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Abstract—Several studies have pointed out the need for accurate
mid-level representations of music signals for information retrieval
and signal processing purposes. In this paper, we propose a new
mid-level representation based on the decomposition of a signal
into a small number of sound atoms or molecules bearing explicit
musical instrument labels. Each atom is a sum of windowed har-
monic sinusoidal partials whose relative amplitudes are specific to
one instrument, and each molecule consists of several atoms from
the same instrument spanning successive time windows. We de-
sign efficient algorithms to extract the most prominent atoms or
molecules and investigate several applications of this representa-
tion, including polyphonic instrument recognition and music visu-
alization.

Index Terms—Mid-level representation, music information re-
trieval, music visualization, sparse decomposition.

I. INTRODUCTION

WHEN listening to music, humans experience the sound
they perceive in view of their prior knowledge, using a

collection of global properties, such as musical genre, tempo,
and orchestration, as well as more specific properties, such as
the timbre of a particular instrument. Bridging the gap between
audio waveforms and such high-level properties constitutes the
aim of semantic audio analysis, which has attracted a lot of
research effort recently. Ultimately, machine listening systems
with close-to-human performance would lead to improvements
for many signal processing applications, including user-friendly
browsing of music archives and interactive sound modification.

On the one hand, starting from the audio waveform, a large
number of low-level features have been proposed for the de-
scription of timbre and harmony within short time frames, such
as the popular Mel-frequency cepstral coefficients (MFCCs) [1],
chroma vectors [2], and other features standardized in MPEG-7
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[3]. Based on these features, algorithms have been developed
for genre or artist classification [4], instrument recognition [5],
key finding [6], and structural segmentation [7]. Recent algo-
rithms achieve good success rates, but seem to have reached a
performance ceiling such that increasing complexity no longer
significantly improves performance. This experimental observa-
tion can be partly explained by two factors [4]. First, low-level
features only provide a rough description of polyphonic (i.e.,
multi-instrumental) data since they model the input sound as a
whole, whereas humans are generally able to describe, to some
extent, each instrument separately. Second, these features, being
defined on short time frames, do not easily account for long-term
dependencies or rare events. Existing algorithms typically use
“bag-of-frames” approaches: features are extracted at fixed time
lags, each lag corresponding to a frame, sometimes with addi-
tional derivative or variance features. Hence, a given musical
extract is described by a collection of framewise features called
a “bag of frames.” Then, classes (e.g., instruments, groups of
instruments, musical genres) are modeled in this feature space
using machine learning algorithms such as K-Nearest Neigh-
bors [8], Gaussian mixture models [8], [9], or support vector
machines [9]. By contrast, humans may assess temporal varia-
tions at different time scales for each instrument and discrimi-
nate similar data based on time-localized cues observed in a few
time frames only.

On the other hand, a significant amount of work has been
devoted to the processing of music in a symbolic framework,
most commonly using the musical instrument digital interface
(MIDI) as the input format [10], [11], [12]. This score-like
format exhibits several advantages over audio, since it is based
on a considerably reduced amount of data, while incorporating
much higher-level information in the form of note events and
orchestration. This allows the use of advanced musicological
models that may improve performance for certain tasks [10].
However, the main limitation of MIDI is that it loses some fine
information available in audio signals such as frequency and
amplitude modulations and spectral envelopes, which may be
valuable for other tasks.

Ideally, we would like to enjoy the best of both worlds by
jointly processing audio and symbolic representations. How-
ever, most music is available in audio format only, and perfect
polyphonic audio-to-MIDI converters are out of reach of today’s
technology [13]. An alternative solution is to derive interme-
diate signal representations emphasizing some semantic proper-
ties of music without seeking to estimate actual musical scores.
To address the limitations of low-level features, these mid-level
representations should fulfill two goals.
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• Describing instruments separately as much as possible.
• Incorporating long-term structures.

This idea was introduced in [14] along with a possible mid-level
representation involving different parametric sound objects, in-
cluding “weft” objects consisting of harmonic sinusoidal par-
tials. Other mid-level representations were proposed more re-
cently for rhythmic [15] and harmonic content [16]. A limita-
tion of these various representations is that they do not provide
orchestration information, i.e., the instruments that are playing.
This information is however crucial for genre classification [10]
and would also allow separate visualization or processing of
each instrument. An interesting approach that includes knowl-
edge on instruments to represent signals has been made in [17].
The author introduced a nonresynthesizable representation that
shows instrument presence probabilities as a function of time
and pitch range, without onset detection or pitch estimation.

In this paper, we propose a new mid-level representation of
music signals that incorporates explicit instrument labels and
intends to provide a single front-end for many information re-
trieval and signal processing tasks. This representation is de-
rived from recent advances in the field of sparse approximation
concerning the modeling of signal structures. The signal is de-
composed into a small number of sound atoms or molecules,
where each atom is a sum of windowed harmonic sinusoidal
partials, and each molecule is a group of atoms spanning suc-
cessive time windows. This signal model aims at representing
harmonic instruments, namely wind instruments, bowed strings
instruments, or tonal parts of singing voice. The additivity of the
signal model makes it directly applicable to chords and multi-in-
strument pieces. As such, it is not suited for nonharmonic instru-
ments (e.g., drums) and slightly inharmonic instruments (e.g.,
piano). However, by taking advantage of the flexibility of sparse
representations, it would be possible to include other types of
atoms designed for these specific sources. In this paper, each
atom is labeled with a specific instrument by prior learning of
the amplitudes of its partials on isolated notes. The instanta-
neous amplitudes and frequencies of the partials and their tem-
poral variations can provide additional timbre information.

