. FAST API METHOD

In this section, a fast implementation of the API method is
proposed, based on a particular choice of the matrix . It is
supposed that is nonsingular, so that is
also nonsingular. Below, the identity matrix is denoted .

A. Particular Solution to Equation (43)

Let be a square root of the matrix

(45)

Substituting (45) into (43) and applying the matrix inversion
lemma shows that8

(46)

where is the positive definite matrix

(47)

8Lemma 5.2 is applied with AAA = III , PPP = ggg(t)"(t), JJJ = I , and QQQ =
"(t) ggg(t) . In particular, the nonsingularity of ���(t) is equivalent to the non-
singularity of �(t).
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TABLE II
TRUNCATED WINDOW API (TW-API) ALGORITHM

Considering (46), we are looking for a special solution of the
form

(48)

where is a nonsingular matrix. The interest of this
approach is that the matrix square rooting problem in (46)
is converted into a smaller matrix square rooting. Indeed,
substituting (48) into (46) yields a sufficient condition

Left multiplying the two members of this last equation by
and right multiplying them by yields the equation9

whose solution is

(49)

Even if other choices would be possible, from now on, we sup-
pose that the square root of , which is involved in the above
equation, is the only positive definite square root. This condition

9Remember that �(t) is an Hermitian matrix.

guarantees that is positive definite, so that is Hermi-
tian.10 Then, define the positive definite matrix

(50)

Substituting (50) into (48) yields

(51)

B. Fast Implementation of the Particular Solution

Based on the low-rank matrix update of in (51), it is
shown below that the matrices , , and can also
be efficiently updated. Consider the matrix

(52)

Since is nonsingular, the matrix inversion lemma shows
that is also nonsingular.11 Then, substituting (51) into (34)
yields

(53)

where the matrices and are defined by

(54)

(55)

(56)

Then, substituting (51) into (37) yields

(57)

where is the matrix

(58)

However, substituting (38) and (54) into (58) yields

(59)

Finally, substituting (51) into (23) yields

(60)

The pseudo-code of the exponential window fast API algo-
rithm (FAPI) is presented in Table III, and that of the TW-FAPI
is presented in Table IV. The overall computational cost of FAPI
is flops per iteration12 (whereas the com-
plexities of PAST [22] and OPAST [25] are, respectively,

and . The overall computa-
tional cost of TW-FAPI is flops per itera-
tion13 (whereas the complexities of SW-PAST and SW-OPAST
[29] are, respectively, and

10More precisely, ���(t) is positive definite. Indeed, (49) shows that �(t) and
�(t) are simultaneously diagonalizable, and the eigenvalues of �(t) are strictly
greater than those of �(t). Therefore, �(t) � �(t) is a positive definite
matrix. Then, subtracting (46) from (48) shows that ���(t) is positive definite.

11Lemma 5.2 is applied to (51), with AAA = III , PPP = ggg(t)�(t), JJJ = I , and
QQQ = ggg(t) .

12Note that this implementation of FAPI is faster than that proposed in [26],
whose global cost was n(4r + 2) + 5r +O(r).

13This implementation of TW-FAPI is also faster than that proposed in [31],
whose global cost was n(8r + 8) + 4lr + O(r ).
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TABLE III
EXPONENTIAL WINDOW FAST API (FAPI) ALGORITHM

TABLE IV
TRUNCATED WINDOW FAST API (TW-FAPI) ALGORITHM

). Note that the presence of a term in the com-
plexity of TW-FAPI may make this algorithm more computa-
tionally demanding in applications for which is much larger
than . However, in the context of frequency estimation, it has
been proved that optimal Cramer–Rao bounds were obtained
for [35], and in Section VIII-A, TW-FAPI is
tested with .

