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ABSTRACT

This paper introduces a new algorithm for tracking the major
subspace of the correlation matrix associated with time series. This
algorithm greatly outperforms many well-known subspace track-
ers in terms of subspace estimation. Moreover, it guarantees the
orthonormality of the subspace weighting matrix at each iteration,
and reaches the lowest complexity found in the literature.

1. INTRODUCTION

Subspace tracking has been widely investigated in the fields of
adaptive filtering, source localization or parameter estimation. Re-
cently, a new subspace tracker, referred to as the Subspace Pro-
jection (SP) algorithm was proposed by C.E. Davila [1]. We ob-
served in [2] that this algorithm greatly outperforms many well-
known subspace trackers in terms of subspace estimation, such as
Karasalo’s algorithm [3], PAST [4], Loraf [5], FST [6], NIC [7],
and OPAST [8]. As in [4] and [7], the estimation of the signal sub-
space is viewed as an optimization problem. However, instead of
introducing approximations, the SP algorithm computes the signal
subspace as the exact solution of this problem over a subspace of
limited dimension.

Unfortunately, this remarkable subspace tracker is only suit-
able for time series data analysis, and has a high computational
cost. Indeed, the global complexity of the SP algorithm isO(nr2)
(wheren is the dimension of the observed data vectors, andr is
the dimension of the signal subspace), whereas a number of exist-
ing subspace trackers only requireO(nr) operations per time step
(this is the case of PAST, FST, NIC and OPAST). Nevertheless,
we noticed that this second drawback can be circumvented, and
we propose in this paper a new algorithm, referred to as YAST,
which computes the same signal subspace as the SP algorithm, but
only requiresO(nr) operations.

The paper is organized as follows. In section 2, the basic prin-
ciple of the YAST algorithm is presented. Then a fast implemen-
tation of YAST is proposed in section 3. The performance of this
subspace tracker is illustrated in section 4. Finally, the main con-
clusions of this paper are summarized in section 5.

2. PRINCIPLE

Let {x(t)}t∈Z be a sequence ofn-dimensional data vectors. We
are interested in tracking the major subspace spanned by its cor-
relation matrixCxx(t). This matrix can be recursively updated
according to

Cxx(t) = β Cxx(t − 1) + x(t) x(t)H (1)

where0 < β < 1 is the forgetting factor.

The YAST algorithm relies on the following principle: an ×
r orthonormal matrixW (t) spans ther-dimensional major sub-
space ofCxx(t) if and only if it maximizes the criterion

J (W (t)) = trace
�
W (t)HCxx(t)W (t)

�
.

In particular, the maximum of this criterion is equal to the sum
of the r highest eigenvalues ofCxx(t). However, implementing
this maximization over all orthonormal matrices is computation-
ally demanding (the complexity isO(n2r)), and does not lead to
a simple recursion betweenW (t) andW (t − 1).

In order to reduce the computational cost, the idea introduced
in [1] consists in limiting this search to the range space ofW (t−1)
plus one or two additional search directions. In other words, the
r-dimensional range space ofW (t) is to be found as a subspace
of the(r+p)-dimensional space spanned by then×(r+p) matrix

V (t) = [W (t − 1), v(t)] (2)

wherev(t) containsp = 1 or 2 columns. In practice, it is proposed
in [1] to chosev(t) = x(t) or v(t) = [x(t), Cxx(t − 1) x(t)].

Let W (t) be an × (r + p) orthonormal matrix spanning the
range space ofV (t). ThenW (t) will be written in the form

W (t) = W (t) U (t). (3)

whereU (t) is a(r + p) × r orthonormal matrix. In this case

J (W (t)) = trace
�
U (t)H

Cyy(t)U (t)
�

(4)

whereCyy(t) is the(r + p) × (r + p) matrix

Cyy(t) = W (t)H
Cxx(t) W (t). (5)

Thus the exhaustive search among alln×r orthonormal matri-
cesW (t) is replaced by the maximization of (4) over all(r+p)×p
orthonormal matricesU (t). The result of this maximization is
well-known:U (t) must span ther-dimensional major subspace of
Cyy(t). Thus the subspace weighting matrixW (t) can be tracked
by computing

• an orthonormal basisW (t) of the range space ofV (t),

• the matrixCyy(t) = W (t)H Cxx(t) W (t),

• a (r + p) × r orthonormal matrixU (t) spanning ther-
dimensional major subspace ofCyy(t)

• the matrixW (t) = W (t) U (t).

