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ABSTRACT

This paper presents supervised feature learning approaches for
speaker identification that rely on nonnegative matrix factorisa-
tion. Recent studies have shown that group nonnegative matrix
factorisation and task-driven supervised dictionary learning can
help performing effective feature learning for audio classification
problems.

This paper proposes to integrate a recent method that relies on
group nonnegative matrix factorisation into a task-driven supervised
framework for speaker identification. The goal is to capture both the
speaker variability and the session variability while exploiting the
discriminative learning aspect of the task-driven approach. Results
on a subset of the ESTER corpus prove that the proposed approach
can be competitive with I-vectors.

Index Terms— Nonnegative matrix factorisation, feature learn-
ing, dictionary learning, online learning, speaker identification

1. INTRODUCTION

The main target of speaker identification is to assert whether or not
the speaker of a test segment is known and if he/she is known, to
determine his/her identity. Since their emergence about five years
ago, the I-vectors [1] have become the state-of-the-art approach for
speaker identification [2] and a typical speaker identification system
is composed of I-vector extraction, normalisation [3, 4] and classifi-
cation with probabilistic linear discriminant analysis (PLDA) [5].

On the other hand, recent studies have shown that approaches
such as nonnegative matrix factorisation (NMF) [6] can be success-
fully exploited to perform spectrogram factorisation [7, 8, 9] or mul-
timodal co-factorisation [10] to retrieve speaker identity. Capitalis-
ing on this, we have recently proposed an approach based on group-
NMF (GNMF) [11] and inspired by the I-vector training procedure
that allowed them to take into account inter-speaker and inter-session
variability by constraining a set of speaker-dependent bases across
sessions and a set of session-dependent bases across speakers [12].
This approach was shown to be competitive with a state-of-the-art
I-vector system.

The GNMF approach allows one to exploit, to some extent,
annotations about recording sessions and speakers [12]. However,
this approach does not enable the possibility to enforce the “discrim-
inativity” of the learned dictionaries, which can be of tremendous
importance when the final target is a classification problem (as it is
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the case here). A supervised matrix factorization approach proposed
recently and known as Task-driven Dictionary Learning (TDL) [13]
allows for learning a dictionary jointly with a classifier, therefore
enforcing the discriminative quality of the dictionary. This approach
was later extended to nonnegative dictionaries and adapted to au-
dio classification problem demonstrating significant performance
improvement compared to unsupervised approaches [14].

In this paper, we propose a new formulation of the GNMF
method. Using the Euclidean distance as the divergence for the
GNMF problem, the dictionary learning based on GNMF is inte-
grated in a supervised framework inspired by TDL [13]. The choice
of the Euclidean distance renders the latter process more efficient
and and allows to improve previous results be up to 9 % in some
cases. In a first step, the nonnegative extension of the TDL [14, 15]
is applied to the dictionaries obtained with standard NMF or GNMF,
in order to fine-tune the dictionaries. We then consider a task-
driven formulation for the GNMF method with speaker and session
variability constraints [12]. This approach allows our system to dis-
criminatively learn nonnegative dictionaries that also capture both
the speaker variability and the session variability, and improve the
performance further.

The paper is organised as follows. The problem, the notations
and the general NMF approach are introduced in Section 2. The
GNMF approach with Euclidean distance is described in Section 3.
Then, the task-driven NMF approaches are described in Section 4.
Experiment results are presented in Section 5. Finally, conclusions
are exposed in Section 6.

2. PROBLEM STATEMENT

2.1. Notations

Consider the (nonnegative) time-frequency representation of an au-
dio signal V ∈ RF×N+ , where F is the number of frequency compo-
nents and N the number of frames. V is composed of data collected
during S recording sessions with speech segments originating from
C speakers. In each session several speakers can be present and a
particular speaker can be present in several sessions. Let C denote
the set of speakers and S the set of sessions. The number of ele-
ments in an ensemble is denoted by Card(.). Card(C) = C and
Card(S) = S. Let Cs denote the subset of speakers that appear
in the session s (Cs ⊂ C) and Sc the subset of sessions in which
the speaker c is active (Sc ⊂ S). In the remainder of this paper,
superscripts c and s will denote the current speaker and session, re-
spectively.
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2.2. NMF with Euclidean distance

