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ABSTRACT

Content-based Audio Identification consists of retrieving
the meta-data (i.e. title, artist, album) associated with an
unknown audio excerpt. Audio fingerprint techniques are
amongst the most efficient for this goal: following the ex-
traction of a fingerprint from the unknown signal, the clos-
est fingerprint in a reference database is sought in order
to perform the identification. While being able to man-
age large scale databases, the recent developments in fin-
gerprint methods have mostly focused on the improvement
of robustness to post-processing distortions (equalization,
amplitude compression, pitch-shifting,...). In this work, we
describe a novel fingerprint model that is robust not only to
the classical set of distortions handled by most methods but
also to the variations that occur when a title is re-recorded
(live vs studio version in particular). As a result our finger-
print method is able to identify any signal that is an excerpt
of one of the references from the database or that is similar
to one of the references. The issue that we cover thus lies at
the intersection of audio fingerprint and cover song detec-
tion, meaning that the functional perimeter of our method
is substantially larger than the classical audio fingerprint
approaches.

1. INTRODUCTION

Audio identification consists of retrieving some meta-data
associated with an unknown audio excerpt. The typical
use-case is the music identification service which is nowa-
days available on numerous mobile phones. The user cap-
tures an audio excerpt with his mobile phone microphone
and the service returns meta-data such as the title of the
song, the artist, the album... Other applications include
automatic copyright control, automatic segmentation and
annotation of multimedia streams, jingle detection, ... (see
[1] for more details).

Audio fingerprint is the most common strategy for per-
forming audio identification when no meta-data has been
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embedded in the unknown audio excerpt. It consists of
extracting from each audio reference of a given database
a compact representation (the fingerprint) which is then
stored in a database. When identifying an unknown ex-
cerpt, its fingerprint is first calculated and then compared
with all fingerprints stored in the database. This general
scheme (see Figure 1) has been explored by numerous au-
thors (for example, see [2-5]). The state of the art thus
comprises a wide variety of models for the "Fingerprint”
block associated with their search strategies ("Matching”
block). The authors of recognized works have put their ef-
forts on two major points: first, the captured signal should
be recognized even if it has undergone a series of distor-
tions; second, the algorithm has to manage a database con-
taining huge amounts of audio references. This robust-
ness to distortions usually refers to the robustness to dif-
ferent post-processings of the signal. Indeed, the success-
ful fingerprint technologies can achieve identification of
a signal that has been cropped, re-equalized, amplitude-
compressed, pitch-shifted and/or time-stretched and pos-
sibly recorded in a noisy environment with a bad micro-
phone. Clearly, traditional fingerprint methods do not han-
dle the connection that exists between two pieces of music
that are similar. This means that if the system has learned
one song and is required to perform an identification of a
cover version, it will not be able to indicate the correspon-
dence. This includes the case of an artist performing ’live’
one of his titles that is stored in its studio version in the
database. At a more dramatic level, the same song, with
the same orchestration, that is re-recorded in the same stu-
dio conditions will not be considered as a match of the first
recording. This comes from the fact that traditional finger-
print approaches use low level features to characterize the



signal. These features, which bear little musical meaning,
are not preserved from one version of the song to the other.

Conversely, approaches that can match two very differ-
ent versions of one song have been developed [6-8] in the
field of cover recognition. The counterpart of these ap-
proaches is that they usually cannot handle a large refer-
ence database. The proposed methods are indeed CPU-
demanding and since they do not include any kind of fast
search mechanism, using them in an audio-identification
use-case would require the exhaustive comparison of the
unknown signal with every reference. Given the compu-
tation time of the method and the number of references in
traditional use-cases, this would not be feasible.

We propose in this work an extended fingerprint algo-
rithm, that is able to do the matching between two iden-
tical records with different post-processings (called near-
exact matches) but that can also recognize a query that is
only “similar” to a song of the database, while keeping the
ability to manage large scale databases. The paper is or-
ganized as follows: Section 2 is dedicated to a detailed
description of our method. Following the presentation of
the general workflow, the signal model is introduced and it
is shown how this model can integrate in an index scheme
that allows the management of large-scale databases. We
finally explain a scoring procedure that can be applied to
a reduced set of candidates that are output after the in-
dex phase. In Section 3, we propose some experiments
to evaluate the performance of the algorithm on an audio-
fingerprint use-case that includes both challenges of iden-
tifying broadcast sections that are near-exact matches of
references and others that are only similar to references.
The paper ends with a synthesis of the work and a critical
analysis of the results.