In particular,U (t) can be obtained via the eigenvalue decom-
position ofCyy(t). As a consequence, the columns of the result-
ing matrixW (t) defined in equation (3) correspond to ther major
eigenvectors ofCxx(t). However, this calculation would lead to
an overall complexity ofO(nr2), like in [1].



In order to reduce the global complexity toO(nr), we choose
a different strategy which avoids the eigenvalue decomposition. As
mentioned above,U (t) must be an orthonormal matrix spanning
ther-dimensional major subspace ofCyy(t). ThereforeU (t) can
be obtained as an orthogonal complement of thep-dimensional
major subspace ofZ(t) = Cyy(t)−1. Thus the YAST algorithm
computesZ(t) and itsp-dimensional major subspace, and com-
putesU (t) as an orthogonal complement of this subspace.

As shown in section 3, this algorithm can be efficiently im-
plemented by updating the inverseZ(t) of ther × r compressed
correlation matrixCyy(t), defined as

Cyy(t) = W (t)H
Cxx(t)W (t). (6)

3. FAST IMPLEMENTATION OF YAST

Below, a fast implementation of YAST is proposed, whose global
cost is only(3p + 1)nr flops1. It can be decomposed into four
steps: computation ofW (t) (section 3.1), computation ofZ(t)
(section 3.2), update ofW (t) (section 3.3), update ofZ(t) (sec-
tion 3.4). This implementation is summarized in section 3.5.

3.1. Computation ofW (t)

Define ther × p matrixy(t) = W (t − 1)Hv(t) and let

e(t) = v(t) − W (t − 1) y(t). (7)

Then×p matrixe(t) is orthogonal to the range space ofW (t−1).
Let σ(t) be a square root of thep × p matrixe(t)He(t):

σ(t) =
�
e(t)H

e(t)
� 1

2
=
�
v(t)H

v(t) − y(t)H
y(t)

� 1
2

. (8)

Below, we suppose thatσ(t) is non-singular. Then the matrix

W (t) =
�
W (t − 1), e(t) σ(t)−1

�
(9)

is orthonormal. In particular,V (t) can be written in the form

V (t) = W (t) R(t) (10)

whereR(t) is the(r + p) × (r + p) non-singular matrix

R(t) =

"
Ir y(t)

0p×r σ(t)

#
. (11)

3.2. Computation ofZ(t)

As mentioned in section 2, the matrixZ(t) is defined as the inverse
of the (r + p) × (r + p) matrix Cyy(t) defined in equation (5).
Therefore, computingZ(t) consists in computingCyy(t) (sec-
tion 3.2.1), before invertingCyy(t) (section 3.2.2).

3.2.1. Computation ofCyy(t)

Substituting equation (10) into equation (5) yields

Cyy(t) = R(t)−H
C

′

yy(t) R(t)−1 (12)

whereC ′

yy(t) is the(r + p) × (r + p) matrix

C
′

yy(t) = V (t)H
Cxx(t) V (t). (13)

1In this paper, a flop is a multiply / accumulate (MAC) operation.

Then substituting equations (1) and (2) into equation (13) yields

C
′

yy(t) =

24 eCyy(t) y
′′(t)

y
′′(t)H

cyy(t)

35 (14)

where eCyy(t) = β Cyy(t − 1) + y(t) y(t)H (15)

y
′′(t) = β y

′(t) + y(t) α(t) (16)

cyy(t) = β v(t)H
v
′(t) + α(t)H

α(t) (17)

y(t) = W (t − 1)H
x(t) (18)

y
′(t) = W (t − 1)H

v
′(t) (19)

α(t) = x(t)H
v(t) (20)

v
′(t) = Cxx(t − 1) v(t). (21)

3.2.2. Inversion ofCyy(t)

The matrixCyy(t) can be obtained fromC ′

yy(t) by means of
equation (12). Thus invertingCyy(t) requires invertingC ′

yy(t).
As shown below, this last operation can be achieved by first invert-
ing ther × r upper left corner ofC ′

yy(t), denotedeCyy(t).