VII. LINK WITH THE PAST AND OPAST ALGORITHMS

In this section, it is shown that the classical exponential
window PAST algorithm can be seen as a first-order approx-
imation of the FAPI algorithm. Indeed, the error is the
component of that does not belong to the signal subspace

spanned by . Thus, if this subspace slowly varies upon
time, and if the signal-to-noise ratio (SNR) is high, .
If the second-order term is disregarded in Table III,

, , and become the identity matrix.
Then, (57) and (53) become

(61)

(62)

(in particular, it can be recursively shown that is always
Hermitian). Consequently, this first-order approximation of the
fast API method is an exact implementation of the classical
PAST subspace tracker [22], which only provides a nearly or-
thonormal subspace weighting matrix. In other respects, a thor-
ough examination of the OPAST algorithm presented in [25]
shows that is updated as in (57) [which guarantees the or-
thonormality, contrary to (61)]. However, is updated as in
(62). Consequently, OPAST can be seen as an intermediary be-
tween PAST and FAPI.

VIII. SIMULATION RESULTS

In this section, the performance of the subspace estimation
is analyzed in the context of frequency estimation, in terms
of the maximum principal angle between the true dominant
subspace of the correlation matrix (obtained via an
exact eigenvalue decomposition) and the estimated dominant
subspace of the same correlation matrix (obtained with the
subspace tracker). This error criterion was initially proposed by
Comon and Golub as a measure of the distance between equidi-
mensional subspaces [24, pp. 603–604]. In Section VIII-A, the
FAPI and TW-FAPI algorithms are compared to other existing
subspace trackers. In Section VIII-B, the behavior of the API
method regarding the SNR and the parameters and is
investigated.

A. Comparison of FAPI and TW-FAPI With Other Existing
Subspace Trackers

In this section, the test signal is a sum of complex
sinusoidal sources plus a complex white Gaussian noise (the
SNR is 5.7 dB). The frequencies of the sinusoids vary ac-
cording to a jump scenario originally proposed by Strobach in
the context of direction of arrival estimation [36]: Their values
abruptly change at different time instants, between which they
remain constant. Their variations are represented in Fig. 1(a).
This signal is processed in Section VIII-A1 by means of an
exponential window whose forgetting factor is and
in Section VIII-A2 by means of a sliding window of length

. These parameters were chosen so that the effective
window length is the same in both cases, i.e., .
Section VIII-A3 focuses on the orthonormality of the subspace
weighting matrix. The complexities of the various subspace
trackers illustrated in this section are given in Table V.

1) Exponential Window Case: Fig. 1(b) shows the max-
imum principal angle error trajectory , obtained with
the FAPI method with parameters and . Then,
this result is compared to that obtained with the PAST subspace
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Fig. 1. Subspace tracking based on an exponential window. (a) Normalized
frequencies of the sinusoids. (b) Maximum principal angle trajectory obtained
with FAPI. (c) Ratio of the trajectories obtained with FAPI and PAST. (d) Ratio
of the trajectories obtained with FAPI and NIC. (e) Ratio of the trajectories
obtained with FAPI and OPAST.

TABLE V
COMPARISON OF THE COMPLEXITIES

tracker: Fig. 1(c) shows the ratio in decibels of the trajectories
obtained with FAPI and PAST, i.e.,

At initialization, it can be noticed that FAPI converges faster
than PAST. Moreover, PAST does not provide an orthonormal
subspace weighting matrix. Fig. 1(d) shows the ratio in deci-
bels of the trajectories obtained with FAPI and the NIC sub-
space tracker,14 which is a robust generalization of PAST [23]. It
can be seen that the subspace estimation error is always smaller

14The learning step � is equal to 0.7.

Fig. 2. Subspace tracking based on an exponential window. (a) Ratio of the
trajectories obtained with FAPI and Karasalo. (b) Ratio of the trajectories
obtained with FAPI and FST. (c) Ratio of the trajectories obtained with FAPI
and Householder PAST. (d) Ratio of the trajectories obtained with FAPI and
Loraf2. (e) Ratio of the trajectories obtained with FAPI and SPI.

with FAPI. As PAST, NIC does not guarantee the orthonor-
mality of the subspace weighting matrix. Fig. 1(e) shows the
ratio of the trajectories obtained with FAPI and OPAST. The
two algorithms reach the same performance, except at initial-
ization, where FAPI converges faster. In fact, the difference is
much more distinct with the sliding window versions of these
algorithms (see Section VIII-A2).