2. DESCRIPTION OF THE SYSTEM
2.1 General Workflow

In our system, any piece of audio signal is modeled by a
sequence of states computed in the fashion of Section 2.2.
Similarly to the vast majority of fingerprinting approaches
(e.g. [3] [4]) the efficiency that is necessary to handle large
scale databases is achieved thanks to the use of an index-
based search. Our method thus includes a learning stage,
during which features extracted from the audio references
are used to build the index. However, the task of identi-
fying matches that are “near-exact” as well as “similar” is
too demanding to be performed by the index search on its
own. We thus propose a “two-levels” architecture, such
as shown in Figure 2. When analyzing an unknown query
(modeled by its sequence of states), the system performs
a first search in the index. The output of this step is a
reduced set of M best candidates (typically M = 10).
Thanks to the index, the candidates are efficiently selected
among the numerous references. The counterpart is that
this matching stays vague. The post-processing step is a
finer comparison between the candidates and the query. In
our implementation the comparison is achieved thanks to
dynamic programming, which has a heavy CPU cost but it

is here limited to a small number of candidates. This gives
a matching score for each of the candidates with the query.
A threshold strategy can finally be set up in order to decide
if there is a match or not. The same kind of funnel-shaped
architecture is used in [4].
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Figure 2. Workflow when identifying an audio query

2.2 Signal Model

The signal model that we suggest can be seen as an exten-
sion of the model proposed in [9] in a different context.
The main idea to obtain the sequence of states is to sam-
ple the signal at instants that are “musically meaningful”.
These occur at dates {¢1, ta, .., t, }. To each of this date ¢,
we associate an information ¢, which locally characterizes
the signal. Finally, we define the szate as the association of
the date with the local piece of information:

sk = (tr,ix)

In our implementation, the dates {t1, ..., %, } correspond to
the peaks of an onset detection function based on a sub-
band decomposition (as suggested in [10]). In brief, the
method starts from the magnitude of the spectrogram of
the signal. The latter is temporally filtered in order to
mask the rapid variations while keeping the sharp attacks.
The filtered spectrogram is then log-compressed, which
has the effect of remapping the amplitudes of the spectro-
gram on a scale that is closer to our perception. The Spec-
tral Energy Flux is subsequently computed by estimating
the temporal differential of the pre-processed spectrogram
and then half-wave rectified in order to keep only positive
values. Finally the information is integrated by summing
the values of the Spectral Energy Flux across the frequency
bands. This gives a global onset detection function that
shows high values at instants with a meaningful amount
of change in the spectrogram in one or several frequency
bands. Onsets are then localized thanks to a peak-peaking
Strategy.



As for the local information 7, it is composed of two
features:

i = (Chl, Chor)

where c;,; is the mean chroma vector at the left of ¢; and
¢k, is the mean chroma vector at the right of ¢;. The use
of chroma vectors is motivated by the fact that these fea-
tures show little variations from one version of a song to
the other [7].
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Figure 3. Illustration of the decomposition of the signal

Figure 3 shows the superposition of the graphical rep-
resentations of an onset detection function (in white) and
a chroma representation of the same signal. In our model,
the dates {t¢1,...,t,} would be given by the dates of the
yellow triangles on the onset function (obtained by peak-
picking). For each date, the left mean chroma vector (mean
chroma vector between the previous triangle and the cur-
rent) and the right mean chroma vector (mean chroma vec-
tor between the current triangle and the next) would be
computed, associated to the date and stored. The advan-
tage of this model is that it is rather compact (which is an
interesting feature for the search in large-scale databases)
but still contains both rhythmical and harmonic informa-
tion.

2.3 Indexing Scheme

An index is a function that takes a key in input and outputs
a set of values.
h:k— {v;}

The interest of the operation is that it can be done in time
O(1). In our case, the values will be pointers to the refer-
ences of the database and the keys will be audio features
that characterize these references. The crucial point is to
set up a distortion-invariant key, while still sufficiently dis-
criminating. The invariance to the distortions should han-
dle the classical post-processing distortions (equalization,
pitch-shifting, ...) but also the recording of the same song
in different conditions (matching of similar items).