The goal of NMF [6] is to find a factorisation for V of the form:

V ≈WH (1)

where W ∈ RF×K+ , H ∈ RK×N+ and K is the number of compo-
nents in the decomposition. NMF model estimation can be formu-
lated as the following optimisation problem:

min
WH
‖V−WH‖22 s.t. W ≥ 0, H ≥ 0. (2)

with ‖.‖2 the Euclidean distance. One algorithm that is built
to solve this problem exploits multiplicative update rules which are
obtained using the heuristic consisting in expressing the gradient of
the cost function (2) as the difference between a positive contribution
and a negative contribution [16]:

H← H� WTV
WTWH

and W←W� VHT

WHHT
; (3)

where � is the element-wise product (Hadamard product) and divi-
sion is element-wise.

3. GNMF WITH SPEAKER AND SESSION SIMILARITY

We have recently proposed an approach that derives from GNMF [11]
and intends to take speaker and session variability into account [12].
The approach was proposed for NMF with the generalised Kullback-
Leibler divergence [17]. Here we introduce its counterpart for the
Euclidean distance.

We first decompose V into portions V(cs) of length N (cs) that
are recorded in a session s in which only the speaker c is active. The
global cost function (Jglobal) minimized in (2) can then be seen as
the sum of all local divergences:

Jglobal =

C∑
c=1

∑
s∈Sc

‖V(cs) −W(cs)H(cs)‖22. (4)

3.1. Class and session similarity constraints

We further decompose the dictionaries W(cs) as follows:

W(cs) = [ W(cs)
SPK

←KSPK→
| W(cs)

SES
←KSES→

| W(cs)
RES

←KRES→
]

with KSPK + KSES + KRES = K and where KSPK, KSES

and KRES are the number of components in the speaker-dependent
bases, the session-dependent bases and the residual bases, respec-
tively.

In order to capture speaker and session variability we define two
constraints [12]. The first constraint is related to the distance be-
tween the speaker bases:

JSPK =
1

2

C∑
c=1

∑
s∈Sc

∑
s1∈Sc
s1 6=s

‖W(cs)
SPK −W(cs1)

SPK ‖
2 < α1 (5)

with α1, the similarity level on speaker-dependent bases.
The second constraint is related to the distance between the ses-

sion bases:

JSES =
1

2

S∑
s=1

∑
c∈Cs

∑
c1∈Cs
c1 6=c

‖W(cs)
SES −W(c1s)

SES ‖
2 < α2 (6)

where α2 is the similarity level for session-dependent bases.
Minimizing the global divergence (4) subject to constraints (5)

and (6) is related to the following problem:

min
W,H

Jglobal + µ1JSPK + µ2JSES s.t. W ≥ 0, H ≥ 0 (7)

which in turn leads to the multiplicative update rules for the dictio-
naries W(cs)

SPK and W(cs)
SES that are given in equations (12) and (13),

respectively. The update rules for W(cs)
RES and for the activations

(H(cs)) are left unchanged (see [12]).

4. TASK-DRIVEN NMF BASED DICTIONARY LEARNING

TDL [13] has recently been applied with nonnegativity constraints
to perform speech enhancement [15] or to acoustic scene classifi-
cation, where temporally integrated projections are classified with
multinomial logistic regression [14]. In this paper we extend the
latter approach to the GNMF case.

4.1. Task-driven NMF

The general idea of nonnegative TDL or task-driven NMF (TNMF)
is to unite the dictionary learning with NMF and the training of the
classifier in a joint optimization problem [15, 14]. Influenced by the
classifier, the basis vectors are encouraged to explain the discrimina-
tive information in the data while keeping a low reconstruction cost.
The TNMF model first considers the optimal projections h?(v,W)
of the data points v on the dictionary W, which are defined as solu-
tions of the nonnegative elastic-net problem [18], expressed as:

h?(v,W) = min
h∈RK

+

1

2
‖v−Wh‖22 + λ1‖h‖1 +

λ2

2
‖h‖22; (8)

where λ1 and λ2 are nonnegative regularization parameters. Given
each data segment V(l) of length M frames, associated with a label
y in a fixed set of labels Y , we want to classify the mean of the pro-
jections of the data points v(l) belonging to the segment l, such that
V(l) = [v(l)