In Fig. 2, the FAPI algorithm is compared to five other well-
known subspace trackers:

• Karasalo’s algorithm [2];
• the Fast Subspace Tracking (FST) algorithm [3];
• the novel PAST algorithm employing Householder trans-

formations, herein called Householder PAST [34];
• the Low-Rank Adaptive Filter (Loraf2) algorithm [7];
• the Subspace Projection (SP1) algorithm [37].
Fig. 2(a) shows that the behaviors of FAPI and Karasalo’s

algorithm are very similar. However, the dominant cost of the
latter is (see Table V). Fig. 2(b) shows that FAPI converges
to the signal subspace much more precisely than FST. Moreover,
FST is more computationally demanding than FAPI. Fig. 2(c)
shows that FAPI and Householder PAST reach the same per-
formance, except at initialization, where FAPI converges faster.
Fig. 2(d) shows that the same remark can be made about FAPI
and Loraf2. Besides, the dominant complexity of Loraf2 is .

Among the various subspace trackers that we have tested, SP1
is the only one that really outperformed FAPI [see Fig. 2(e)].
However, Table V shows that SP1 is the most computationally
demanding algorithm. In other respects, it is only suitable for
time-series data analysis and was only designed for exponential
windows.

2) Sliding Window Case: Fig. 3(a) shows the maximum
principal angle error trajectory , obtained with
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Fig. 3. Subspace tracking based on a sliding window. (a) Maximum principal
angle trajectory obtained with TW-FAPI. (b) Ratio of the trajectories obtained
with TW-FAPI and SW-PAST. (c) Ratio of the trajectories obtained with
TW-FAPI and SW-NIC. (d) Ratio of the trajectories obtained with TW-FAPI
and SW-OPAST.

the TW-FAPI method with parameters (which turns the
truncated window into a sliding window), , and .
It can be noticed that this algorithm has a fast convergence
rate after each frequency jump. This result can be compared to
that of Fig. 1(b), obtained with the exponential window FAPI
method, for which the response to frequency jumps is slower,
because of the nature of the window, which tends to smooth the
signal variations. Fig. 3(b) shows the ratio in decibels of the
trajectories obtained with TW-FAPI and the sliding window
version of PAST, herein called SW-PAST [22], [29]. It can
be seen that TW-FAPI converges faster than SW-PAST at
initialization. Note that as PAST, SW-PAST does not provide
an orthonormal subspace weighting matrix. Fig. 3(c) shows the
ratio in decibels of the trajectories obtained with TW-FAPI and
a sliding window version of the NIC algorithm, herein called
SW-NIC.15 Finally, Fig. 3(d) shows the ratio in decibels of the
trajectories obtained with TW-FAPI and the sliding window
OPAST algorithm [29]. It can be noticed that the maximum
principal angle error trajectory obtained with TW-FAPI is about
20 dB lower than those obtained with SW-NIC and SW-OPAST
in regions where the frequencies are constant.

3) Orthonormality Error: The orthonormality of the sub-
space weighting matrix can be measured by means of the
following error criterion:

Table VI shows the maximum orthonormality error reached
by the above-mentioned algorithms while tracking the test
signal variations. We observed that FAPI, TW-FAPI, OPAST,
and Householder PAST outperformed all the other algorithms,
whereas PAST, NIC, and their sliding window versions do not
guarantee the orthonormality of the subspace weighting matrix.

15SW-NIC is also implemented with � = 0:7.

TABLE VI
MAXIMUM ORTHONORMALITY ERROR

Fig. 4. Influence of the SNR. (a) SNR in decibels. (b) Maximum principal
angle trajectory obtained with FAPI. (c) Maximum principal angle trajectory
obtained with TW-FAPI.