For a given audio signal, we propose the following key-
generation mechanism. For each state s one key is gen-
erated. The key is a binary version of the mean chroma

vector at the right of ¢. Practically, for any bin b of the
chroma vector, the binary chroma vector ¢y ,- is given by:

1 if e r(b) > Crr
0 otherwise

Crr(b) = {

with ¢;,,- the mean value of vector ¢y, ,-:

1 12
Ckr = E ; Ck','r(b)

We can note that at this stage of the process, the mean
chroma vector at the left is unused. It will however be
involved in the fine comparison step.

The learning phase is similar to [3]. The keys of all the
references are extracted. They are then stored in the index.
When storing one key, we define its associated value as the
identifier of the reference containing this key together with
the time of occurrence t; of the key in the reference. Let
us note that if one key & occurs several times, h(k) will
consist of all the different values stored with this key.

In the analysis phase, the keys of the query are extracted.
For one key k occurring at time t,(k) in the query we can
efficiently retrieve, thanks to the index function, all its oc-
currences in the references. If k& occurs at times t1(k), ...,
ti.(k) in the reference r, we store the couples (¢! (k), t,(k)),
ooy (t4(K), t4(k)) in a scatter plot (one scatter plot per ref-
erence).

Let us now consider that the query is an excerpt of the
reference r starting at time ty. Let us also consider that
the query is time-stretched by a factor « (either because
of some specific post-processing or because the query is
another record of the same song with a slightly different
tempo). Then, the key k extracted from the query at time
tq(k) should be retrieved in the reference r at time x(¢4(k)—
to). This means that, in the scatter plot of reference r, all
these corresponding keys produce dots that are located on
the straight line:

1
Y=-X+1
K

Though, the scatter plot also contains a meaningful number
of dots that are outside this line. These correspond to keys
that are found in the query and that occur several times in
the reference. We must indeed keep in mind that the keys
we defined are not very discriminative. Figure 4 shows an
example of such a scatter plot.

The last step consists of finding, for each scatter plot,
the *best’ straight line. Intuitively enough, the "best’ line
is the one comprising the highest number of dots. This is
done thanks to the Hough transform [11]. In brief, it is an
efficient counting technique that relies on the set up of an
accumulator, which references all possible lines. Each dot
of the scatter plot is iteratively tested in the following way:
all lines that go through that dot have their values increased
in the accumulator. At the end of the process, the line with
the highest value in the accumulator is the best one.

In the end, we have, for each reference, the parameters
of the best line (k and tg) and the number of dots (i.e. the
number of keys) that match this line. The M references
with the highest number of matching keys are considered
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Figure 4. Scatter plot of reference r

as the M best matches to the query. They are output as
candidates.

2.4 Final Scoring of the Candidates

At this stage of the process, the system has to compare the
reduced set of M best candidates with the query. We can
consequently afford a CPU-consuming comparison. The
state of the art in similarity offers a wide variety of algo-
rithms. In this work, we suggest a dynamic programming
approach that relies on the modeling of the audio signal
that we introduced in section 2.2. This can be seen as an
extension of the work in [9].

First, the query is cropped and rescaled according to the
parameters  and ¢y that have been output in the search-
by-index phase. The corrected query is represented by the
sequence of states {s1...Sm, }. As for the candidate refer-
ence, we use the notation {s}...s/,}.

When dynamically aligning two sequences of states, one
has to define three types of penalties.

e f%(s;): penalty assigned to the deletion of state s;
e fi(s;): penalty assigned to the insertion of state s;

e f°(si,s}): penalty assigned to the substitution of
state s; by state s’

In our implementation f¢ and f* are both taken constant
and equal to 0.3. This value has been experimentally de-
termined. Knowing that s; = (¢;, (¢;;, ¢ ) and 5; =
(5, (c} . ¢ 1)), we define f° by:

It;—t)]
[2(s4,85) = cos(ciy, ¢ ). cos(ciy, ¢ ) e @ :

The first cosine term penalizes the resemblance of the mean
chroma vector at the left of s; with the one at the left of
s;-. The second cosine term does the same for the mean
chroma vector at the right. The exponential term penalizes
the timing error between the occurrence of state s; and the
occurrence of state s’

