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Timbre is a major cue for the human auditory system to recognize musical sounds. To describe timbre,
the temporal dynamics is an important component as well as the widely used spectral envelope.

In this paper, we present new temporal dynamics similarity measures, which will prove valuable for
the recognition of timbral patterns. These similarity measures are evaluated, first alone, then in conjunc-
tion with spectral envelope similarity measures, for both single tones and solo recordings. Results are
provided, showing that the new temporal dynamics features significantly improve timbral pattern
recognition.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The timbre, along with the perceived loudness, pitch, and dura-
tion, is an important perceptual attribute of sound. As reported in
(McAdams et al., 1993), contemporary research in psychological
and cognitive acoustics decomposes this attribute into several per-
ceptual dimensions of temporal, spectral, and spectro-temporal
nature.

It is worth noticing that in the audio signal processing area, the
spectral nature of timbre has received much more interest than the
others. One of the best examples is the set of features called Mel-
Frequency Cepstral Coefficients (MFCCs) introduced by Davis and
Mermelstein (1980). Those features are widely used in speech
and speaker recognition systems as well as in music classifications
system such as the one proposed by Tzanetakis and Cook (2002).
From a modeling point of view, the spectral envelope is related
to the filter part of a source/filter model of the analyzed sound as
proposed for speech by Fant (1960). In many cases, the spectral
properties of this filter are specific to the vibrating body, i.e. the vo-
cal tract or the shape of a musical instrument. This makes the mod-
eling of the spectral envelope particularly interesting for the
description of musical sounds. From a technical point of view,
the spectral envelope can easily be extracted in a frame-based
manner with minimal delay.

However, it is widely known that the temporal dimension of tim-
bre is very important at least from a perceptual point of view as re-
ported in (Grey and Moorer, 1977). As detailed in Section 2, the
temporal dynamics of timbre are implicitly modeled by the
ll rights reserved.
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frame-to-frame variability of the spectral features. The processing
of temporal dynamics thus has to be performed subsequently. One
can consider another feature that characterizes the variation over
time of a previously computed feature, such as the DMFCCs. How-
ever, recent work of Joder et al. (2009) shows that the use of such
differentiators is not sufficiently informative to improve the classi-
fication performance. By contrast, we propose in this paper to model
explicitly the temporal dynamics of the spectral parameters in order
to build spectro-temporal features. The rationale behind the pro-
posed approach is that, compared to feature-level dynamic model-
ing, the proposed features take into account finer spectro-temporal
modulations, which are useful to characterize the audio scene.

In this paper, the spectro-temporal features are used – through
the definition of similarity metrics – to discriminate audio signals
produced by different musical instruments. The discrimination
performance of the similarity metric in turn gives us an evaluation
of the ability of the spectro-temporal features to describe the ana-
lyzed sound in a meaningful way.

The remainder of the paper is organized as follows: related
work is reviewed and discussed in Section 2. The proposed ap-
proach is motivated in Section 3 to propose several features that
model the temporal dynamics. Those features are considered for
the definition of similarity metrics between audio signals in Sec-
tion 4. The proposed metrics are next evaluated in Section 5. In
light of those experiments, the benefits of spectro-temporal fea-
tures proposed in this paper are discussed in Section 6.

2. Previous work

Sinusoidal modeling is one of the first attempts to model
explicitly the temporal dynamics of sound. The sinusoidal model
oral dynamics within musical signals for acoustical unit similarity. Pattern
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represents pseudo-periodic sounds as sums of sinusoidal compo-
nents – so-called partials – controlled by parameters that evolve
slowly with time as considered by McAulay and Quatieri (1986)
and Serra and Smith (1990). More formally put, the audio signal
s can be calculated from the controlling parameters using Eqs. (1)
and (2), where N is the number of partials and the functions fp,
ap, and /p are the instantaneous frequency, amplitude, and phase
of the pth partial, respectively. The N pairs ðfp; apÞ are the parame-
ters of the additive model and represent points in the frequency–
amplitude plane at time t:

sðtÞ ¼
XN

p¼1

apðtÞ cosð/pðtÞÞ ð1Þ

/pðtÞ ¼ /pð0Þ þ 2p
Z t

0
fpðuÞdu ð2Þ

This can also be written from the set point of view:

pkðnÞ ¼ ff kðnÞ; akðnÞ;/kðnÞg ð3Þ

where f kðnÞ, akðnÞ, and /kðnÞ are, respectively, the frequency, ampli-
tude, and phase of the partial pk at frame index n. These parameters
are valid for all n 2 ½bk

; . . . ; bk þ lk � 1�, where the bk and lk are,
respectively, the starting index and the length of the partial. These
sinusoidal components are called partials because they are only a
part of a more perceptively coherent entity that will be noted in this
article an acoustical unit.

2.1. The common variation cue

When a sound-generating object changes its properties so that
its fundamental frequency gets higher or lower, all the partials of
the sound also change synchronously. In several experiments
McAdams (1989) studied the influence of this phenomenon in
the auditory system. Whether the common variation cue is an
important cue for the fusion and segregation capacity of the hu-
man auditory system is still an open issue as reported by McAdams
et al. (1993).

