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ABSTRACT The YAST algorithm relies on the following principle:rax

This paper introduces a new algorithm for tracking the major - orthonormal matrle(t) spans the--dimensional major sub-
space ofC ;. (¢) if and only if it maximizes the criterion

subspace of the correlation matrix associated with time series. This
algorithm greatly outperforms many well-known subspace track- J (W (t)) = trace (W(t)HC’m (t)W(t)) .

ers in terms of subspace estimation. Moreover, it guarantees the

orthonormality of the subspace weighting matrix at each iteration, In particular, the maximum of this criterion is equal to the sum

and reaches the lowest complexity found in the literature. of the r highest eigenvalues .. (t). However, implementing
this maximization over all orthonormal matrices is computation-

ally demanding (the complexity i©(n?r)), and does not lead to
a simple recursion betwed (¢) andW (¢t — 1).

Subspace tracking has been widely investigated in the fields of, In ordgr to. re.du.c.e the.computatlonal cost, the idea intraduced
adaptive filtering, source localization or parameter estimation. Re- in [1] consists in I|m|t[r1_g this search tc.’ the' range spacioft—1)
cently, a new subspace tracker, referred to as the Subspace prdqlus one or two additional search _dlrectlons. In other words, the
jection (SP) algorithm was proposed by C.E. Davila [1]. We ob- r-dlmensmnall range space WP (2) is to be found as a subspace
served in [2] that this algorithm greatly outperforms many well- of the(r +p)-dimensional space spanned by the (r +p) matrix
known subspace trackers in terms of subspace estimation, such as V()= [W(t—1), v(t)] )
Karasalo’s algorithm [3], PAST [4], Loraf [5], FST [6], NIC [7], * -
and OPAST [8]. As in [4] and [7], the estimation of the signal sub- wherev(t) containg = 1 or 2 columns. In practice, it is proposed
space is viewed as an optimization problem. However, instead ofin [1] to chosev (t) = x(t) orv(t) = [x(t), Cu(t — 1) z(¢)].
introducing approximations, the SP algorithm computes the signal Let W (¢) be an x (r 4+ p) orthonormal matrix spanning the
subspace as the exact solution of this problem over a subspace ofange space o (¢). ThenW (¢) will be written in the form
limited dimension.
Unfortunately, this remarkable subspace tracker is only suit- W(t)=W@)U(). 3)
able for time series data analysis, and has a high computational . . .
cost. Indeed, the global complexity of the SP algorithr® {s.-2) wherel (¢) is a(r + p) x r orthonormal matrix. In this case
(wheren is the dimension of the observed data vectors, @aisl
the dimension of the signal subspace), whereas a number of exist-
ing subspace trackers only requidénr) operations per time step . .
(this is the case of PAST, FST, NIC and OPAST). Nevertheless, W1€r€Cyy () IS the(r + p) x (r + p) matrix
we noticed that this second drawback can be circumvented, and H
we propose in this paper a new algorithm, referred to as YAST, Cyy(t) = W(t)" Cou(t) W(H). ®)
which computes the same signal subspace as the SP algorithm, but  Thys the exhaustive search among:atir orthonormal matri-
only requiresO(nr) operations. cesW (t) is replaced by the maximization of (4) over @tH-p) xp
The paper is organized as follows. In section 2, the basic prin- orthonormal matrice€/ (¢). The result of this maximization is
ciple of the YAST algorithm is presented. Then a fast implemen- well-known: U (¢) must span the-dimensional major subspace of
tation of YAST is proposed in section 3. The performance of this C, (t). Thus the subspace weighting mat (¢) can be tracked
subspace tracker is illustrated in section 4. Finally, the main con- by computing

clusions of this paper are summarized in section 5. e an orthonormal basiB¥ (t) of the range space af (t),

o the matrixC,, (t) = W.(t)" Clu(t) W (t),

e a(r + p) x r orthonormal matrixU (¢t) spanning ther-
Let {x(t) }+cz be a sequence of-dimensional data vectors. We dimensional major subspace6f, , (¢)

are interested in tracking the major subspace spanned by its cor- ¢ the matrixW (t) = W (t) U (t).

relation matrixC ;. (t). This matrix can be recursively updated
according to

1. INTRODUCTION

T (W (t)) = trace (U(t)HC (t)U(t)) )

—Yy

2. PRINCIPLE

In particular,U (t) can be obtained via the eigenvalue decom-
position ofC,, (t). As a consequence, the columns of the result-
Can(t) = BCe(t —1) +a(t) x(t)? (1) ing matrix W (¢) defined in equation (3) correspond to thenajor
eigenvectors o, (t). However, this calculation would lead to
where0 < § < 1is the forgetting factor. an overall complexity 0O (nr?), like in [1].