3.2.2.1. Inversion ofeCyy(t)

Suppose thatCyy(t − 1) is non-singular and letZ(t − 1) =
Cyy(t − 1)−1. Let h(t) = Z(t − 1) y(t). By applying lemma 1
to equation (15), it can be shown thateCyy(t) is non-singular if and
only if β + y(t)Hh(t) is non-singular2. In this case, letγ(t) =�
β + y(t)Hh(t)

�−1

. TheneZ(t) , eCyy(t)−1 satisfieseZ(t) =
1

β

�
Z(t − 1) − h(t) γ(t) h(t)H

�
. (22)

3.2.2.2. Inversion ofCyy(t)

Inversing equation (12) yields

Z(t) = R(t) C
′

yy(t)−1
R(t)H (23)

Leth(t) = eZ(t) y′′(t). By applying lemma 2 to equation (14),
it can be shown thatC ′

yy(t) is non-singular if and only ifcyy(t)−

y′′(t)Hh(t) is non-singular3. In this case,

C
′

yy(t)−1 =

24 eZ(t) + h(t) γ(t)h(t)H −h(t)γ(t)

−γ(t)h(t)H
γ(t)

35 (24)

whereγ(t) =
�
cyy(t) − y′′(t)Hh(t)

�−1

.

Substituting equations (11) and (24) into equation (23) yields

Z(t) =

24 eZ ′

(t) −g(t)

−g(t)H
γ
′(t)

35 (25)

2Lemma 1 can be found in the appendix. It must be applied withC =
Cyy(t − 1), A = y(t), B = y(t)H , andD = 1.

3Lemma 2 can be found in the appendix. It must be applied withC =eCyy(t), A = y′′(t), B = y′′(t)H , andD = cyy(t).



where

h
′(t) = h(t) − y(t) (26)eZ ′

(t) = eZ(t) + h
′(t) γ(t) h

′(t)H (27)

g(t) = h
′(t) γ(t) σ(t)H (28)

γ
′(t) = σ(t) γ(t) σ(t)H

. (29)

3.3. Update ofW (t)

Let φ(t) be a(r+p)×p orthonormal matrix whose columns span
the p-dimensional major subspace of the positive definite matrix
Z(t) of dimension(r +p)× (r +p). In particular, there is ap×p

positive definite matrixλ(t) such that

Z(t) φ(t) = φ(t) λ(t). (30)

Let ϕ(t) be ther × p matrix containing ther first rows of
φ(t), andz(t) be thep × p matrix containing itsp last rows:

φ(t)T =
h
ϕ(t)T

, z(t)T
i
. (31)

Letz(t) = ρ(t) θ(t) be the polar decomposition ofz(t), where
ρ(t) is positive definite andθ(t) is orthonormal. Let4

f (t) = ϕ(t) θ(t)H (32)

f
′(t) = f (t)

�
I + ρ(t)

�
−1

. (33)

Then it can be readily verified that the(r + p) × r matrix

U (t) =

24 Ir − f
′(t) f (t)H

−f (t)H

35 (34)

is orthonormal and satisfiesU (t)Hφ(t) = 0. ThereforeU (t)
is an orthonormal basis of ther-dimensional minor subspace of
Z(t).

Substituting equations (9) and (34) into equation (3) shows a
recursion for the subspace weighting matrix:

W (t) = W (t − 1) − e
′(t) f (t)H (35)

wheree′(t) = e(t) σ(t)−1 + W (t − 1)f ′(t).
Finally, substituting equation (7) into this last definition yields

e
′(t) = v(t) σ(t)−1 − W (t − 1)y′′′(t) (36)

wherey′′′(t) = y(t) σ(t)−1 − f ′(t).