However, from a physical point of view, this phenomenon can
be measured and can therefore be used to perform the clustering
0 50 100 150 200 250 300 350 400
−25

−20

−15

−10

−5

0

5

10

15

20

Time (frames)

C
en

te
re

d 
Fr

eq
ue

nc
y 

(H
z)

(a) Frequencies

Fig. 1. Mean-centered frequencies and amplitudes of
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of the partials of the same acoustical unit, as proposed by Lagrange
(2005). Let us consider the case of a harmonic set of partials mod-
ulated by a vibrato. The frequencies f kðnÞ are periodically modu-
lated at the same rate, and the depth of the vibrato is a function
of the rank of the partial in the harmonic set. An extra care should
be taken while considering the induced modulation of the ampli-
tude. Indeed, depending on the sign of the spectral envelope slope
at the partial frequency location, the modulation phase can be
shifted. This phenomenon is illustrated by Fig. 1 where the lowest
amplitude partial has its amplitude modulated at the same rate but
with a p=2 delay.
2.2. Integration of Frequency-Axis Features

As with most model-based approaches, the sinusoidal model
tends to be brittle when applied to real-world sounds as studied
by Lagrange (2004). Therefore, most practical approaches are based
on spectral Fourier representations computed in frame-based man-
ner and summarized by numerous means, one of the most famous
being the MFCCs. The MFCCs are coefficients that describe the
short-term power spectrum of a sound, based on a linear cosine
transform of a log power spectrum on a nonlinear Mel scale of fre-
quency. By selecting the first coefficients, one can estimate a
‘‘smooth” version of the spectrum, usually considered as an
approximate of the spectral envelope. This kind of feature is a sta-
tic observation of the spectral content of the signal and will there-
fore be termed a Frequency-Axis Feature (FAF).

The temporal aspect of the analyzed sound is not completely
neglected by the frame-based approach. Indeed, the temporal
dynamics are in this case implicitly encoded by the frame-to-frame
variability of the frame-based features. This variability can poten-
tially be captured at later stages by the following two approaches
previously studied by Aucouturier and Pachet (2007).

The first one, known as classifier or late integration, does not try
to explicitly extract feature dynamics, but rather operates at the
classifier level, usually a supervised classifier with sequentiality
constraints, like Hidden Markov Models considered in (Eronen,
2003; Kitahara et al., 2006) or Sequence kernel-based Support Vec-
tor Machines considered in (Scaringella and Zoia, 2005; Joder et al.,
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2009; Shimodaira et al., 2002; Cuturi et al., 2007). As these tech-
niques do not deal with explicit modeling of the temporal dynam-
ics of the sound, they will not be discussed further in this paper.

A second approach, known as feature-level integration, refers to
the computation of a new feature vector that characterizes the evo-
lution of a given set of features at a larger time scale. The most
commonly used feature-level integration is the DMFCCs. Meng
et al. (2007) have studied more complex models, like high-order
auto-regressive models for genre classification. However, Joder
et al. (2009) reported that the use of this kind of feature integration
actually degrades the classification performance in an instrument
recognition task. The poor performance may be due to the nature
of FAFs which tends to smooth away potentially meaningful infor-
mation about the temporal dynamics of the sound.

We introduce in the next section an alternative approach which
aims at modeling the temporal dynamics of the spectrum and is
consequently termed spectral-level integration.
3. Proposed features

The spectral envelope is an important piece of information if
one wants to characterize the timbre of an audio signal. However,
we believe that this should be complemented by Time-Axis Features
(TAFs) that explicitly model the temporal dynamics of the spectral
components of the sound.

Let us consider a simplified version of the source/filter model in
order to better motivate our approach. The FAFs mainly model the
filter part of the sound production chain. In order to complement
these features, it is important to avoid any redundancy and there-
fore focus on a different aspect of the sound production chain. Fol-
lowing the source/filter dichotomy, we propose to root the TAFs on
the source part.
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Fig. 2. Centered frequencies (top) of a piano note from the IOWA database and their co
clarity sake.
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3.1. Frequency Evolution Features

We design Frequency Evolution Features (FEFs) such that they
encode the modulation of the frequency of the main components
of the spectrum over time. It is therefore natural to choose the
sinusoidal model as a signal representation.

In a first approach, the temporal evolution of the frequency of
the partials f k can be considered directly. Alternatively, since the
Fourier transform is based on the periodicity of the input signal,
using a spectrum of the evolutions of partial parameters might
show common periodicities of the partials. This will be useful for
the modulations of the partials created by vibrato and tremolo,
since we can assimilate these modulations to sinusoidal ones over
a short period of time as studied by Mellody and Wakefield (2000)
and Marchand and Raspaud (2004). It can also be interesting for
micro-modulations such as the ones produced by vibrating strings
such as the strings of a piano (see Fig. 2).