Dynamic programming consists of iteratively filling a

scoring matrix D. For any (i,5) € {l.m} x {1..n},

D(i,j) contains the score of the alignment of the sub-
sequence {si...s;} with the subsequence {s}...s%}. D is
computed in the following manner:

D(i,j - 1).£(s})
D(i—1,j — 1).1*(s:,5))
D(i —1,7).f(s:)

D(i,j) = max

The score of the alignment of {s1...s,,} with {s]...s},} is
finally given by D(n,m) (Figure 5 shows an example of
matrix D). The candidate reference is considered as an
actual match to the query if the score is greater than a pre-
determined threshold.

States of the 2Znd signal

S0 100 150 200 280
States of the 1st signal

Figure 5. Scoring matrix of a dynamic alignment

3. EXPERIMENTS
3.1 Experimental Framework

Our experiments follow the evaluation framework described
in [12]. This framework was designed for the evaluation
of audio-fingerprint systems on the basis of real broadcast
streams. This constitutes a quite challenging evaluation,
even if one restricts the task to the detection of near-exact
matches, because the broadcast stations apply a wide va-
riety of different sound-processing to the music, thus re-
sulting in a heavy level of post-processing distortion to be
handled by the algorithm. The evaluated system learns a
database of reference music titles before the actual evalu-
ation. Each music title broadcast in the stream that corre-
sponds to one of the references has been manually anno-
tated in a global annotation file. The annotation contains
a unique identifier of the broadcast title, its start and end
times in the broadcast. When the algorithm is run on the
stream, it has to detect all the occurrences of the broadcast
references. One detection output by the algorithm contains
the identifier of the detected reference and its detection
time in the stream. If one output detection contains the
identifier r; and has a detection time that lies between the
annotated start time and end time of one occurrence of the
same title r;, we make this broadcast a detected title (DT).
Let us note that multiple detections of the same occurrence



of one given title are counted only once. Conversely, if
the algorithm detects a reference during an empty slot (de-
noted by n) or during a slot that contains another music
title, we count one false alarm (FA). There is no kind of in-
tegration performed on the false alarm counting: each out-
put corresponding to a false alarm is added up. Figure 6
illustrates the task of the algorithm as well as the scoring
procedure. The detections output by the algorithm are fig-
ured by the arrows. The way we integrate these detections
when scoring is illustrated by the overbraces.

1 DT LD/;T 1 DT
’I"il ’f‘il T‘Z‘Q ri3 7‘2'3 T‘Z‘S
11 I
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time
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IFA 1 FA IFA 1FA

Figure 6. Illustration of the evaluation framework

It is noticeable that the main objective of this framework
is to provide an evaluation methodology that fits a realis-
tic use-case with real-world data. The counterpart of this
strategy is that we have a limited control over the corpus,
which prevents us from displaying metrics such as the level
of distortion in the broadcast titles or the detection ability
of the algorithm at a scale that is shorter than the duration
of a song.

3.2 Corpus

Itis quite a major issue to bring together a reference database
of real music titles with the corresponding annotations (with
a reasonably low number of wrong annotations). In our
context, we could assemble an annotated database of 2400
pop-rock music titles. Let us note that such a database still
constitutes a realistic reference set for many applications.
It is for instance noticeable that the assembled database
covers all the music broadcasts of two different radio chan-
nels during two weeks. Besides, such a quantity of ref-
erences is large enough to get a fair idea of the system’s
capabilities.

As far as the analyzed stream is concerned, we worked
with 24h of the French radio RTL. These contain one pro-
gram that essentially features live performances of contem-
porary titles. The latter are not explicitly present in the
database but the corresponding studio versions are. In to-
tal, the stream contains 107 annotated music titles from the
database, 99 of which are near-exact matches whereas the
8 remaining are live versions of the corresponding refer-
ences.

Given the framing that we apply to the stream, whose
hop is set to 15 seconds, the algorithm is queried 24'?% =
5760 times. Since the queries are extracted from a real
broadcast, they consist of distorted versions of the refer-

ences, live versions of the references or empty slots (speech,
ads or musics that are not in the database). In terms of false
alarms, this means that the algorithm has the possibility to
output around 5760 x 2400 = 13, 824, 000 of them. These
figures confirm the relevance of the experiment.