Our goal is to get representations that exhibit some informa-
tion on the played notes, such as intensity, pitch, onset, offset,
and timbre. Clearly, more complex musicological models would
be needed for accurate score transcription, where the goal is to
minimize the estimation errors of the aforementioned param-
eters [13]. Nevertheless the representations described in this
paper still allow the inference of higher-level knowledge, such
as the orchestration, the pitch range, the most typical intervals
between notes, etc.

This paper is organized as follows. In Section II, we present
the rationale for the signal model and provide a mathematical
definition of atoms and molecules. We subsequently design
efficient algorithms to extract the most prominent atoms or
molecules (Sections III and IV) and to learn the model param-
eters (Section V). In Section VI, we illustrate two applications
of the proposed representation: music visualization and music
instrument recognition on solo and duo pieces. Finally, we
conclude in Section VII and provide perspectives on further
research.

II. SIGNAL MODEL

Generally speaking, the goal of sparse approximation is to
represent a discrete-time signal as a weighted sum of atoms

, taken from a fixed dictionary , plus a
residual

(1)

where is a finite set of indexes . The precision of
the approximation can be measured by the signal-to-
residual ratio (SRR) in decibels (dB) defined by SRR

. The term sparse refers to the
desirable goal for a decomposition that the number of
selected atoms be as low as possible for a given SRR and much
lower than the length of the signal in number of samples. When
the atoms are similar to the signal, high sparsity and high SRR
can be achieved at the same time.

Sparse decomposition provides a natural framework for mid-
level representation. Indeed, the set of atoms representing the
observed signal may be partitioned into multiple subsets, where
each subset represents a different instrument and where atoms
from different subsets possibly overlap in time. Also, atoms may
have complex temporal structures.

Various dictionaries have been used for audio signals so far.
Dictionaries of windowed sinusoidal atoms have been used
for speech modification in [18], then for audio coding in [19].
Complex expansions of these atoms, namely Gabor atoms,
have been used for audio signal decompositions in [20] and
applied to audio coding in [21], [22]. Other waveforms have
been used: damped sinusoids [23], local cosines in addition
to dyadic wavelet bases [24], chirped Gabor atoms [25], [26].
The latter are time-localized complex sinusoidal signals with
linearly varying frequency defined by

(2)

where is a finite-length window and denote, respec-
tively, the scale, time location, frequency, and chirp rate param-
eters. In the remainder of this paper, atoms are denoted by com-
plex-valued signals, since in practice, sparse decompositions of
real-valued signals can involve pairs of atoms consisting of one
complex-valued atom and its conjugate, as presented in [20],
[21], and [23]. Chirped Gabor atoms can efficiently represent
most nonpercussive musical sounds, which consist of sinusoidal
partials with slowly varying frequency and amplitude. However,
the resulting decompositions cannot be considered as mid-level
representations, since they do not exhibit any pitch or timbre in-
formation.

Sparsity can be increased by designing an appropriate dictio-
nary where the atoms exhibit more similarity with the analyzed
signal. Obviously, this requires some prior knowledge about the
signal. In this section, we define instrument-specific harmonic
atoms and molecules based on the assumption that the analyzed
signal involves instruments producing harmonic sinusoidal par-
tials only and that the set of possible instruments is known.
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A. Instrument-Specific Harmonic Atoms

We define a harmonic atom as a sum of windowed
sinusoidal partials at harmonic frequencies with constant am-
plitudes but linearly varying fundamental frequency. Using
chirped Gabor atoms to represent the partials, each harmonic
atom is expressed as

(3)

where is the scale parameter, the time location,
the fundamental frequency, the fundamental chirp rate,

the vector of partial amplitudes, and
the vector of partial phases. The number

of partials is defined from so that the frequency
of the uppermost partial is just below the Nyquist frequency,
with a maximum of 30 partials. In addition to the definition
of harmonic atoms in [27], the proposed definition takes into
account possible frequency variations using a chirp parameter
and assumes that the partial amplitudes are fixed a priori
instead of being determined from the analyzed signal. Also, the
partial amplitudes satisfy the constraint

(4)

so that the resulting atoms have unit energy. This condition
is fulfilled if we assume that is large enough so that the
Gabor atoms are pairwise orthogonal for dif-
ferent values of . As mentioned in [27], the quasi-orthogo-
nality of the partials for an atom of fundamental frequency
depends on the scale and the window . We only consider
the quasi-orthogonality of flat harmonic atoms here
since the search step in Section III-B is performed only on such
atoms; the chirp rates are determined by a subsequent parameter
tuning step as will be explained. In fact, for the lowest consid-
ered fundamental frequency, the modulus of the inner product
between two consecutive partials of a flat harmonic atom is

.
The most distinctive feature of the proposed model is that

the vector of partial amplitudes is learned on isolated notes,
so as to represent a single instrument among all instruments
possibly present in the polyphonic signal. More precisely, the
frequency range of each instrument is partitioned into several
pitch classes , and each vector is associated with a single
instrument/pitch class . Each class may contain several
amplitude vectors denoted by , with . The
learning of these vectors is detailed in Section V.

In addition to providing explicit instrument labels, instru-
ment-specific amplitude vectors also potentially increase the
accuracy of the representation by better discriminating instru-
ments playing at the same time, as shown previously with dif-
ferent models for score transcription, source separation, and
instrument recognition [28]–[30]. The proposed model hence
shares similar principles to template-based instrument recogni-
tion algorithms [28].

Fig. 1. Representation of a solo flute signal as a collection of harmonic
molecules. Each atom is represented by a parallelogram centered at its
time-pitch coordinates (u; f ), whose width, height, and inclination are,
respectively, proportional to its scale s, weight � , and fundamental chirp rate
c . Each molecule is depicted as a rectangle covering several atoms.