Let us define the following operator, based on the complex
modulus of the short-time Fourier transform:
XðkÞ ¼
XN�1

n¼0

ðxðnÞ � �xÞhðnÞe
�2j
N pkn

�����
�����

2

ð4Þ

jXjnh
nl
ðxðnÞÞ ¼ fXðmÞjnl < m < nhg ð5Þ
where N is the size of the Fourier transform, h is an analysis win-
dow, and �x denotes the mean of x. nl and nh are, respectively, the
minimal and maximal frequency indexes considered. Thanks to
the complex modulus applied to the spectrum, this operator is
phase-invariant. We can then define the frequency evolution features
(FEFs), as:
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Fk ¼ jXjN�1
1 ðf kÞ ð6Þ

Fck ¼ jXjnc
1 ðf kÞ ð7Þ

where f k is the frequency of the partial k and nc is chosen in order to
reduce the dimensionality of the feature while keeping low fre-
quency content information.

3.2. Amplitude Evolution Features

In order to encode the temporal dynamics of the amplitude, we
can in a similar fashion consider the evolution of the amplitude ak

of the partials pk or the corresponding spectral features, called
Amplitude Evolution Features (AEFs):

Ak ¼ jXjN�1
1 ðakÞ ð8Þ

Ack ¼ jXjnc
1 ðakÞ ð9Þ

In order to consider only the modulated part of the amplitude
signal, leaving aside the global envelope, it is relevant to decom-
pose the signal in two components, one being polynomial, and
the other being pseudo-periodic as proposed by Raspaud et al.
(2005):

akðtÞ ¼ PðtÞ þ
X

i

aiðtÞ cosðwiðtÞÞ ð10Þ

where PðtÞ is a polynomial, and aiðtÞ and wiðtÞ are the parameters of
sinusoidal components, see Fig. 3a.

Indeed, while subtracting the mean of the signal – as performed
by the operator jXj – is enough to center the oscillations of the evo-
lution of the frequency of partials, it is not the case for the evolu-
tion of the amplitude of partials. As studied by Raspaud (2007), the
(a) Time domain

(b) Frequency domain

Fig. 3. (a) Amplitude of a partial, its estimated polynomial envelope (dotted line)
and (b) the corresponding frequency domain representation of the polynomial-
removed amplitude evolution.
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idea behind this polynomial subtraction is that the envelope of a
sound (seen as attack, decay, sustain and release) can be approxi-
mated by a 9th degree polynomial. Then, we define the following
two other AEFs based solely on the oscillating part of the partials
amplitude:

apk ¼ ak � ~PðakÞ ð11Þ
Apk ¼ jXjN�1

1 ðapkÞ ð12Þ
Apck ¼ jXjnc

1 ðapkÞ ð13Þ

where ~PðxÞ is the envelope polynomial computed from signal x
using a simple least-squares method. As an approximation of the
polynomial removal, one can consider removing the DC component
in the following way:

Adk ¼ jXjN�1
nd
ðapkÞ ð14Þ

Adck ¼ jXjnc
nd
ðapkÞ ð15Þ

where nd is chosen so that periodicities like the tremolo are pre-
served, see Fig. 3b.

3.3. Magnitude Evolution Features

As stated previously, the sinusoidal model provides a meaning-
ful representation for analyzing the temporal dynamics. However,
the estimation of this model from complex signals can hardly be
done in a fully automatic fashion. As an approximation of the AEFs,
we also consider Magnitude Evolution Features (MEFs) that rely on
the spectrogram only. Taking into account the evolution of the
magnitude in the spectrogram is a non parametric way to account
for the temporal dynamics, i.e. without relying on the sinusoidal
model.

Let us consider Xðk;nÞ the spectral bin k of the frame n of the
spectrogram of the signal x. For a given spectral bin of frequency
index k, the MEFs correspond to the magnitude evolution of a fre-
quency line in the spectrogram:

mk ¼ Xðk;nÞ ð16Þ

where n varies within a given horizon of observation. The other
MEFs Mk, Mck, Mpk, Mpck, Mdk and Mdck are computed as described
in the previous section.

4. Acoustical units similarity

We evaluate the proposed features by their ability to express
the similarity between acoustical units. We define an acoustical
unit to be a musical tone or a sequence of musical tones performed
by a unique musical instrument, within a limited time interval. The
task is then to decide whether two acoustical units have been
played by the same musical instrument or not. This decision is
made according to the information given by the features computed
from the acoustical unit. This evaluation task is chosen for two
reasons.

From a practical application point of view, there is an increase
of interest towards recommendation systems that are not based
on an ontology such as genre as used by Tzanetakis and Cook
(2002) or instrument type considered by Martin and Kim (1998).
Alternatively, one can consider a recommendation system that
states ‘‘show me tunes that are comparable to the ones I like”. In
this case, one needs to define the similarity between musical audio
signals. For the definition of such a similarity, the timbre is an
interesting dimension.