3.4. Update ofZ(t)

The auxiliary matrixZ(t) can also be efficiently updated. In-
deed, substituting equations (3) and (5) into equation (6) yields
Cyy(t) = U (t)HCyy(t)U (t). As the orthonormal matrixU (t)
spans an invariant subspace ofCyy(t), this last equation yields

Z(t) = U (t)H
Z(t)U (t). (37)

Substituting equations (33), (32), and (31) into (34) shows that

4Sinceρ(t) is positive definite, thep×p matrixI+ρ(t) is also positive
definite. In particular,I + ρ(t) is non-singular.

U (t) =

"
Ir

−f
′(t)H

#
− φ(t) θ(t)H

f
′(t)H

. (38)

Thus substituting equations (38), (25), (30) into (37) yields

Z(t) = eZ ′

(t) + g
′(t) f

′(t)H + f
′(t) g(t)H (39)

whereg′(t) = g(t) + f ′(t)
�
γ′(t) − θ(t)λ(t)θ(t)H

�
.

Table 1. Pseudo-code of the YAST algorithm
eq.: flops:

y(t) = W (t − 1)Hx(t) nr

x′(t) = Cxx(t − 1) x(t) 9n

y′(t) = W (t − 1)Hx′(t) nr
switchp {

case 1:v(t) = x(t), v′(t) = x′(t),
y(t) = y(t), y′(t) = y′(t).

case 2:x′′(t) = Cxx(t − 1)2 x(t), 32n

y′′(t) = W (t − 1)Hx′′(t), nr

v(t) =
�
x(t), x′(t)

�
, v′(t) =

�
x′(t), x′′(t)

�
,

y(t) =
�
y(t), y′(t)

�
, y′(t) =

�
y′(t), y′′(t)

�
.}

σ(t) =
�

v(t)Hv(t) − y(t)Hy(t)
� 1

2 (8) p2n

h(t) = Z(t − 1) y(t) r2

γ(t) =
�

β + y(t)Hh(t)
�
−1

reZ(t) = 1
β

�
Z(t − 1) − h(t) γ(t) h(t)H

�
(22) r2

α(t) = x(t)Hv(t) (20) pn

y′′(t) = βy′(t) + y(t) α(t) (16) pr

cyy(t) = βv(t)Hv′(t) + α(t)Hα(t) (17) p2n

h(t) = eZ(t) y′′(t) pr2

γ(t) =
�

cyy(t) − y′′(t)Hh(t)
�
−1

p2r

h′(t) = h(t) − y(t) (26)eZ′

(t) = eZ(t) + h′(t) γ(t) h′(t)H (27) pr2

g(t) = h′(t) γ(t) σ(t)H (28) p2r

γ′(t) = σ(t) γ(t) σ(t)H (29) p3

Z(t) =
heZ′

(t),−g(t);−g(t)H , γ′(t)
i

(25)�
φ(t), λ(t)

�
= eigs (Z(t), p) (30) O(pr2)h

ϕ(t)T , z(t)T
i

= φ(t)T (31)�
ρ(t), θ(t)

�
= polar (z(t)) O(p3)

f(t) = ϕ(t) θ(t)H (32) p2r

f ′(t) = f(t)
�

I + ρ(t)
�
−1

(33) p2r

y′′′(t) = y(t) σ(t)−1
− f ′(t) p2r

e′(t) = v(t)σ(t)−1
− W (t − 1)y′′′(t) (36) pnr

W (t) = W (t − 1) − e′(t) f(t)H (35) pnr

g′(t) = g(t) + f ′(t)
�

γ′(t) − θ(t)λ(t)θ(t)H
�

p2r

Z(t) = eZ′

(t) + g′(t) f ′(t)H + f ′(t) g(t)H (39) 2pr2

Z(t) =
Z(t)+Z(t)H

2 r2

Total: (3p + 1)nr + O(n + r2)

3.5. Implementation

The complete pseudo-code of YAST is presented in table 15. Its
global cost is4nr flops in the casep = 1, which is lower or equal
to that of FST, NIC and OPAST , and7nr in the casep = 2, which
remains one order of magnitude lower than that of Karasalo’s al-
gorithm, Loraf and SP. The computation of the vectorsx′(t) =
Cxx(t − 1) x(t) andx′′(t) = Cxx(t − 1)2x(t) is reduced from
O(n2) to O(n) by means of the technique described in [1], which
exploits the shift invariance property of the correlation matrix.