B. Instrument-Specific Harmonic Molecules

While they help to describe instruments separately, instru-
ment-specific harmonic atoms are time-localized and therefore
do not capture long-term temporal content. A more informa-
tive mid-level representation may be obtained by replacing the
atomic decomposition (1) by a better structured decomposition.

To this aim, we propose to decompose the signal as a set of in-
strument-specific harmonic molecules, where each molecule
is a group of instrument-specific harmonic atoms
satisfying the following constraints.

• The atoms span a range of time locations , with exactly
one atom per location.

• All atoms have the same instrument label .
• The log-variation of fundamental frequency between any

two consecutive atoms is bounded by a threshold

(5)

Fig. 1 displays some example molecules modeling a solo flute
signal. It can be observed that the fundamental frequencies, the
weights, and the fundamental chirp rates of the atoms vary over
time within each molecule.

The two following sections are dedicated to the extraction of
isolated atoms (III) and molecules (IV).

III. EXTRACTION OF PROMINENT ATOMS

Given the two models of music signals defined above, the goal
is now to decompose a signal using either one of these models
at a reasonable computational cost. We concentrate in this sec-
tion on the atomic decomposition (1) using the flat (constant )
atomic model described in Section II-A.

Many sparse decomposition techniques have been proposed
in the literature. As in [20], we consider a given sparse decom-
position to be optimal when it results in the best SRR among all
decompositions with the same number of atoms. The matching
pursuit (MP) algorithm, introduced in [20], extracts the atoms
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iteratively in order to maximize the SRR at each iteration. It is
therefore only optimal at every step and not globally. In prac-
tical cases, this algorithm has been shown to provide near-op-
timal decompositions at small computational cost on standard
dictionaries. However, it cannot be applied to a dictionary of
harmonic atoms with fine resolution for each parameter, since
the large number of parameters per atom would result in an ex-
tremely large dictionary. Thus, we propose a modified MP al-
gorithm, where each iteration consists of selecting the best atom
from a dictionary with coarse resolution and tuning some of
the parameters of this atom to maximize the SRR, as in [20].
Such an approach may be related to weak matching pursuit [31],
that consists in selecting an atom that may not be optimal but
whose modulus of its inner product with the signal is within
close bounds of the optimal. In our case, such bounds cannot be
computed in a straightforward manner. The asymptotic conver-
gence towards zero of the proposed algorithms is not proven,
which in practice is not a problem since we stop the algorithm
after few iterations.

A. Sampling of the Dictionary

The resolution of the dictionary is not imposed by the
algorithm and can be chosen so as to achieve a suitable tradeoff
between SRR and computational cost. For the applications in
Section VI, the harmonic atoms are generated from a Hann
window , and their discretized parameters and

are sampled as follows, assuming a sampling frequency of
22.05 kHz.

• The scale is set to a single value, corresponding to a
duration of 1024 samples (46 ms).

• The time location is set to equally spaced frames, with a
step of 512 samples (23 ms).

• The fundamental frequency is logarithmically sampled,
with a step of ( tone).

• The fundamental chirp rate is set to 0.
• The vector of partial amplitudes is one of the vectors

for the instrument and the pitch class
that is the closest to .

The logarithmic sampling of contrasts with the linear sam-
pling used in [27] and is a natural choice for western music.
Additional scales could be chosen for applications requiring a
high resynthesis quality, such as audio coding.

As proposed in [20] and [23], the vector of partial phases
is not discretized, but computed from the data as a function of
the other parameters in order to maximize the SRR

(6)

where the inner product between two signals is defined by
.

B. Modified MP Algorithm

The modified MP algorithm involves the following steps, as
illustrated in Fig. 2.

1) The inner products between the signal and all the
atoms of the dictionary are computed.

Fig. 2. Flow chart of the modified MP algorithm for the extraction of
prominent harmonic atoms.

2) The atom that gives the largest absolute inner product
is selected

(7)

3) The fundamental frequency , the fundamental chirp rate
, and the partial phases of this atom are tuned in order

to maximize the SRR with and fixed. The opti-
mization is performed under the constraint that lies be-
tween the two neighboring bins of the fundamental fre-
quency grid. Once done, the atom parameters and weight

are stored.
4) The tuned atom is subtracted from the signal, and the

inner products are updated on the residual for
all atoms temporally overlapping with . The algo-
rithm is iterated from step 2) until a target SRR has been
achieved or a given number of atoms has been extracted.
This atom tuning scheme leads to significant additional
computational cost since the efficient inner product update
described in [20] cannot be implemented here.

Parameter tuning is conducted using a conjugate gradient algo-
rithm detailed in Appendix I.

We emphasize that this algorithm is applied to the whole
signal as in [20] and [32], as opposed to a number of approaches
([21] and [22]) employing MP on a frame-by-frame basis.

IV. EXTRACTION OF PROMINENT MOLECULES

The modified MP algorithm presented in Section III ex-
tracts atoms that exhibit significant harmonic structures in the
analyzed signal, but that are independently extracted, with
no explicit link between each other. One could perform a
clustering step after atomic decompositions by grouping neigh-
boring atoms into molecules. However, such a procedure would
not lead to optimal molecules: the weights of the individual
atoms are optimized independently from each other while the
atoms are not orthogonal. This typically occurs when a long
signal structure is analyzed with short atoms, for example a
long sinusoid with short Gabor atoms, as pointed out in [33].
Indeed, the early extracted atoms catch a large part of the signal
energy, while the subsequent ones are extracted to “fill the
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holes.” In this case, the energy of the atoms may not follow the
instantaneous energy of the analyzed structure. To overcome
this issue, molecules are here directly extracted in the iterative
process, leading to a representation where atoms have their
parameters tuned to better fit the underlying music notes.