0 , ..., v(l)
M−1]. We define ĥ

(l)
as the averaged projection

of V(l) on the dictionary, where ĥ
(l)

= 1
M

∑M−1
m=0 h?(v(l)

m ,W). The
corresponding classification loss (here using multinomial logistic re-
gression) is defined as ls(y,A, ĥ

(l)
), where A ∈ A are the parame-

ters of the classifier. The TNMF problem is then expressed as a joint
minimization of the expected classification loss over W and A:

min
W∈W,A∈A

f(W,A) +
ν

2
‖A‖22, (9)

with
f(W,A) = Ey,V(l) [ls(y,A, ĥ

(l)
(v(l),W))]. (10)

Here,W is defined as the set of nonnegative dictionaries containing
unit l2-norm basis vectors and ν is a regularization parameter on the
classifier parameters, meant to prevent over-fitting. The problem in
equation (10) is optimized with mini-batch stochastic gradient de-
scent as described in the paper of Bisot et al. [14].

4.2. Task-driven GNMF

In task-driven GNMF (TGNMF) we propose to perform jointly the
dictionary learning based on GNMF [12] and the training of a multi-
nomial logistic regression. The dictionary W is then the concate-
nation of all the sub-dictionaries W(cs) and the optimal projections
h?(v,W) are the solutions of (8).
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W(cs)
SPK ←W(cs)

SPK �

V(cs)H(cs)
SPK

T
+ µ1

2

∑
s1∈Sc
s1 6=s

W(cs1)
SPK

W(cs)H(cs)H(cs)
SPK

T
+ µ1

2
(Card(Sc)− 1)W(cs)

SPK

(12)

W(cs)
SES ←W(cs)

SES �

V(cs)H(cs)
SES

T
+ µ2

2

∑
c1∈Cs
c1 6=c

W(c1s)
SES

W(cs)H(cs)H(cs)
SES

T
+ µ2

2
(Card(Cs)− 1)W(cs)

SES

(13)

Including the similarity constraints (5) and (6), the TGNMF is
thus expressed as the minimization of the following problem:

min
W∈W,A∈A

f(W,A) +
ν

2
‖A‖22 + µ1JSPK + µ2JSES, (11)

with f(W,A) as defined above. The problem is again optimized
with mini-batch stochastic gradient descent. However, as opposed to
the previous algorithm, for each data point v belonging to a particular
V(cs), only the corresponding sub-dictionaries (W(cs)) are updated,
whereas the other dictionaries are left unchanged in order to match
the GNMF adaptation scheme [12].

5. EXPERIMENTS

5.1. Corpus

The approach presented here is evaluated on a subset of ESTER, a
corpus for automatic speech recognition composed of data recorded
from broadcast radio [19]. The subset of ESTER is composed of
non-overlapping speech and decomposes as follows: 6 hours and 11
minutes of training data and 3 hours 40 minutes of test data both dis-
tributed among 95 speakers. The amount of training data per speaker
ranges from 10 seconds to 6 minutes [12]. One target of this article is
to act as a proof of concept for supervised dictionary learning meth-
ods applied to speaker identification. This corpus is small enough to
allow for testing several configuration and reasonably large to per-
form statistically significant experiments. It is therefore suited for
the task targeted in this article.

5.2. I-vector baseline

A baseline I-vector-based system is trained with the LIUM speaker
diarisation toolkit [20]. The acoustic features are computed with
YAAFE [21]. They are 20 mel frequency cepstral coefficients
(MFCC) [22], including the energy coefficient. They are computed
on 32 ms frames with 16 ms overlap. The MFCC are augmented
with their first and second derivatives to form a 60-dimensional
feature vector. A universal background model (UBM) with 256
Gaussian components per acoustic feature is trained on the full
training set and the dimension of the total variability space is set to
100. The parameter values are in the range of the values commonly
found in the literature for datasets of similar size. Eigen factor radial
normalisation (EFR) is applied on I-vectors before classification [4].