B. Behavior of the API Method Regarding the SNR and the
Parameters and

In this section, the test signal is still a sum of complex
sinusoidal sources plus a complex white Gaussian noise. How-
ever, the frequencies of the sinusoids are constant, equal to the
initial values given in Fig. 1(a).

1) Influence of the SNR: In this section, the effect of the
SNR onto the subspace estimation is investigated. To this end,
the noise part of the test signal was synthesized so that the SNR
varies linearly from 30 dB to 30 dB [see Fig. 4(a)].

Fig. 4(b) shows the maximum principal angle error trajectory
obtained with the FAPI method with parameters and

. It can be seen that the performance of the subspace
estimation collapses beyond . Fig. 4(a) shows that
from this time instant, the SNR is lower than 10 dB. Fig. 4(c)
shows the maximum principal angle error trajectory obtained
with the TW-FAPI method with parameters , , and

. Again, the performance of the subspace estimation col-
lapses beyond . Although they are not illustrated here,
we observed that the performance of all of the above-mentioned
subspace trackers similarly collapse beyond the same SNR limit
( 10 dB).

2) Influence of the Ratio : In this section, we focus on
the influence of the ratio onto the subspace estimation. The
SNR is constant, equal to 5.7 dB.
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Fig. 5. Influence of the parameters n and r. (a) Average max. angle obtained
with FAPI as a function of n=r. (b) Average max. angle obtained with TW-FAPI
as a function of n=r. (c) Average max. angle obtained with FAPI as a function
of r. (d) Average max. angle obtained with TW-FAPI as a function of r.

Fig. 5(a) shows the mean of as a function of the
ratio , for all (with ). It can
be seen that the subspace estimation becomes reliable as soon
as . Fig. 5(b) shows the mean of as a
function of the ratio , for all (with

and ). Again, it can be seen that the subspace
estimation becomes reliable as soon as . Although they
are not illustrated here, we observed that the same remark is
valid for all of the above-mentioned subspace trackers.

3) Tracking a Subspace of Wrong Dimension: Since the di-
mension of the signal subspace is unknown in many appli-
cations, we investigate in this section the performance of the
FAPI and TW-FAPI algorithms when applied with a wrong sub-
space dimension . The SNR is constant, equal to 5.7 dB. The
performance of the subspace estimation is analyzed in terms of
the maximum principal angle between the true four-dimensional
signal subspace and the estimated -dimensional subspace.

Fig. 5(c) shows the mean of as a function of , for
all (with parameters and ).
Similarly, Fig. 5(d) shows the mean of as a func-
tion of , for all (with parameters and

). It can be seen that the subspace estimation is reliable
in all cases.

• If , the maximum principal angle is very low (as
expected).

• If , the maximum principal angle remains low,
which means that the estimated lower dimensional sub-
space is nearly included in the true signal subspace.

• If , the maximum principal angle is even lower than
in the case , which means that the true signal sub-
space is nearly included in the estimated upper dimen-
sional subspace. Moreover, it can be noticed that the max-

imum principal angle decreases as the dimension of the
estimated subspace increases.

We can conclude that FAPI and TW-FAPI are robust to erro-
neous subspace dimension .

IX. CONCLUSION

In this paper, several implementations of the API algorithm
for subspace tracking were presented, based either on exponen-
tial windows or on truncated windows. These algorithms reach a
linear complexity and guarantee the orthonormality of the sub-
space weighting matrix at each time step. In the context of fre-
quency estimation, the method is proven able to track abrupt
frequency variations robustly and outperforms many subspace
trackers, both in terms of subspace estimation and computa-
tional complexity. Finally, these subspace tracking algorithms
can be considered as the starting point of a real-time frequency
tracker, whose full implementation can involve our adaptive ver-
sion of the ESPRIT algorithm [38].
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