A molecule is a set of neighboring atoms with their re-
spective weights . The corresponding waveform is a linear
combination of atoms

(8)

In our case, the atoms within a molecule follow the con-
straints that have been defined in Section II-B. To stay consis-
tent with the MP framework, finding the optimal molecule, in
the least square sense, consists in finding the combination of
weighted atoms that maximizes with the constraint

.
Given the atoms of one molecule and with no constraint set

on the norm of , the optimal weights are computed with
an orthogonal projection using the Gram determinant1

(9)

If the constraint is set, the optimal weight vector is colinear
to

(10)

Thus, the modulus of the inner product between the signal and
the molecule signal, which we call the total weight of the
molecule , is

(11)

The computation of the orthogonal projection of on every set
of atoms to get the coefficients would be very costly.
Thus, an additive structure based on the inner products between
the signal and the individual atoms is desirable in order to fa-
cilitate a dynamic programming scheme. A heuristic weight
is thus chosen a priori to estimate the best molecule (i.e., max-
imizing )

(12)

This is the exact weight of the molecule if the atoms are
orthogonal . This is clearly not the case in
our study because the time–frequency supports of the atoms
overlap. However, this has little effect on the choice of the best
molecule, since the ratio between and is typ-
ically similar for the top candidate molecules. Nevertheless, it
is worth noting that optimizing with respect to would lead to
the selection of molecules that are the longest possible, since
adding any atom to a molecule increases its weight . We ad-
dress this issue by introducing a two-step approach, each in-

1The Gram determinant G(x ; x ; . . . ; x ) is the determinant of the Gram
matrix defined by its elements G = hx ; x i.

Fig. 3. Flow chart of the proposed algorithm for the extraction of prominent
harmonic molecules.

volving dynamic programing. First, a search time interval is de-
limited using the time support of the best molecule containing
a preselected seed atom (equivalent to the best atom that is se-
lected in the atomic algorithm, described in Section III). This
support is obtained by extending the molecule until the atoms
aggregated at the extremities fall below a predefined energy
threshold. Second, the estimation of the best molecule is per-
formed: it consists in searching the best atom path spanning this
time interval. This two-step approach is also motivated by the
difficulty to compare paths with different time supports. Once
the best path has been found, the atom parameters are tuned,
and the atom weights are computed in order to maximize the
SRR.

The whole iterative decomposition algorithm is depicted in
Fig. 3. The first two steps of the algorithm (namely inner prod-
ucts initialization and selection of the seed atom) are similar to
those of the atomic approach. The subsequent steps are detailed
below.

A. Search for the Best Atom Path

The selection of a molecule is equivalent to the search of
the best path on several instrument-specific time–pitch grids.
These grids are built as follows: each node of the grid for in-
strument is indexed by its discrete time location and funda-
mental frequency , as defined in Section III-A. It also carries a
value which is the maximum of the squared absolute
inner products between the signal and the atoms
of parameters and over all the vectors of partial amplitudes

for the instrument and the pitch class that is
the closest to . Hence, the weight of a path is defined by

(13)
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Fig. 4. Selection of the forward path. The frequency log-variation thresholdD
is assumed to be equal to the frequency discretization step and the pitch search
region is delimited by the two diagonal lines. The current best path is composed
of black atoms. The little segments before the black atoms show the possible
previous atoms for each black atom.

The node corresponding to the seed atom is called the seed node.
The search for the best atom path involves two steps. First, a

single time search interval is delimited for all instruments using
a Viterbi algorithm [34] on a restricted region. Then, it is used
again to find the best path within this interval for each instru-
ment.

1) Viterbi Algorithm: Suppose that a path is searched from
an initial time towards increasing time (forward path search).
Considering an instrument grid , at time and pitch , the
Viterbi algorithm is based on the principle

(14)

where is the set of pitch bins that can reach the pitch
bin , subject to the condition (5). Practically, the best path
is constructed iteratively from the initial time to the final time,
keeping track of the intermediate best paths along the search.
Once a stopping condition is reached, a backtracking operation
gives the best path. This algorithm has a complexity equal to

, where is the number of time bins
of the path. Note that the total number of fundamental frequency
bins does not affect complexity. Indeed, the search region
is “triangular,” so that the number of considered fundamental
frequencies is proportional to the path duration. This algorithm
is applied for the two steps described below.

2) Delimiting the Time Search Interval: The search interval
is delimited by computing a backward path and a forward path
starting from the seed node. The algorithms for building these
two paths are strictly symmetric. Only the algorithm for the for-
ward path is detailed below.

The path that gives the largest weight under the constraints
set in Section II-B can be estimated via the Viterbi algorithm
described above, as illustrated in Fig. 4. A transition is allowed
between two successive atoms when their fundamental frequen-
cies satisfy the constraint (5), resulting in a triangle-shaped pitch
search region. The forward limit ( for the backward
limit) of the time search interval is attained when the value

of the last node of the current best path becomes lower
than a threshold defined as follows:

(15)

where is the weight of the first seed atom se-
lected in the entire decomposition, is the weight
of the seed atom of the current molecule. and are fixed
ratios. The term is a global energy threshold that prevents
the selection of background noise atoms. is typically chosen
so that this threshold lies slightly below the energy threshold
corresponding to the target SRR. The term introduces an
adaptive energy threshold for each molecule, which avoids the
selection of atoms belonging to subsequent or previous notes or
to reverberation. Note that must be larger than , otherwise
it has no effect on because is almost always larger than

. Typical values for and are given in Section VI.
3) Estimation of the Best Path: Once the time search interval

has been determined, the Viterbi algorithm is applied for each
instrument on the rectangular grid delimited by the search in-
terval and the whole instrument pitch range, this
time without constraining the initial and final nodes. One path

per instrument is thus obtained, and the path with the largest
weight is finally selected. Note that the initial seed atom is not
used anymore and may not be included in the final molecule.