From a scientific point of view, this allows us to propose a much
simpler evaluation framework than the one required by classifica-
tion-based systems (such as the previously cited genre and instru-
oral dynamics within musical signals for acoustical unit similarity. Pattern
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ment type). Indeed, the latter rely on training complex classifiers
which may have constraints over the statistical properties of the
features and can consequently introduce a bias over the evaluated
features.

4.1. Features integration

One issue with the proposed scheme is that the dimensionality
of the problem is the square of the number of elements to be
sorted. Consequently, we are interested in efficiently describing
longer acoustical units than those that are usually considered in
frame-based classification systems. The experiments reported in
this paper will demonstrate the usefulness of the TAFs in such a
case.

When considering isolated notes, the acoustical unit duration is
adapted to the actual duration of the note. When considering solos
excerpt, the audio signal is arbitrarily segmented at a regular sam-
pling rate. Two fixed integration sizes are considered in the exper-
iments. The first one, termed ‘‘texture”, considers 20 frames, each
of 22 ms. Consequently, the texture duration is 440 ms. The second
one, termed ‘‘event”, is 1 s long. For the largest database considered
in this article, the number of acoustical units is 0.2 million, leading
to a number of similarities that have to be computed to about
50 billions which took about a month to compute on a state-of-
the-art computer.

Within an acoustical unit, the features are extracted from a
spectrogram computed in the following way:

1. The input signal is first filtered with a DC block filter and a pre-
emphasis filter.

2. The spectra are next computed with a frame size of 40 ms and a
hop size of 10 ms.

Concerning the FAFs features, the MFCCs are computed thanks to
the Matlab implementation of Ellis (2005) within each analysis frame
with 40 Mel sub-bands and only the first 12 coefficients after the
zeroth coefficient are considered. The DMFCCs are computed using
a 5-point derivation filter. Finally, those coefficients are summed over
the integration interval, as proposed in (Joder et al., 2009).

The TAFs features are extracted within each acoustical unit in
the following way:

1. The spectrogram is first integrated over time and split in 20 Mel
sub-bands, leading to the selection of a maximum of 20 sinusoi-
dal components.

2. Within each sub-band, the bin with maximal amplitude is
selected, indicating the potential frequency location of a partial.

The magnitude evolution within each of those bins is consid-
ered for the computation of the MEFs. In order to extract the FEFs
and the AEFs, partials are tracked in a frequency interval around
each of the maximal amplitude bins using a standard partial track-
er proposed by Ellis (2003). The width of this interval is set to
� 220 Hz. The partial with maximal cumulative amplitude within
each frequency interval is then selected to compute the TAFs.

The TAFs are associated to 20 partials belonging to an acoustical
unit. However, in this task, we need to define the similarity be-
tween acoustical units. Consequently, the TAFs describing each
partial of a given acoustical unit are integrated by summation:

f ðnÞ ¼ 1
N

XN

k¼1

~f kðnÞ ð17Þ

where ~f kðnÞ is the resampling version of f kðnÞ of length 20. The fea-
tures a and m are defined similarly. An equivalent operation is car-
ried out for spectral-based features:
Please cite this article in press as: Lagrange, M., et al. Explicit modeling of temp
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FðnÞ ¼ 1
N

XN

k¼1

log10ðFkðnÞÞ ð18Þ

The other spectral-based features are computed similarly with the
following parametrization: N ¼ 64, nc ¼ 16 and nd ¼ 2.

4.2. Similarity metrics

The features described above are next considered to build sim-
ilarity metrics after being normalized to have zero mean and unity
variance. In order to demonstrate the ability of the proposed TAFs
features to complement a FAF feature like the MFCCs, the combina-
tion with the MFCCs is also considered. For that purpose, the radial
basis function is considered:

sðUiðkÞ;UjðlÞÞ ¼ e�kViðkÞ�VjðlÞk ð19Þ

where kxk is the Euclidean norm of x and ViðkÞ is a feature vector or
a stacking of feature vectors describing the acoustical unit UiðkÞ
played by the instrument i. In order to account for the discrepancy
between feature dimensionality, the features are divided by the
square root of their dimensions prior to stacking.
5. Experiments

In this section, the similarity metrics described in the previous
section are considered to evaluate the potential of the proposed
features. The evaluation metrics are first introduced and two eval-
uation scenarios are studied. The first one considers databases of
isolated notes and the second one continuous musical solos
excerpts.