In order to reduce the global complexity@(nr), we choose Then substituting equations (1) and (2) into equation (13) yields
a different strategy which avoids the eigenvalue decomposition. As

mentioned abovel/ (t) must be an orthonormal matrix spanning ) [ Cyy (1) : a0) ‘|
ther-dimensional major subspace@,, (t). ThereforelJ (t) can C,, ()= |—s—ot=——— (14)
be obtained as an orthogonal complement of ghdimensional [ (t) !ny(t)J
major subspace aZ(t) = C,, (t)~"'. Thus the YAST algorithm
computesZ () and itsp-dimensional major subspace, and com- Where
putesU (¢) as an orthogonal complement of this subspace. s _ _1 H 1
As shown in section 3, this algorithm can be efficiently im- Cy,y,(t) ﬁijy(t )yt y(®) (15)
plemented by updating the inverg&t) of ther x r compressed y ) = By®)+ylt)al) (16)
correlation matrixC', (¢), defined as et = Bot) o' (t) + a®)? at) 17)
Cuy(t) = W ()" Coa ()W (). (6) y(t) = W-1)"z() (18)
y'(t) = Wt-1)" 1) (19)
3. FAST IMPLEMENTATION OF YAST alt) = m(t)Hy(t) 20)
Below, a fast implementation of YAST is proposed, whose global v'(t) = Cu(t—1) (). (21)
cost is only(3p + 1)nr flops’. It can be decomposed into four
steps: computation oW (¢) (section 3.1), computation dZ () 3.2.2. Inversion ofC, (t)
(section 3.2), update dV () (section 3.3), update o (t) (sec- -
tion 3.4). This implementation is summarized in section 3.5. The matrixC,, (t) can be obtained fron€; (t) by means of
equation (12). Thus inverting’, (t) requires invertingC',  (t).
3.1. Computation of W (t) As shown below, this last operation can be achieved by first invert-
ing the upper left corner o2’ (t), denotedC ., (t).
Define ther x p matrixy(t) = W (¢t — 1)"v(t) and let gther>crpp Ly, (1) w(®)
e(t) =v(t) =W —1)y(t). 7 3.2.2.1. Inversion o€, ()
Then x p matrixe(t) is orthogonal to the range Zpacve(t—l). Suppose thaC',, (¢ — 1) is non-singular and leZ (¢t — 1) =
Let o(¢) be a square root of the x p matrixe(t)" e(¢): C,y(t — 1)L, Leth(t) = Z(t — 1) y(t). By applying lemma 1

1 to equation (15), it can be shown th@lt,, (¢) is non-singular if and
o(t) = (Q(t)HQ(t)) = (Q(t)Hy(t) - y(t)Hg(t)) . (8 only if 3+ y(t)” h(t) is non-singulat. In this case, lety(t) =
(B+y®)"h(t)) ™" ThenZ(t) £ C,,(t)"" satisfies
> 1

W) = [W(t—1), et)o(®) ] ©) Z(t) = 5 (26 -1 -hOOROT) . (22)

[N

Below, we suppose that(t) is non-singular. Then the matrix

is orthonormal. In particulail’ (¢) can be written in the form

V() = W(t) R(t) (10) 3.2.2.2. Inversion o€, (t)

whereR(t) is the(r + p) x (r + p) non-singular matrix Inversing equation (12) yields