B. Tuning of Atom Parameters

In order to improve the parameter resolution of the atoms
of the selected molecule compared to that of the dictionary ,
the parameters and are tuned for each atom at a time
so as to maximize the SRR under the constraint that stays
between the two neighboring bins of the fundamental frequency
grid, while keeping the parameters of other atoms fixed. This
tuning is conducted using a conjugate gradient algorithm [35],
as described in Appendix I.

C. Computation of the Atom Weights

As pointed out in Section IV, the atoms contained in a mole-
cule are not orthogonal. Thus, the optimal weights are com-
puted a posteriori using (9) as in [23].

D. Signal and Inner Products Update

Once the optimal weights are computed, the molecule is sub-
tracted from the signal by subtracting each atom scaled by
the corresponding weight .

The inner products are updated on the residual for all
atoms temporally overlapping with at least one atom of the
molecule. The algorithm is then iterated from the seed atom se-
lection until no remaining atom satisfies constraint (15), a target
SRR has been achieved, or a predefined number of atoms has
been extracted. These stopping criteria are chosen so as to avoid
the extraction of spurious low energy molecules.

E. Complexity and Scalability

The computational load is dominated by the update of the
inner products and the parameter tuning for each algorithm. The
following discussion evaluates the complexity of a single itera-
tion of the algorithm. We recall that is the maximum log-fun-
damental frequency deviation between two consecutive atoms
in a molecule, the number of partials of an instrument-spe-
cific harmonic atom, and the number of atoms per set.
With the number of time steps of the atom path and the
scale in number of samples, the number of instruments in the
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dictionary, and the number of fundamental frequencies, the
load of the Viterbi algorithm is and
the atom weights optimization . As we will see, they
can be neglected with regard to the following operations. Given
an iteration of the algorithm, the computation of inner products
involves first a computation of the inner products between the
signal and Gabor atoms where
is the scale in number of samples. Note that for the first itera-
tion, is the total number of time frames because all the inner
products must be initialized. Then, the inner products between
the resulting projections and the partial amplitudes vec-
tors are computed with this complexity:

. The parameter tuning has the following complexity:
, where is the number of iteration

of the gradient algorithm.
In Section VI, the representations are evaluated with a set of

five instruments, considering that each of the instruments in the
ensemble plays a maximum of one note at a time, an assump-
tion that is verified in the large majority of playing conditions
for the five considered instruments. With the chosen parameters
presented in Section VI, each algorithm takes approximately
one minute to process one second of signal with the current
Matlab implementation on a machine equipped with a Pentium
IV 3-GHz processor. The computational load is mainly devoted
to the tuning of the parameters (over 50% of the load) and to
the update of the inner products (about 30%). However, it must
be mentioned that this computational load is needed only once
for the decomposition algorithms: once performed, each of the
postprocessing procedures (see Section VI) are extremely fast
(a fraction of real time).

We assess the potential of the proposed representations for
ensembles taken within a set of five monophonic instruments,
which admittedly is a restricted context. These representa-
tions and the associated instrument recognition algorithms for
solo performances would however be directly applicable to
instruments playing chords. Indeed, each chord could be de-
composed at no additional computation load as a sum of atoms
or molecules, each one corresponding to a different note. The
proposed representations would also be applicable to a larger
number of instruments , e.g., 40 instead of 5. In this context,
the contribution of the inner products with the vectors would
become prominent and increase the computational load linearly
with the number of instruments in the dictionary, which
remains tractable. Moreover, hierarchical procedures [36] can
be used to reduce the contribution of this load.

V. LEARNING THE DICTIONARY PARAMETERS

For the following experiments, the vectors of partial am-
plitudes are learned for each instrument/pitch
class on isolated notes from three databases: the RWC Mu-
sical Instrument Sound Database [37], IRCAM Studio On Line
[38], and the University of Iowa Musical Instrument Samples
[39]. We select five instruments that produce harmonic notes:
oboe (Ob), clarinet (Cl), cello (Co), violin (Vl), and flute (Fl).
While recently developed approaches involve unsupervised and
data-driven methods to build dictionaries [40], the learning is
here done in a supervised way: atoms are associated to a pitch
and a label.

TABLE I
TOTAL NUMBER OF TRAINING TIME FRAMES PER INSTRUMENT

AND AVERAGE NUMBER PER PITCH CLASS

For each isolated note signal, the time frame with maximal
energy is computed, and all the subsequent time frames whose
energy lies within a certain threshold of this maximum are se-
lected. This relative threshold is set to a ratio of 0.05 in the fol-
lowing. The partial amplitudes are computed for each of these
training frames by

(16)

where and are tuned in order to maximize the SRR on
this frame, using the conjugate gradient algorithm described
in Appendix I. The vector of amplitudes is then associated to
the pitch class that is the closest to . The resulting number
of vectors per instrument and per pitch class are indicated in
Table I.

The size of the dictionary varies linearly as a function of the
number of amplitude vectors. Since the number of vectors is
too large to ensure computationally tractable decompositions,
we choose to reduce the number of vectors by vector quanti-
zation: amplitude vectors are kept for each class using
the k-means algorithm with the Euclidean distance. The choice
of this distance is justified by the SRR objective, as shown in
Appendix II. This operation also helps avoiding overfitting by
averaging the training data and removing outliers.