5.1. Evaluation metrics

In order to evaluate a set of features describing an acoustical
unit, the value of the similarity metric is first computed for every
pair of acoustical units. To compute performance indicators, we
propose to consider a classifying task which corresponds to ‘‘Are
those acoustical units played by the same instrument?”. As a con-
sequence, at a given classifying threshold Tc , we can define the
False-Alarm Rate (FAR) as:

FAR ¼ #fsðUiðkÞ;UjðlÞÞ > Tcg
#U � ð#U � 1Þ for i – j ð20Þ

where #X denotes the cardinal of X and U is the overall set of acous-
tical units in the evaluation database. Similarly, the Miss Detection
Rate (MDR) is defined as:

MDR ¼ #fsðUiðkÞ;UiðlÞÞ < TcgP
i#Ui:ð#Ui � 1Þ ð21Þ

The Detection Error Trade-Off (DET) curve proposed by Martin et al.
(1997) is used to visualize the performance of the classifier corre-
sponding to the evaluated feature or combination of features at a
varying classification threshold, see Fig. 4. In order to summarize
the behavior of the classifier depending on the chosen threshold,
we consider three criteria. The first one called Equal Error Rate
(EER) corresponds to the crossing of the DET curve with a line that
starts from ð0;0Þ coordinates with unity slope. The second one
called Minimum Cost Point (MCP) indicates the performance of the
classifier for an optimal error trade-off between a balanced weight-
ing of the MDR and FAR as described in (Martin et al., 1997). The
MCP for each feature is plotted in Fig. 4 with a small circle. The last
criterion, called AREA, computes the area under the curve and indi-
cates the general behavior of the classifier. For all of those criteria, a
lower value indicates a better performance.
oral dynamics within musical signals for acoustical unit similarity. Pattern
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5.2. Isolated musical tones

We consider in a first experiment, two databases of isolated
tones, the IOWA database and the RWC database proposed by Goto
et al. (2003). The IOWA database features 3637 tones of mean
duration 4.3 s and standard deviation 7.5 s from 15 musical instru-
ments for a total of 4.3 h. The RWC database features 6138 tones of
mean duration 2.6 s and standard deviation 0.8 s for a total of 4.7 h.

Considering isolated notes is helpful to study the performance
of the evaluated features in a controlled environment. Indeed, in
Table 1
Results for single tones and single features. Best results for each feature group are display

Criterion Database f F Fc a

EER IOWA 0.699 0.6 0.621 0.
RWC 0.72 0.687 0.69 0.

AREA IOWA 0.491 0.401 0.418 0.
RWC 0.512 0.48 0.482 0.

MCP IOWA 0.928 0.61 0.629 0.
RWC 0.928 0.687 0.691 0.

Criterion Database MFCCs DMFCCs m M

EER IOWA 0.56 0.62 0.71 0.56
RWC 0.58 0.65 0.73 0.69

AREA IOWA 0.34 0.41 0.49 0.35
RWC 0.37 0.44 0.52 0.48

MCP IOWA 0.61 0.70 0.92 0.56
RWC 0.67 0.69 0.96 0.80

Please cite this article in press as: Lagrange, M., et al. Explicit modeling of temp
Recognition Lett. (2009), doi:10.1016/j.patrec.2009.09.008
this case, the observation interval is at an optimal location and
duration and no frequency resolution issues may arise except for
very low pitched tones, making the tracking of partials relatively
non-ambiguous.

We first evaluate the features solely. The results are shown in
Table 1. For each of the TAFs, the spectral features perform best.
For the amplitude and magnitude ones, removing the polynomial
before the spectral transformation is helpful. Even though there
should be no tracking issues, the magnitude features clearly dom-
inate the other TAFs, leading to comparable results with the
MFCCs. It should be noticed that there is a large correlation be-
tween the different evaluation criteria (EER, AREA, and MCP) dem-
onstrating a good behavior of the evaluated classifiers.

To fully understand the behavior of the TAFs when considered
jointly with the MFCCs, we plot in Fig. 4 the DET curves for several
features computed over the IOWA database. In Fig. 4a, the DET
curves of the MFCCs, DMFCCs are considered solely or jointly.
The curve of the MFCCs shows a typical behavior with a linear
slope on the high MDR range. The DET curve of the DMFCCs shows
similar evolution properties with worst performance. As they are
highly correlated, considering them jointly leads to an averaging
of their performance.

On the contrary, the DET curve of the Md feature shows a differ-
ent behavior, almost symmetrical towards the unity slope. Consid-
ering them jointly leads to a very balanced classifier with good
properties. Empirical experiments show that a better joint feature
can be obtained by weighting the features prior to similarity
calculation.

Considering the proposed TAFs jointly with the MFCCs leads to
an improvement with respect to the performance of the TAFs.
However, only the use of the MEFs leads to an improvement with
respect to the sole use of the MFCCs, see Table 2.
5.3. Solo performance music

We consider in a second experiment a database of solo record-
ings used in several musical instruments classification experi-
ments done by Essid et al. (2004) and Joder et al. (2009). The
SOLOS database features 505 solos recordings where each one is
of mean duration 110 s and standard deviation 162 s performed
by 20 different instruments for a total of 15.56 h.

As the tracking is more difficult when considering less con-
strained sounds, the performance of the FEFs and the AEFs do not
improve compared to the previous experiment. Consequently, only
the spectral MEF are shown in Table 2. Also, the use of the DC or
polynomial removal does not lead to a significant difference. The
loss of relevance of the polynomial removal may be due to the fact
ed in bold characters.