. Z(t) = R(t) C,,, (1) " R(t)" (23)
0 = |-Lo i) (11)
0pxr ]I_g(t Leth(t) = Z(t) y"(t). By applying lemma 2 to equation (14),
it can be shown tha®';  (¢) is non-singular if and only i, () —
3.2. Computation of Z (t) y” (t)" h(t) is non-singulat. In this case,
As mentioned in section 2, the matik(¢) is defined as the inverse = ml
of the (r + p) x (r + p) matrix C, (t) defined in equation (5). c )t = [_Z_(t_) i‘_ﬁ@_l_(tlh_@_' —_ﬁ@_l@_] (24)
Therefore, computingZ () consists in computing”,, (t) (sec- vy [ —~(t)h()" | J
tion 3.2.1), before inverting, () (section 3.2.2). !
_ wherey(t) = (c,, (t) —y" (1) h(1)) .
3.2.1. Computation ofC (t) Substituting equations (11) and (24) into equation (23) yields
Substituting equation (10) into equation (5) yields _, I
C (1)=R®)C (t)R(t)" (12) Z(t) = |z Jlr_g(tﬂ (25)
—=yy = —yy\ = - lfg(t)HI l/ ¢ J

whereC’, (t) is the(r + p) x (r + p) matrix

2Lemma 1 can be found in the appendix. It must be applied @itk
Q;y(t) =V CL.(t) V(1) (13) Cyy(t—1), A=y(t), B=yt)", andD = 1.
_ SLemma 2 can be found in the appendix. It must be applied @itk
1in this paper, a flop is a multiply / accumulate (MAC) operation. Cyy(t), A=y (t), B=y"(t)!, andD = Cyy ()




where

Ir
K(t) = h(t)-y(t) (26) U(t) = [—_—f,—(;)f?} R AOLIOR EOR (38)
Z'(t) = Z)+R 1)K 0" @7 Thus substituting equations (38), (25), (30) into (37) yields
gt) = R 29) 20 =70 +g WO + I D" @)
ll(t) = a(t)v() g(t)H. (29) - -

whereg’(t) = g(t) + f'(t) (v () — 0()A()0(H) ).
3.3. Update ofW (t)

Let ¢(t) be a(r +p) x p orthonormal matrix whose columns span Table 1. Pseudo-code of the YAST algorithm

K N . . .. . eq.: flops:
the p-dimensional major subspace of the positive definite matrix ;) — w i — 1)7 (1) nr
Z(t) of dimension(r + p) x (r+p). In particular, thereisax p @' (t) = Caa(t — 1) ®(1) 9n
positive definite matrixA(¢) such that y'(t) = W(t — 1) (t) nr

switchp {
case 1lw(t) = =(t), v'(t) = ' (1),
Z(t) Q(t) = Q(t) A(t) (30) y(t) ://y(t), g/(t) — y’(zt),
Let ©(t) be ther x p matrix containing the- first rows of Cazeu?f; :(t%,‘,:(tc'_mﬁ?f;&ztf(t)' fﬁ"
@(t), andz(t) be thep x p matrix containing itg last rows: v(t) = [=(t),2'(1)], v/ () = [ (1), 2" (t)],
y() = [y, ¥’ )],y ¢) = [?’(t),y”(t)}-}
()" = [g(t)T, g(t)T] . (31) o) = (v()"u(t) — y(H)"y(®))? ® p'n
h(t) = Z(t — 1) y(t) r?
Letz(t) = p(t) 6(t) be the polar decomposition gft), where y(t) = ([3 + y(t)”h(t)) - r
p(t) is positive definite and(t) is orthonormal. Let Zit)=1 (Z(t — 1) — h(t)y(b) h(t)H) (@2) 2
H Q'(’t() ): zlgt)’]zy)(t) (t) ex(t) gg; o
t = t) 0(t 32 Yy (1) =By (t) +y(t) aft pr
i/( ) (0 8(t) » (32) e, (0) = Fu() 2 (1) + a(t) T a(t) an  p*n
F'@) = fO+p1) (33) h(t) = Z(1) y' (1) ) pr’
: . o . () = (e, ) — ¥ )" h)) pr
Then it can be readily verified that tiie + p) x r matrix R (1) :(h(t) ~y(0) ) (26)
, Z'(t) = Z(t) + b (1) y (1) ' ()" @n  pr’
LR AOFION g(t) = ' (1) 1(t) a(1) (28) pPr
b= ___;f_(t_)i__' (34) EOEFIOROFEIOM 29) p?
- Z(t) = [Z' (1), —g(®); —a®" ' ()] (25)
is orthonormal and satisfief (t)” ¢(t) = 0. ThereforelU (t) (f(t)’f(t)): eigs (Z(Tt)’p) 30)  O(pr?)
is an orthonormal basis of thedimensional minor subspace of ~ |2(1)”.2(0)"] = &(t) €]
Z(t). (p(#),0(t)) = polar (2(#)) o@*)
Substituting equations (9) and (34) into equation (3) shows a  £(¢) = ¢(t) 8(t)7 (32) pir
recursion for the subspace weighting matrix: £ = £() (l+g(t)) -t @3) pir
/ Yyt =yt)a®) "' = £'() p’r
W(t)=W(t—1)—¢€'(t) f(t)" (35) e/(1) = p(Na() = Wt~ 1y (1) 36) pnr
, B , W(t)=W(t—1)—e'(t) f(t) (35) pnr
Whelgiengal(lt) s:ugsi)tl%tgrﬁ) e1 +ua‘gf)(nt (;)lia%o(t?i's last definition yields g =g+ 1 (ll(t) . Q(t)é(t)g(t)H) pr
v ged y 2(0)=Z' (1) +g 0 £ 0" + ' (0" (39)  2pr?
1) = v(t)o(t) ™ — Wt~ 1)y" (1) (36) 2= EOHEOT 2
- Total: (3p + )nr + O(n + r2)
" _ -1 _ pr
wherey™(t) = y(t) o(*) £, 3.5. Implementation
3.4. Update ofZ (t) The complete pseudo-code of YAST is presented in tahldts