VI. APPLICATIONS

In this section, we evaluate the potential of the proposed rep-
resentations for music visualization and polyphonic instrument
recognition. The number of atoms per instrument/pitch class is
set to , the noise level ratios and to 0.03 and
0.2 respectively, and the frequency log-variation threshold to

(1/10 tone). The atom parameters are discretized as
specified in Section III-A.

A. Music Visualization

The proposed mid-level representations can be used to visu-
alize short- or long-term harmonic content and orchestration by
plotting the estimated atoms or molecules on a time-pitch plane
with instrument-specific colors. The representations provide a
simple solution to the task of joint pitch and instrument tran-
scription for polyphonic music signals, while the majority of
polyphonic transcription algorithms output pitch estimates only.

It is a common view that this task could be addressed instead
by performing monophonic pitch transcription and instrument
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Fig. 5. Visualization of a flute and clarinet duo, compared to the ground truth piano roll. Each atom is represented by a grayscale patch centered at its time-pitch
coordinates (u; f ), whose width, height and inclination are respectively proportional to its scale s, weight � , and chirp rate c . Each molecule is depicted as a
dashed-line rectangle covering several atoms. The grayscale indicates the instrument associated with each atom.

recognition on the outputs of a blind source separation algo-
rithm, which should consist of a single instrument. However
single-channel source separation algorithms typically rely on
factorial Gaussian mixtures or hidden Markov models which
exhibit exponential complexity with respect to the number of
instruments, which makes them unusable so far for more than
two instruments known a priori [29]. Another similar view is
that this task could be solved by performing first polyphonic
pitch transcription, then extracting each note via harmonicity-
based source separation and applying monophonic instrument
recognition to the separated note signals. However harmonicity
does not provide sufficient information to reliably transcribe and
separate notes sharing partials at the same frequencies, which
typically results in erroneous instrument labels [30]. By con-
trast, our algorithms rely on timbre information at all steps, thus
avoiding erroneous pitch estimates whose timbre does not corre-
spond to any existing instrument. Also, it has linear complexity
with respect to the number of possible instruments, which is

much lower than the complexity of previous algorithms [29],
[28] based on the same idea.

Fig. 5 displays the representations computed from a recorded
10-s flute and clarinet excerpts extracted from a commercial CD,
with a target SRR of 15 dB or a maximal number of 250 atoms
per second. The upper melodic line is played by the flute, the
lower one by the clarinet.

The atomic decomposition provides a relevant representation
of the music being played, as shown by comparison with the
ground truth piano roll. However, some of the extracted atoms
have a large fundamental chirp rate that does not correspond
to the actual variation of fundamental frequency of the music
notes: the parameter tuning of an individual atom is perturbed by
the residual coming from the extraction of a neighboring atom.

The molecular decomposition seems close to what can be ex-
pected for a time–pitch music representation: notes appear quite
clearly as localized patches, instruments are often well identi-
fied. Compared to the visualization of the output of the atomic
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TABLE II
CONTENTS OF THE TEST DATABASE FOR SOLO INSTRUMENT RECOGNITION

decomposition, the aforementioned drawback is considerably
reduced, and the frequency and amplitude modulations within
the music notes are here clearly visible. The relevance of the rep-
resentation lets us expect that this decomposition could be suf-
ficient as a front-end for key finding [41] or melodic similarity
assessment [42], and perhaps for polyphonic pitch transcription
using efficient postprocessing methods based on musicological
rules [13].

B. Solo Musical Instrument Recognition

Musical instrument recognition on solo phrases has been han-
dled in [43]–[45], [9] with “bag-of-frames” approaches. The
performances are now close to what expert musicians can do. In
[44], expert musicians showed an average performance of 67%
for the identification of 10-s excerpts among 27 instruments,
while the complete system described in [46] reaches 70% for
a similar test case. These methods cannot be employed directly
for multi-instrument music without learning appropriate models
for every possible instrument combination.

The nature of the presented decomposition output suggests an
application to musical instrument recognition, since each atom
is associated with a specific instrument. Before validating this
claim on polyphonic music signals, we evaluate the instrument
discriminating power on solo excerpts as a benchmark. In this
case, one way of identifying the underlying instrument wave-
form is to compute a score for each instrument class and to
select the instrument with the largest score . We propose to
express this score as a function of the absolute weights of
all the extracted atoms from this class

(17)

where is the set of indexes of the atoms that come from in-
strument , and to select the instrument with the largest score

. The coefficient is optimized to balance the importance of
high- and low-energy atoms. On a development set whose con-
tents are similar to the test set but come from different sources,
the best classification accuracy was achieved for .

The goal of this experiment on real solo phrases is to provide
a benchmark of the performances of the algorithm on realistic
signals. In other words, before applying it to polyphonic signals
we have to check that it has good discrimination capabilities for
the instruments waveforms. The decomposition algorithms are
applied on a test database of 2-s solo excerpts, obtained by par-
titioning five tracks from different commercial CDs for each in-
strument, discarding silence intervals. The number of excerpts is
shown in Table II. This yields 95% confidence intervals smaller

than 0.1% on the measured recognition accuracies. However, it
is worth noting that this confidence interval is rather optimistic
since it relies on the independence of the test samples, whereas
test samples coming from the same recording cannot reasonably
be considered as independent. The algorithms are stopped when
the SRR becomes larger than 10 dB or the number of extracted
atoms reaches 100 atoms per second.

The classification results obtained from the atomic decompo-
sition and the molecular decomposition are given in Table III
in the form of a confusion matrix. The average recognition ac-
curacy equals 77.3% for the atomic decomposition and 73.2%
for the molecular decomposition. Note that all instruments are
often confused with the flute, which could be due to the fact that
the flute exhibits some prototypical characteristics common to
all instruments, as suggested in [4].