A Ac ap Ap Apc

659 0.655 0.656 0.69 0.639 0.618
696 0.68 0.677 0.726 0.677 0.675

458 0.451 0.45 0.484 0.434 0.411
491 0.474 0.47 0.518 0.472 0.465

66 0.656 0.656 0.701 0.645 0.619
723 0.684 0.677 0.977 0.679 0.675

Mc mp Mp Mpc Md Mdc

0.62 0.71 0.54 0.61 0.56 0.63
0.69 0.72 0.68 0.69 0.69 0.7

0.41 0.49 0.34 0.40 0.36 0.42
0.49 0.51 0.48 0.48 0.48 0.49

0.64 0.87 0.54 0.61 0.56 0.65
0.79 0.96 0.75 0.75 0.80 0.77
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Table 2
Results for single tones for joint features. Best results for each feature group are displayed in bold characters.

Criterion Database MFCCsþ

f F Fc a A Ac ap Ap Apc

EER IOWA 0.609 0.567 0.568 0.604 0.586 0.586 0.613 0.579 0.56
RWC 0.649 0.613 0.619 0.634 0.607 0.606 0.637 0.608 0.609

AREA IOWA 0.398 0.357 0.36 0.392 0.377 0.376 0.4 0.369 0.349
RWC 0.441 0.409 0.413 0.426 0.404 0.401 0.43 0.406 0.401

MCP IOWA 0.645 0.592 0.578 0.614 0.611 0.614 0.695 0.602 0.577
RWC 0.726 0.627 0.644 0.651 0.632 0.626 0.75 0.63 0.63

MFCCsþ

DMFCCs m M Mc mp Mp Mpc Md Mdc

EER IOWA 0.578 0.608 0.526 0.551 0.617 0.522 0.558 0.526 0.557
RWC 0.621 0.651 0.6 0.613 0.644 0.604 0.622 0.601 0.613

AREA IOWA 0.364 0.395 0.32 0.345 0.404 0.316 0.346 0.321 0.35
RWC 0.411 0.443 0.398 0.41 0.435 0.399 0.414 0.398 0.41

MCP IOWA 0.629 0.663 0.534 0.556 0.677 0.53 0.573 0.534 0.565
RWC 0.696 0.73 0.625 0.639 0.73 0.636 0.668 0.624 0.637
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Fig. 5. DET curves for selected features computed over the SOLOS database with a texture observation interval.

Table 3
Results for solo recordings. Best results are displayed in bold characters.

Criterion Integration type MFCCs DMFCCs M Mc MFCCsþ

DMFCCs M Mc

EER Texture 0.523 0.661 0.552 0.584 0.579 0.519 0.526
Event 0.538 0.665 0.615 0.623 0.59 0.56 0.57

AREA Texture 0.314 0.456 0.354 0.378 0.357 0.297 0.304
Event 0.317 0.45 0.408 0.425 0.363 0.334 0.341

MCP Texture 0.509 0.658 0.552 0.579 0.557 0.501 0.509
Event 0.515 0.651 0.61 0.622 0.563 0.536 0.544
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that the boundaries of the acoustical units considered in this
experiment are arbitrary set. As shown in Fig. 5, the properties of
the different features discussed in the previous section are rather
similar when considering real-world sounds. The use of the dimen-
sionality reduction over the M feature leads to a slight decrease in
the performance. The longer duration of the acoustical unit leads to
a general performance decrease as shown in Table 3. This decrease
is small concerning the MFCCs. On contrary, it is significant for the
MEFs. This demonstrates that the length of the observation interval
is crucial for capturing meaningful periodicities in the variations of
the spectral parameters. If the interval is too short, no modulations
Please cite this article in press as: Lagrange, M., et al. Explicit modeling of temp
Recognition Lett. (2009), doi:10.1016/j.patrec.2009.09.008
can be captured. On contrary, if the interval is too large, the ob-
served modulations corresponds to the transition between several
notes, which is typical from the score played by the instrumentalist
and not from the actual timbre of the instrument.
6. Conclusion

We have proposed in this paper several approaches for extract-
ing the evolution of the spectral parameters over time and for
modeling them in a meaningful way. We show that the spectral
oral dynamics within musical signals for acoustical unit similarity. Pattern
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description of the evolution of the parameters of the partials is rel-
evant as well as the removal of the polynomial part of the ampli-
tude evolution when considering isolated notes databases. When
facing less constrained scenarios, such as the solos database, the
removal of the polynomial part does not improve the results
whereas the spectral description is still in favor, leading to a rele-
vant feature set when combined with the MFCCs.