5We observed that the YAST algorithm is prone to numerical instability
if implemented as proposed above. This is due to a loss of symmetryof the
matrixZ(t). To make YAST stable, the symmetry must be enforced at the
end of each iteration (see table 1).



4. SIMULATION RESULTS

In this section, the performance of the subspace estimation is ana-
lyzed in terms of the maximum principal angle between the true
major subspace of the correlation matrixCxx(t) (obtained via
an exact eigenvalue decomposition), and the estimated major sub-
space of the same correlation matrix (obtained with the subspace
tracker). This error criterion was initially proposed by P. Comon
and G.H. Golub as a measure of the distance between equidimen-
sional subspaces [9]. The test signal is a sum ofr = 4 complex
sinusoidal sources plus a complex white gaussian noise (the SNR
is 5.7 dB). The frequencies of the sinusoids vary according to a
jump scenario originally proposed by P. Strobach [10]: their val-
ues abruptly change at different time instants, between which they
remain constant. Their variations are represented on Figure 1-a.

Figure 1-b shows the maximum principal angle error trajec-
tory obtained with the orthonormal version of PAST, referred to as
OPAST [8], with parametersn = 80 andβ ≈ 0.99. We chose the
OPAST subspace tracker for performance comparison, because we
observed in [2] that none of the other algorithms mentioned in the
introduction outperformed OPAST in terms of subspace estima-
tion. This result is to be compared to that obtained with the YAST
algorithm with the same parameters (figure 1-c) andp = 1. It can
be noticed that YAST converges much faster than OPAST. Finally,
figure 1-d shows the result obtained with YAST in the casep = 2.
The convergence is even faster than in the previous case.
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Fig. 1. Simulation results

5. CONCLUSIONS

In this paper, a new algorithm for subspace tracking was presented,
which is derived from the SP algorithm by C.E. Davila. In partic-
ular, the proof for its convergence can be found in [1]. This al-
gorithm reaches the linear complexityO(nr) and greatly outper-
forms classical subspace trackers of the same complexity. More-
over, it guarantees the orthonormality of the subspace weighting
matrix at each time step. Note that it can be transformed to track
the minor subspace of the correlation matrix6. It can also be trans-
formed to track the major (or minor) subspace of a correlation ma-
trix updated on a truncated window of finite length7.

6In this case, the matrixU(t) must span ther-dimensional minor sub-
space ofCyy(t) (instead ofZ(t)).

7In this case, the column vectorx(t − l) must be appended to the di-
rectional search matrixv(t), wherel is the window length.

6. APPENDIX

The following lemma shows how the inverse of a matrix changes
upon a small-rank adjustment [11, pp. 18-19].

Lemma 1 (Inverse of a small-rank adjustment). Letr ∈ N and
C be a r × r non-singular matrix. Letq ∈ N, A be a r × q

matrix, B be a q × r matrix, andD be a q × q non-singular
matrix. Define ther × r matrix eC = C + A D B. Then eC is
non-singular if and only if theq × q matrix D−1 + B C−1A is

non-singular, and in this caseeC−1

= C−1 − C−1AΓBC−1,
whereΓ =

�
D−1 + B C−1A

�
−1

.

Similarly, the following lemma shows how the inverse of a
matrix changes upon a low-dimensional expansion (the proof is
omitted to not exceed the authorized number of pages).

Lemma 2 (Inverse of a low-dimensional expansion).Letr ∈ N

andC be ar × r non-singular matrix. Letp ∈ N, A be ar × p

matrix,B be ap× r matrix, andD be ap× p matrix. Define the

(r + p)× (r + p) matrixC =

�
C A

B D

�
. ThenC is non-singular

if and only if thep × p matrix D − B C−1A is non-singular. In
this case letΓ =

�
D − B C−1A

�
−1

. Then

C
−1 =

"
C

−1 + C
−1

AΓBC
−1 −C

−1
AΓ

−ΓBC
−1

Γ

#
. (40)
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