If a larger number of instruments is considered, for instance
40, the decomposition algorithm would still be tractable since
the computation time is approximately linear with the number of
instruments and that less atoms per pitch class can be kept (e.g.,
8 instead of 16). However, the raw music instrument recognition
results should drop, as for any music instrument recognition al-
gorithm. In this case, the atoms would still align to the correctly
played pitches, but the instrument labels would not be reliable
enough to derive a good annotation of the signal. Nevertheless
music instrument recognition in a such open context would be
possible for families of instruments (simple reed, double reed,
bowed strings, brass, etc.), whose prototypical characteristics
given by the physical production mode of the sounds can be
caught in the partial amplitudes vectors.

The proposed classification systems exploit a reduced part
of what constitutes musical timbre, namely the spectral enve-
lope of the harmonic content. Hence they can be compared
to standard solo instrument recognition algorithms exploiting
spectral envelope features. We apply the algorithm described in
[9] to ten MFCCs, which are known to represent the prominent
characteristics of spectral envelopes. This algorithm uses sup-
port vector machines (SVMs) within a pairwise classification
strategy. While it cannot be considered as a state-of-the-art
system, it gives a good indication of what a very good classifier
can do with widely approved features for timbre discrimination.
It achieves an average recognition accuracy of 77.6% when the
SVM is trained on the same isolated note signals as in Section V.
This score is only slightly higher than the ones reported above.
It should be remarked that the confusions do not happen on
the same instruments. For instance, the SVM(MFCC)-based
system fails at identifying the Clarinet, while the Violin is
the weak point of our algorithms. It must be remarked that
the overall scores are lower than figures appearing in other
works on music instrument recognition. It is mainly related to
the differences between the training set, composed of isolated
notes recorded in almost anechoic conditions, and the test set,
made of real recordings with subsequent room effects, and
sometimes double notes for string instruments. The adaptation
of amplitude parameters learning on real recordings gives a
track for investigations. Indeed, the similarity of training data
and the test data is a critical aspect for the success of a classifier.
Other experiments we have performed with the SVM-based
classifier with more features [46] have shown results increased



LEVEAU et al.: INSTRUMENT-SPECIFIC HARMONIC ATOMS FOR MID-LEVEL MUSIC REPRESENTATION 125

TABLE III
RESULTS OF SOLO INSTRUMENT RECOGNITION USING THE ATOMIC DECOMPOSITION (FIRST COLUMNS), THE MOLECULAR DECOMPOSITION

(MIDDLE COLUMNS), AND THE SVM(MFCC)-BASED ALGORITHM (LINES: TESTED, COLUMNS: ESTIMATED)

by 10% if the classifier is learned on solos. A similar increase
of performances can be expected for our classifier, leading to
results that can be a good basis for further processing.

C. Polyphonic Musical Instrument Recognition

While as effective as standard feature-based approaches for
solo musical instrument recognition, the proposed mid-level
representations are naturally capable of handling polyphonic
music. The experiment that will be described aim at showing
that this task is possible without changing the learning step.
By contrast, feature-based approaches would have to learn one
classifier for every combination of instruments, which would
quickly become prohibitive given the combinatorial explosion
of the number of classes for which sufficient training data must

be collected: , where is the number of

instruments playing and the number of possible instruments.
Moreover, some features, such as inharmonic content features,
cannot be robustly extracted in polyphonic signals anymore.

Polyphonic music instrument recognition is still an emerging
topic, and very few studies involve extensive tests on real record-
ings. These approaches involve bag-of-frames techniques [5],
template-based approaches [28], [47]–[49], or prior source sep-
aration [50]. Among all the listed works, some of them cannot
be easily implemented, others have a computational complexity
too high to be performed on the entire database. For example,
[5] requires the definition of 20 classes (15 duos, 5 solos) for our
instrument set, and if a pairwise strategy was applied as in VI-B,
it would need the training of 190 classifiers which is nearly
intractable. Some methods ([28], [47]) are based on computa-
tional auditory scene analysis and composed of different com-
plex modules necessitating fine and dedicated tuning, and with
no available public implementation. [48]–[50] state that the total
number of instruments is known and that the involved instru-
ments are different; moreover, [48] remains extremely complex
and cannot be applied on the entire database. Thus, the experi-
ments will only be performed for the two algorithms that have
been developed.

To show the potential of the approach, we provide polyphonic
instrument recognition results on a database, even if they cannot
be directly compared to the results of another algorithm. The test
database is composed of 2-s excerpts involving four instrument
pairs: ClFl, CoFl, FlFl, and CoVl. These excerpts are obtained
by partitioning duo tracks from different commercial CDs. Note

that, because the partitioning is unsupervised, some excerpts
may contain one instrument only instead of two. The stopping
criteria for the decomposition algorithms are an SRR of 15 dB
or a maximal number of 250 atoms per second.

The following scoring method is chosen: each time frame is
associated with one or two instrument labels by selecting the
two atoms with the largest absolute weight , or one atom
only if there is only one in this frame. Then, the label of the
entire excerpt is decided by a majority vote, weighted by the sum
of the absolute weights of the atoms in each frame. This method
does not take any musicological knowledge into account, for
example the separation of the melodic lines. Implementing a
melodic line tracking in the time–pitch plane is left for further
research, but definitely possible in this framework.