As a conclusion, the proposed features are found to be more
adapted to the tasks considered in this paper than the standard
feature-level temporal dynamic features usually considered, the
DMFCCs. The results obtained by the FEFs and AEFs may be limited
by the partial tracker considered in the experiments. The use of
more advanced algorithm like those introduced by Lagrange et al.
(2007) and by Robel (2006) may reduce the gap between model-
based features (FEF and AEF) and transform-based features (MEF).
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Appendix A. Notation glossary

� DMFCCs: D Mel-Frequency Cepstral Coefficients.
� AEF: Amplitude Evolution Feature.
� AREA: Area under DET curve.
� DET: Detection Error Trade-Off.
� EER: Equal Error Rate.
� FAF: Frequency-Axis Feature.
� FAR: False-Alarm Rate.
� FEF: Frequency Evolution Feature.
� MCP: Minimum Cost Point.
� MDR: Miss Detection Rate.
� MEF: Magnitude Evolution Feature.
� MFCCs: Mel-Frequency Cepstral Coefficients.
� TAF: Time-Axis Feature.

Appendix B. Features glossary

The parameters amplitude, frequency and magnitude are
implicitly of the evolution of the given parameter of a given acous-
tical unit through time.

� f: Time domain feature encoding the frequency of the partials,
see Eq. (17).

� a: Time domain feature encoding the amplitude of the partials.
� ap: Time domain feature encoding the polynom-removed

amplitude of the partials.
� m: Time domain feature encoding the magnitude of some bins

of the Fourier spectrum.
� F: Frequency domain feature encoding the frequency of the par-

tials of a given acoustical unit through time, see Eq. (18).
� A: Frequency domain feature encoding the amplitude of the

partials.
� Ac: Frequency domain feature encoding the amplitude of the

partials where only the lowest frequency bins are considered.
� Ap: Frequency domain feature encoding the polynom-removed

amplitude of the partials.
� Apc: Combination of the two previous features.
Please cite this article in press as: Lagrange, M., et al. Explicit modeling of temp
Recognition Lett. (2009), doi:10.1016/j.patrec.2009.09.008
� M: Frequency domain feature encoding the magnitude of some
bins of the Fourier spectrum.

� Mc: Frequency domain feature encoding the magnitude of some
bins of the Fourier spectrum. Only the lowest frequencies are
considered.

� Mp: Frequency domain feature encoding the polynom-removed
magnitude of some bins of the Fourier spectrum.

� Mpc: Combination of the two previous features.
� Md: Frequency domain feature encoding the magnitude of some

bins of the Fourier spectrum. The first spectral bins are
discarded.

� Mdc: Combination of the features Md and Mc.
References

Aucouturier, J.-J., Pachet, F., 2007. The influence of polyphony on the dynamical
modelling of musical timbre. Pattern Recognition Lett. 28 (5), 654–661.

Cuturi, M., Vert, J.-P., Birkenes, O., Matsui, T., 2007. A kernel for time series based on
global alignments. In: Proc. IEEE ICASSP, vol. 2. pp. 413–416.

Davis, S., Mermelstein, P., 1980. Comparison of parametric representations for
monosyllabic word recognition in continuously spoken sentences. IEEE Trans.
Acoust. Speech Signal Process. 28, 357–366.

Ellis, D.P.W., 2003. Sinewave and Sinusoid + Noise Analysis/Synthesis in Matlab.
<http://www.ee.columbia.edu/dpwe/resources/matlab/sinemodel/>, online web
resource.

Ellis, D.P.W., 2005. PLP and RASTA (and MFCC, and inversion) in Matlab. <http://
www.ee.columbia.edu/dpwe/resources/matlab/rastamat/>, online web resource.

Eronen, A., 2003. Musical instrument recognition using ICA-based transform of
features and discriminatively trained HMMs. In: 7th Internat. Sumposium on
Signal Processing and its Applications.

Essid, S., Richard, G., David, B., 2004. Musical instrument recognition based on class
pairwise feature selection. In: Proc. ISMIR. <http://ismir2004.ismir.net/
proceedings/p102-page-560-paper194.pdf>.

Fant, G., 1960. Acoustic Theory of Speech Production. Mouton, The Hague.
Goto, M., Hashiguchi, H., Nishimura, T., Oka, R., 2003. RWC music database: Music

genre database and musical instrument sound database. In: Proc. 4th Internat.
Conf. on Music Information Retrieval (ISMIR 2003).

Grey, J.M., Moorer, J.A., 1977. Perceptual evaluations of synthesized musical
instrument tones. J. Acoust. Soc. Am. 62 (3), 454–462.

Joder, C., Essid, S., Richard, G., 2009. Temporal integration for audio classification
with application to musical instrument classification. IEEE Trans. Acoust.
Speech Signal Process. 17 (1), 174–186.

Kitahara, T., Goto, M., Komatani, K., Ogata, T., Okuno, H.G., 2006. Musical instrument
recognizer ‘‘Instrogram” and its application to music retrieval based on
instrumentation similarity. In: Proc. IEEE Internat. Symposium on Multimedia,
ISBN 0-7695-2746-9. <http://dx.doi.org/10.1109/ISM.2006.113>.

Lagrange, M., 2004. Sinusoidal Modeling of Polyphonic Sounds. Ph.D. Thesis,
University of Bordeaux 1, LaBRI (in French).