5.3. NMF-based feature learning

NMF-based systems are trained on GPGPU with an in-house soft-
ware1 exploiting the Theano toolbox [23]. The acoustic features

1Source code is available at https://github.com/rserizel/
groupNMF

are 132 constant-Q transform coefficients (CQT) [24] computed on
16 ms frames with YAAFE [21]. To cope with the well-known prob-
lem of non-uniqueness of the NMF solution, NMF and GNMF are
initialised randomly 6 times and trained independently for 100 iter-
ations. In each case, the factorisation with the lowest cost function
value at the end of the training is selected to extract features. After
preliminary tests, the number of components for the NMF has been
set to K = 100. The number of components for each data portion
of the GNMF is set to K = 8 (KSPK = 4, KSES = 2,KRES =
2). Only speaker-related bases and session-related bases are kept to
project the data at runtime. There are 236 unique (speaker, session)
couples, so the dimension of the feature vectors extracted with the
GNMF is K = 1416. The weights µ1 and µ2 are scaled such that,
respectively, for µ1 = 1 the contributions from (4) and (5) to (7)
are equivalent, and for µ2 = 1 the contributions from (4) and (6)
to (7) are equivalent. The features extracted with NMF are scaled
to unit variance before classification. In the remained of this paper,
GNMF applied without similarity constraints (µ1 = 0 and µ2 = 0)
is denoted GNMF0. Similarly, GNMF with similarity constraints
(µ1 = 0.4 and µ2 = 0.15) is denoted GNMFc.

5.4. Multinomial logistic regression

Normalised I-vectors and feature vectors extracted with NMF and
GNMF are classified with a multinomial logistic regression per-
formed with the scikit-learn toolkit [25]. The logistic regression is
preferred to PLDA as the latter is known to perform quite poorly
when the number of samples becomes small compared to the feature
dimensionality, which is the case here. This approach has proven
successful in our previous work [12].

5.5. Task-driven approaches

TNMF and TGNMF are applied to fine-tune the dictionaries ob-
tained with the unsupervised NMF and GNMF described above2.
The projections on the dictionary (corresponding to equation (8)) are
computed using the lasso function from the spams toolbox [26]. The
classifier is updated using one iteration of the scikit-learn [25] imple-
mentation of the multinomial logistic regression with the L-BFGS
solver. The model is trained over I = 5 full passes over the data
(epochs). When the initial dictionary is obtained with standard NMF
(K = 100), the initial gradient update step is 0.0005 and the param-
eters for the elastic net problem are λ1 = 0.001 and λ2 = 0.001.
When the initial dictionary is obtained with GNMF (K = 1416), the
initial gradient update step is 0.0001 and the parameter for the elas-
tic net problem are λ1 = 0.5 and λ2 = 0.5. The decaying of the
gradient steps over iterations follows the same heuristic as suggested

2Source code is available at https://github.com/rserizel/
TGNMF
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in [13]. The hyper parameters are obtained after performing a grid
search over several reasonable values. After 5 epochs, the dictio-
naries are kept fixed and the classifier alone is trained for at most
50 epochs. In the remained of this paper, TGNMF applied without
similarity constraints (µ1 = 0 and µ2 = 0) is denoted TGNMF0.
Similarly, TGNMF with similarity constraints (µ1 = 0.0001 and
µ2 = 0.0001) is denoted TGNMFc.

5.6. Performance evaluation

In order to mitigate the effect of the imbalance between speakers in
the test set, the classification performance is measured with weighted
F1-score [27] where the F1-score is computed for each class sepa-
rately and weighted by the number of utterances in the class. Varia-
tions in identification performance are validated using the McNemar
test [28] with significance level .05. In the remainder of the pa-
per, unless stated otherwise explicitly, when a performance change
is mentioned it is statistically significant.

F1-score performance obtained with the different approaches
described above is presented in Table 1. Each column corresponds
to a different initialisation method (NMF, GNMF0 and GNMFc ).
The first row (labeled unsupervised) presents the reference per-
formance for each initialisation method, where the feature learning
model and the classifier are learned independently. For the sake of
simplicity, in the remainder of the paper these methods are referred
to as unsupervised, as opposed to supervised methods (TNMF and
TGNMF), even though some level of supervision is necessary for
GNMF. The second row (labeled TNMF) presents the performance
obtained when applying TNMF in a similar way as in Bisot et
al. [14], initialised with the dictionaries obtained with NMF and
GNMF. The last rows present the performance obtained when ap-
plying TGNMF0 and TGNMFc, initialised with the dictionaries
obtained with GNMF.