Three distinct accuracy scores are computed. The score A
measures the recognition accuracy of the actual duo or of a
single instrument of the actual duo if only one is detected. For
instance, if the ground truth label is CoFl, the correct detections
are Co, CoFl, and Fl. The score B counts a good detection when
all the detected instruments belong to the actual duo. Consid-
ering the example above, the labels CoCo and FlFl are also ac-
cepted. Finally, the score C indicates the recognition accuracy
of detecting at least one instrument of the actual duo. In our ex-
ample, the labels CoVl, CoOb, CoCl, ClFl, ObFl, and FlVl are
added. The scores obtained using a random draw would equal
15%, 25%, and 55%, respectively, for duos of different instru-
ments (ClFl, CoFl, and CoVl) and 10%, 10%, and 30%, respec-
tively, for duos of identical instruments (FlFl), considering all
the labels with equal probability.

The scores obtained from the atomic decomposition and the
molecular decomposition are presented in Tables IV and V, re-
spectively. The molecular algorithm shows a better performance
for the score A than the atomic algorithm, and slightly lower
performances for scores B and C. It must be noted that the
scores are computed on 2-s segments, which is a quite short pe-
riod to take a decision. 10-s decisions give higher results, but
in this case the number of evaluations does not lead to statis-
tically meaningful scores. Here again, the more structured de-
compositions coming from the molecular decomposition (see
the example of duo on Fig. 5) let us expect that the performances
can be improved by using adequate postprocessing, for example
to split molecules that may contain several notes and by con-
structing molecule-based features exhibiting amplitude and fre-
quency modulations.
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TABLE IV
RESULTS OF INSTRUMENT RECOGNITION ON DUOS USING THE ATOMIC

DECOMPOSITION (A: ACTUAL DUO OR SOLO, B: PRESENT INSTRUMENTS

ONLY, C: AT LEAST ONE PRESENT INSTRUMENT)

TABLE V
RESULTS OF INSTRUMENT RECOGNITION ON DUOS USING THE MOLECULAR

DECOMPOSITION (A: ACTUAL DUO OR SOLO, B: PRESENT INSTRUMENTS

ONLY, C: AT LEAST ONE PRESENT INSTRUMENT)

D. Remark and Perspectives for Music Instrument Recognition

For both experiments, on solo and duo performances, it is
important to note that there are several ways to build the de-
cision procedure. The procedure for the solo case involves the
amplitudes of the atoms, and thus gives the most importance
to the most energetic atoms, while the one in the duos case
involves a frame-based decision weighted by the atom ampli-
tudes, which rather emphasizes instruments that are playing on
most of the time frames. In the solo case, preliminary exper-
iments have shown that a weighted frame-based method per-
forms worse than the presented amplitude-based method (seven
to ten points less for the overall score), but better than a purely
frame-based method (one hard decision taken per time frame).
On the opposite, in the duo case, the weighted frame-based
method performs as well as a purely frame-based method.

As a perspective, the balance between the structure-based de-
cisions (atoms or molecules) versus frame-based decisions is a
subject of study, but beyond the scope of this paper.

VII. CONCLUSION

We have introduced in this paper a novel mid-level represen-
tation of music signals, based on the decomposition of a signal
into a small number of harmonic atoms or molecules bearing ex-
plicit musical instrument and pitch labels. The key feature of this
system is that the parameters of each atom are learned from real
recordings of isolated notes. Deterministic greedy algorithms
derived from matching pursuit can be used to extract these de-
compositions from real polyphonic recordings, with good accu-
racy and reasonable complexity.

These decompositions, although very compact and prone to
some transcription errors (as any such system without high-level
musicological models), retain some of the most salient features
of the audio data. In fact, this object-based decomposition could

be used in numerous applications such as object-based audio
coding, sound indexing, and modification. Such postprocessing
on the decomposition outputs will have to be evaluated com-
pared to task-specific audio processing.

In this paper, the potential of these representations has been
thoroughly demonstrated on the task of automatic musical
instrument recognition. On monophonic excerpts, the proposed
algorithms obtained have nearly equivalent performances than
a standard MFCC feature-based approach. Furthermore, the
full benefits come when considering polyphonic music, where
a basic postprocessing method leads to encouraging results on
realistic signals. Future work will be dedicated to a number of
possible improvements, and in particular to the extension of the
dictionary to include additional atoms capturing more diverse
timbre information such as intrinsic amplitude and frequency
modulations, transient characteristics, or noise components, as
well as perceptual criteria.

APPENDIX I

The tuning of the parameters and is performed via a con-
jugate gradient algorithm, where the partial phases are reesti-
mated at each iteration using (6). The maximization of the SRR
is equivalent to the maximization of the square inner product
between the atom and the signal

(18)

Assuming that the partial atoms (denoted
for conciseness) are pairwise orthogonal, this gives

(19)

The gradient of this quantity is defined by

(20)

Denoting by the sample-wise product of two signals, and
with and

, we obtain

(21)

(22)

This can also be written

(23)

A fast computation of this gradient can be achieved by storing
the signals and .
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APPENDIX II

If we detail the atom selection step of the atomic decompo-
sition algorithm, it can be remarked that it acts as an adaptive
classifier in the space of partial amplitudes vectors. The atom
selection step is defined by (7) where

(24)

(25)

According to the definition of the estimated partial phases in (6),
we get

(26)

which can be written using a normalization factor as

(27)

where

(28)

(29)

Denoting by the vector of observed partial
amplitudes satisfying , we finally obtain

(30)

This shows that the absolute inner product between the atom
and the signal is the product of two factors: the square root
of the energy of the signal at multiples of the fundamental fre-
quency and the inner product between the normalized ampli-
tude vector from the dictionary and the normalized amplitude
vector observed on the signal. The latter is also equal to one
minus half of the Euclidean distance between and , which
justifies the use of this distance for the clustering of amplitude
vectors.
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