- ) . global cost isinr flops in the casg = 1, which is lower or equal
The auxiliary matan(t)l can also be efficiently updated. In- {5 that of FST, NIC and OPAST , arfehr in the case = 2, which
deed, substituting equations (3) and (5) into equation (6) yields remains one order of magnitude lower than that of Karasalo's al-
Cyt)=U®)"C,, (H)U(t). As the orthonormal matri¥/ (t) gorithm, Loraf and SP. The computation of the vectot&) =

spans an invariant subspace@f, (¢), this last equation yields C..(t — 1) @(t) andz” (t) = C..(t — 1)%z(t) is reduced from
- O(n?) to O(n) by means of the technique described in [1], which
Z(t)=U@t)" Z(H)U(1). (37) exploits the shift invariance property of the correlation matrix.
Substituting equations (33), (32), and (31) into (34) shows that 5We observed that the YAST algorithm is prone to numericabipiity

e - — o ] ] - if implemented as proposed above. This is due to a loss of symwiettrg
Sincep(t) is positive definite, the x p matrix I + p(t) is also positive matrix Z(t). To make YAST stable, the symmetry must be enforced at the
definite. In particularf + p(t) is non-singular. end of each iteration (see table 1).




4. SIMULATION RESULTS 6. APPENDIX

In this section, the performance of the subspace estimation is anaThe following lemma shows how the inverse of a matrix changes
lyzed in terms of the maximum principal angle between the true upon a small-rank adjustment [11, pp. 18-19].
major subspace of the correlation mati%,..(¢) (obtained via Lemma 1 (Inverse of a small-rank adjustment). Letr € N and
an exact eigenvalue decomposition), and the estimated major sub- . K adj ’
A 4 . . C be ar x r non-singular matrix. Ley € N, A be ar x ¢

space of the same correlation matrix (obtained with the subspace . . .

. o i matrix, B be aq x r matrix, and D be ag x ¢ non-singular
tracker). This error criterion was initially proposed by P. Comon i Define th xC — C + ADB. ThenC' i
and G.H. Golub as a measure of the distance between equidimenmatr'x.' ? |n$ t eg X IT Taﬁrlx - '+D‘1 B ?TA 1S
sional subspaces [9]. The test signal is a sum ef 4 complex non-angu ariran _ on 3_“ ¢ qifflq matnxl +1 c '15
sinusoidal sources plus a complex white gaussian noise (the SNRon-singular, and in this cas€’ L= C —-C "ATBC,
is 5.7 dB). The frequencies of the sinusoids vary according to a wherel’ = (D’1 + B C*1A)7 .
jump scenario originally proposed by P. Strobach [10]: their val- Similarly, the following lemma shows how the inverse of a
ues abruptly change at different time instants, between which theymatrix chalz/ées upon a Ic?w-dimensional expansion (the proof is
remain constant. Their varlatlops are reprgsented on Figure 1.-a. omitted to not exceed the authorized number of pages).