5.7. Discussion

Two main tendencies can be observed from the results in Table 1.
First, on small dictionaries (NMF withK = 100), TNMF allows for
a large improvement compared to unsupervised methods and good
performance. Secondly, TGNMF can sometimes provide large im-
provement reducing the performance difference between systems us-
ing initialisations with GNMF0 and GNMGc.

Unsupervised reference methods
The performance obtained with unsupervised methods tends to con-
firm previous findings where NMF (75.6%) is behind other systems
and where the GNMF (81.7% with GNMFc or 80.7% GNMF0) is
better than the baseline I-vector system (76.1%). These systems also
improve the performance compared to previous experiments from
the authors with GNMF with generalised Kullback-Leibler diver-
gence [17] applied on Mel-spectrums coefficients [12].

TNMF
Applying TNMF in a similar way as in Bisot et al. [14], initialised
on the dictionaries learned with standard NMF allows for a large per-
formance improvement (from 75.6% to 79.9%), whereas TNMF ini-
tialised with concatenated dictionaries obtained with GNMF leads to
improvements that are not statistically significant. This could be due
to the fact that the dictionaries are then too large and that one of the
advantages of TNMF is that it is the most efficient when considering
dictionaries smaller than those used with unsupervised methods.

Features I-vector NMF GNMF0 GNMFc
Unsupervised 76.1% 75.6% 80.7% 81.7%
TNMF – 79.9% 81.1% 81.9%
TGNMF0 – – 81.7% 82.1%
TGNMFc – – 82.0% 82.2%

Table 1. Weighted F1-scores for speaker classification
(K = 100 for NMF and K = 1446 for GNMF). Each column
corresponds to a different initialisation method and each row corre-
sponds to the method applied after the initialisation (for the first row
no processing is done after the initialisation). The subscripts 0 and
c correspond to method without and with constraints, respectively
(see also 5.3, 5.5 and 5.6 for more detailed explanations).

TGNMF0

GNMF0 allows for focusing on learning some sub-dictionaries re-
lated to portions of the data originating from a specific speaker or
session. This already proved effective on the unsupervised methods.
This observation is confirmed when applying TGNMF0 on dictio-
naries obtained with GNMF0. TGNMF0 then allows for a F1-score
increase from 80.7% to 81.7%. The system obtains similar perfor-
mance as the best reference system (GNMFc), without exploiting
the similarity constraints. The gain is less important when apply-
ing TGNMF0 initialised with GNMFc where the annotations were
already exploited to some extent.

TGNMFc
Imposing similarity constraints during TGNMF helps improving the
performance further, up to 82.2% when initialised with dictionaries
obtained with GNMFc. This is our best performance to date on this
corpus. However, this is not significantly better than performance
obtained with other TGNMF systems. This tends to indicate that
both methods (GNMF and TGNMF) are to some extent redundant
in the way to exploit the information from the annotations to struc-
ture the dictionaries and that we maybe reached a saturation point for
these methods applied to speaker identification on rather small cor-
pora such as the subset of ESTER. Future works should then include
validation of these methods on larger corpora.

6. CONCLUSIONS

This paper presented supervised feature learning approaches for
speaker identification including an approach that integrates GNMF
into a TDL supervised framework. The goal was to capture both the
speaker variability and the session variability while exploiting the
discriminative learning qualities of the task-driven approach.

Evaluations on a subset of the ESTER corpus have shown that
TNMF can allow for large improvements compared to unsupervised
methods and good performance on small dictionaries obtained with
NMF. When considering larger dictionaries obtained with GNMF,
TGNMF allowed for focusing on training some sub-dictionaries re-
lated to portions of the data and taking into account speaker and
session variability. Therefore TGNMF provided large improvement
when initialised with dictionaries obtained with GNMF without sim-
ilarity constraints and significant improvement when initialised on
dictionaries obtained with GNMF with similarity constraints provid-
ing our best performance to date on the subset of ESTER.
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