Lagrange, M., 2005. A new dissimilarity metric for the clustering of partials using
the common variation cue. In: Proc. ICMC, organization ICMA, Barcelona, Spain.

Lagrange, M., Marchand, S., Rault, J., 2007. Enhancing the tracking of partials for the
sinusoidal modeling of polyphonic sounds. IEEE Trans. Acoust. Speech Signal
Process. 28, 357–366.

Marchand, S., Raspaud, M., 2004. Enhanced time-stretching using order-2 sinusoidal
modeling. In: Proc. DAFx, Federico II University of Naple, Italy. pp. 76–82.

Martin, K.D., Kim, Y.E., 1998. Musical instrument identification: A pattern-
recognition approach. In: Proc. 136th Meeting of the Acoustical Society of
America.

Martin, A., Doddington, G., Kamm, T., Ordowski, M., Przybocki, M., 1997. The DET
curve in assessment of detection task performance. In: Proc. EuroSpeech.

McAdams, S., 1989. Segregation of concurrrents sounds: Effects of frequency
modulation coherence. JAES 86 (6), 2148–2159.

McAdams, S., Bigand, E., 1993. Thinking in Sound. Oxford Science Publications
(Chapter 2.5).

McAulay, R.J., Quatieri, T.F., 1986. Speech analysis/synthesis based on a sinusoidal
representation. IEEE Trans. Acoust. Speech Signal Process. 34 (4), 744–754.

Mellody, M., Wakefield, G., 2000. The time–frequency characteristic of violin
vibrato: Modal distribution analysis and synthesis. J. Acoust. Soc. Am. 107, 598–
611.

Meng, A., Ahrendt, P., Larsen, J., Hansen, L., 2007. Temporal feature integration for
music genre classification. IEEE Trans. Acoust. Speech Signal Process. 15 (5),
1654–1664.

Raspaud, M., 2007. Hierarchical Spectral Models for Sound and Applications. Ph.D.
Thesis, University of Bordeaux 1, 2007.

Raspaud, M., Marchand, S., Girin, L., 2005. A generalized polynomial and sinusoidal
model for partial tracking and time stretching. In: Proc. DAFx, Universidad
Politecnica de Madrid. ISBN: 84-7402-318-1. pp. 24–29.

Robel, A., 2006. Adaptive additive modeling with continuous parameter trajectories.
IEEE Trans. Acoust. Speech Signal Process. 14 (4), 1440–1453.
oral dynamics within musical signals for acoustical unit similarity. Pattern

http://www.ee.columbia.edu/dpwe/resources/matlab/sinemodel/
http://www.ee.columbia.edu/dpwe/resources/matlab/rastamat/
http://www.ee.columbia.edu/dpwe/resources/matlab/rastamat/
http://ismir2004.ismir.net/proceedings/p102-page-560-paper194.pdf
http://ismir2004.ismir.net/proceedings/p102-page-560-paper194.pdf
http://dx.doi.org/10.1109/ISM.2006.113
http://dx.doi.org/10.1016/j.patrec.2009.09.008


M. Lagrange et al. / Pattern Recognition Letters xxx (2009) xxx–xxx 9

ARTICLE IN PRESS
Scaringella, N., Zoia, G., 2005. On the modelling of time information for automatic
genre recognition systems in audio signals. In: Proc. 6th Internat. Conf. on Music
Information Retrieval (ISMIR).

Serra, X., Smith, J.O., 1990. Spectral modeling synthesis: A sound analysis/synthesis
system based on a deterministic plus stochastic decomposition. CMJ 14 (4), 12–
24.
Please cite this article in press as: Lagrange, M., et al. Explicit modeling of temp
Recognition Lett. (2009), doi:10.1016/j.patrec.2009.09.008
Shimodaira, H., Noma, K., Nakai, M., Sagayama, S., 2002. Dynamic time-alignment
kernel in support vector machine. Advances in Neural Information Processing
Systems. MIT Press, Cambridge, MA <citeseer.ist.psu.edu/shimodaira01
dynamic.html>.

Tzanetakis, G., Cook, P., 2002. Musical genre classification of audio signals. IEEE
Trans. Acoust. Speech Signal Process. 10 (5), 293–302.
oral dynamics within musical signals for acoustical unit similarity. Pattern

http://citeseer.ist.psu.edu/shimodaira01dynamic.html
http://citeseer.ist.psu.edu/shimodaira01dynamic.html
http://dx.doi.org/10.1016/j.patrec.2009.09.008

	Explicit modeling of temporal dynamics within musical signals for acoustical unit similarity
	Introduction
	Previous work
	The common variation cue
	Integration of Frequency-Axis Features

	Proposed features
	Frequency Evolution Features
	Amplitude Evolution Features
	Magnitude Evolution Features

	Acoustical units similarity
	Features integration
	Similarity metrics

	Experiments
	Evaluation metrics
	Isolated musical tones
	Solo performance music

	Conclusion
	Acknowledgments
	Notation glossary
	Features glossary
	References