Figure 1-b shows the maximum principal angle error trajec-

tory obtained with the orthonormal version of PAST, referred to as Lemma 2 (Inverse of a low-dimensional expansion)Letr € N
OPAST [8], with parameters = 80 and3 =~ 0.99. We chose the andC be ar x r non-singular matrix. Lep € N, Abe ar x p
OPAST subspace tracker for performance comparison, because wmatrix, B be ap x r matrix, andDI be ap x p matrix. Define the
observed in [2] that none of the other algorithms mentioned in the . _lclA . .
introduction outperformed OPAST in terms of subspace estima- (r+p) x (r+p) matrixC' = [_B_:f)_} - ThenC is non-singular
tion. This resultis to be compared to that obtained with the YAST f and only if thep x p matrix D — B C ! A is non-singular. In
algorithm with the same parameters (figure 1-c) ard 1. It can this case leT” = (D _B CflA) 1 Then

be noticed that YAST converges much faster than OPAST. Finally,

figure 1-d shows the result obtained v_vith YAST i_n the case 2. . _|c'+ctArTBC ™! JI:CAAF

The convergence is even faster than in the previous case. ¢ =|-————x== T TS T (40)
-I'BC i r

- (@)

So2r i 1 7. REFERENCES

L T

go.l— I I B 5 .. . .

g, . e e [1] C.E. Davila, “Efficient, high performance, subspace tracking

7 ‘ ‘ ‘ ® ‘ ‘ ‘ for time-domain data,1EEE Trans. Signal Processingol.

Bool ] 48, no. 12, pp. 3307-3315, Dec. 2000.

S5l ] 1 [2] R. Badeau, B. David, and G. Richard, “Fast Approximated

£ 500 1000 1500 z?‘co)o 200 3000 3500 4000 Power Iteration Subspace Tracking,JEEE Trans. Signal

€ oo ‘ ‘ ‘ ‘ ‘ ‘ ‘ ] Processing to be published.

Ejg: M M 1 [3] I. Karasalo, “Estimating the covariance matrix by signal sub-

gg* ‘ ‘ ‘ ] space averaging [EEE Trans. Acoust., Speech, Signal Pro-

T oo e e ™ cessingvol. 34, pp. 8-12, Feb. 1986.

glo— 1 [4] B. Yang, “Projection Approximation Subspace Tracking,”

% 51 ) 1 IEEE Trans. Signal Processingol. 44, no. 1, Jan. 1995.

=30 1 | I . |- . . .

= 500 1000 1500 2000 el 300 3%00 4000 [5] P. Strobach, “Low-rank adaptive filterdEEE Trans. Signal

Processingvol. 44, no. 12, pp. 2932-2947, Dec. 1996.

[6] D. J. Rabideau, “Fast, rank adaptive subspace tracking and
applications,”IEEE Trans. Signal Processingol. 44, no. 9,
5. CONCLUSIONS pp. 22292244, Sept. 1996.

In this paper, a new algorithm for subspace tracking was presented, [7] Y. Miao and Y. Hua, “Fast subspace tracking and neural net-

Fig. 1. Simulation results

which is derived from the SP algorithm by C.E. Davila. In partic- work learning by a novel information criterionEEE Trans.
ular, the proof for its convergence can be found in [1]. This al- Signal Processingvol. 46, no. 7, pp. 1967-1979, July 1998.
gorithm reaches the linear complexi®}(nr) and greatly outper- [8] K. Abed-Meraim, A. Chkeif, and Y. Hua, “Fast orthonormal
forms classical subspace trackers of the same complexity. More- PAST algorithm,” IEEE Signal Proc. Lettetsvol. 7, no. 3,

over, it guarantees the orthonormality of the subspace weighting pp. 60—-62, Mar. 2000.

matrix at each time step. Note that it can be transformed to track [9] G. H. Golub and C. F. Van LoarMatrix computations The
the minor subspace of the correlation mdrik can also be trans- Johns Hopkins University Press, third edition, 1996.
formed to track the major (or minor) subspace of a correlation ma-

. : ¢ 10] P. Strobach, “Fast recursive subspace adaptive ESPRIT al

trix updated on a truncated window of finite length [10] rithms.” IEEE Trans. Signal Procgssingol.p46 no. 9, pp. 9
®In this case, the matrik/ (t) must span the-dimensional minor sub- 2413-2430, Sept. 1998.

space o, , (t) (instead ofZ(¢)). [11] R. A. Horn and C. R. Johnsomatrix analysis Cambridge

“In this case, the column vectas(t — I) must be appended to the di-

University Press, Cambridge, 1985.
rectional search matrix(t), wherel is the window length. y 9