3.3 Results

Figure 7 shows, in red, the results of the algorithm on a
classical ROC diagram. As most detection systems, our
algorithm’s output relies on a set of candidate detections
with given scores. The candidate references are originally
selected in the search-by-index step and they are finally
scored thanks to a dynamic alignment. In order to com-
plete the process, one can simply set a threshold on the
score: only the candidates with a score above the threshold
are output by the algorithm. In such a configuration, one
can evaluate the algorithm’s output with different thresh-
old values. Each point of the ROC curve thus corresponds
to the results obtained by the algorithm with one specific
threshold value. The X-coordinate corresponds to the num-
ber of false alarms and the Y-coordinate to the propor-
tion of detected titles. Such a curve allows to observe
the overall response of the algorithm and to compare dif-
ferent methods independently of the final post-processing.
For comparison, the ROC curve of a ’traditional’ audio-
fingerprint method [13] is plotted in black. This method
has proved to be at the level of the state of the art, notably
when working with very large databases (> 30, 000 refer-
ences).
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Figure 7. Results of the algorithm (ROC curve)

The results show that the method from [13] is indeed
very efficient at detecting near-exact matches: the ROC
curve is almost ideal if we do not consider the similar items.
The approach can indeed reach the highest number of cor-
rect detections (i.e. the 92.5% of the corpus that are near-
exact matches) while virtually outputting no false alarm.
As far as our novel method is concerned, the outputs of
the algorithm show that it is also able to detect near-exact
matches with a low number of false alarms, albeit a little
higher than the traditional system. But most importantly,
it is able to overstep the borders of exact matching. We



can indeed see that some of the points of the ROC curve
have a higher Y-coordinate than the proportion of near-
exact matches in the corpus. This means that the algorithm
is able to successfully detect some of the broadcasts that
are live versions of music titles that are stored in their stu-
dio version in the reference database! Interestingly, the an-
notated broadcast titles that are never reached by the ROC
curve correspond to live versions that have been transposed
compared to the studio version in the reference database.
Of course the more we go toward similarity, the higher
number of false alarms we generate. This sounds logical
since by loosening the matching requirements in order to
detect the live versions of some references, we also favor
the detections of distinct items that are musically similar to
some of the references.

In terms of run time, it takes our current Matlab imple-
mentation of the method 6 seconds to perform the index
search (across the entire database) for a 120s-long query.
We are thus confident that the algorithm can scale up to
much larger reference databases while keeping reasonable
computation times. For the sake of precision, the code
was run on an Intel Core 2 Duo @ 3,16 GHz with 6MB
of Cache and 8GB of RAM. We do not give details about
the running time of the fine comparison step. The latter is
indeed meant to process a fixed number (M) of best can-
didates, whatever the size of the database. Its running time
thus has no impact on the scalibility of the algorithm.

4. CONCLUSION

In this work we have presented a novel fingerprint model
associated with a tailored innovative search strategy. As a
member of the ”audio-fingerprint algorithms” family, the
resulting algorithm has the ability of managing large ref-
erence databases. Besides it has the very interesting capa-
bility of indifferently managing queries that are near-exact
matches of some reference of the database or queries that
are only similar to one reference. This result is achieved
thanks to a careful modeling that preserves the musical
significance of the signal at every calculation step (com-
putation of the model in state, extraction of binary keys,
aggregation of the index outputs).

The algorithm has been tested on a well-tried evalua-
tion framework for the detection of near-exact matches.
We have selected a specific corpus that includes both near-
exact and similar matches. The conclusion of this experi-
ment is that the algorithm could detect with a performance
close to the state of the art the items that were near-exact
matches and it could also detect some of the similar items.
These results are thus very encouraging.

Our perspectives include a more extensive testing of the
algorithm. The conducted experiment indeed involves a
middle-size database. We need to go towards bigger cor-
pora to check the scalability of the approach. We also tar-
get the further extension of the robustness of the model.
The described experiment has indeed emphasized the lack
of robustness of the current model to transposition. Be-
sides the search for straight lines in the scatter plots makes
it clear that the model is not robust to a change of struc-

ture. Trying to handle these while keeping the indexing
capability of the system are challenges of high interest.
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