Side Channel-aware Design

A. Biedermann

L. Chen

A. Heuser M. Jung M. Kasper R. Laue F. Madlener

W. Schindler A. Shoufan

M. Stöttinger

Q. Tian M. Zohner

Novel Analysis and Construction Concepts

Sorin Alexander Huss

- CASED Center for Advanced Security Research Darmstadt
 - and

Technische Universität Darmstadt Germany

TELECOM ParisTech

Skonomischer Exzellenz

Overview

Introduction

- Motivation
- Generic Attack Scenario
- Power Amount Analysis
 - Outline of DPA
 - AWGN Channel Model
 - Statistical Calculations
 - Analysis Results
- Constructive Methods
 - Localization of Leakage
 - Dynamically Mutating Processing Units
 - Virtualization in Multicore HW-Modules
- Summary

Why **Constructive** Side Channel Analysis? (1)

Why **Constructive** Side Channel Analysis? (2)

SLOEWE – Landes-Offensive zur Entwicklung Wissenschaftlich ökonomischer Exzellenz

Generic Power Attack Scenario

Fraunhofer

h_da Hochschule darmstadt UNIVERSITY OF APPLIED SCIENCES LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlichökonomischer Exzellenz

Overview

Introduction

- Motivation
- Generic Attack Scenario
- Power Amount Analysis
 - Outline of DPA
 - AWGN Channel Model
 - Statistical Calculations
 - Analysis Results
- Constructive Methods
 - Localization of Leakage
 - Dynamically Mutating Processing Units
 - Virtualization in Multicore HW-Modules
- Summary

Power Traces

$$P_{total} = P_{op} + P_{Data} + P_{el.noise} + P_{const}$$

 P_{op} Data dependent, but key independent power consumption

 P_{Data} Data and key dependent power consumption

 $P_{el.noise}$ Electronic noise of the hardware

P_{const} Constant power consumption of hardware module

- Functions of time
- Additive property
- Calculated at a certain time point in several traces

time point

h da

DARMSTADT F APPLIED SCIENCES

Differential Power Analysis (1) Noise in Power Traces

Distribution of Noise in the Traces:

Perform the same operations with the same input data. The fluctuations of the power value at the same time point in the captured traces are the **noise**.

Gaussian Distribution

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{1}{2}(\frac{x-u}{\sigma})^2)$$

$$P_{el.noise} \sim N(0, \sigma^2)$$

Only for a certain time point considered!

Differential Power Analysis (2) Power Models

Hamming Weight: $HW = \text{HammingWeight}(c_i \oplus k)$

Hamming Distance: $HD = \text{HammingWeight}(c_i \oplus \tilde{d}_i)$

Instantaneous Model: Power model based on the state of a certain register at some time point

Process Model: Power model based on two states changing within a time interval

Differential Power Analysis (3) Attack Scenario

Analysis Region:

- Large number of time points in area of interest
- Identification takes a lot of computation time

Differential Power Analysis (4)

Attack Outline

- T : Power traces matrix
- H: Hypothesis matrices (mapped from power model)
- R: Results matrix

$$\begin{pmatrix} R_{1,1} & \cdots & R_{1,M} \\ \vdots & \ddots & \vdots \\ R_{K,1} & \cdots & R_{K,M} \end{pmatrix} = StatAnalysis \begin{pmatrix} T_{1,1} & \cdots & T_{1,M} \\ \vdots & \ddots & \vdots \\ T_{D,1} & \cdots & T_{D,M} \end{pmatrix}, \begin{pmatrix} H_{1,1} & \cdots & H_{1,K} \\ \vdots & \ddots & \vdots \\ H_{D,1} & \cdots & H_{D,K} \end{pmatrix} \end{pmatrix} R_{i,j} = CorrCoef(T_{D,j}, H_{D,i})$$

Classification of some Power Analysis Methods

Algorithm	Differential Power Analysis	Stochastic Approach	Template Attack
Time Points Usage	One time point	Several time points	Several time points
Profiling Phase	No	Yes	Yes
Comments	Only one time point contributes to information leakage	 Identical device is required for the profiling phase The more time points are being used the more computational time and memory space are needed 	
Prerequisite	Power traces must be aligned in time domain		

X LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlichökonomischer Exzellenz

Power Amount Analysis (1) AWGN Channel

Additive White Gaussian Noise (AWGN) is a simple *channel model* in communication theory, which describes how the white noise adds up when the signal is passing through the channel.

$$N[i]$$

$$S[i] \longrightarrow \bigoplus^{\downarrow} O[i]$$

 $O[i] = S[i] + N[i] \qquad \qquad N \sim N(0, \sigma^2)$

Source: Web

Power Amount Analysis (2) Basic Power Model and Resulting Traces

AWGN based Hardware Model

$$P_o = P_{core}[i] + P_N[i]$$

For any trace $N \sim N(0, \sigma^2)$ holds in time domain

Power Amount Analysis (3) Properties of Power Model

$$\overline{P_{avg}} = \frac{1}{m_2 - m_1} (P_o[m_1] + \dots + P_o[m_2])$$
$$= \overline{P_o[i]}$$

th:
$$N = P_N$$
 $E(P_{avg}) = E(P_o)$
 $= E(P_{core}) + E(N)$
 $= E(P_{core})$

$$Var(P_{avg}) = Var(P_{o})$$
$$= Var(P_{core}) + Var(N)$$
$$= Var(P_{core}) + \sigma^{2}$$

$$Dev(P_{avg}) = \sqrt{Var(P_{core}) + \sigma^2}$$

h_da

Power Amount Analysis (4) Statistical Calculations

$$Var(T) = \begin{pmatrix} Var(T_{1,1} & \cdots & T_{1,M}) \\ \vdots \\ Var(T_{D,1} & \cdots & T_{D,M}) \end{pmatrix} = \begin{pmatrix} V_{1,1} \\ \vdots \\ V_{D,1} \end{pmatrix} \begin{pmatrix} R_{1,1} & \cdots & R_{1,K} \end{pmatrix} = StatAnalysis \begin{pmatrix} V_{1,1} \\ \vdots \\ V_{D,1} \end{pmatrix}, \begin{pmatrix} H_{1,1} & \cdots & H_{1,K} \\ \vdots & \ddots & \vdots \\ H_{D,1} & \cdots & H_{D,K} \end{pmatrix} \end{pmatrix}$$

$$R(1,i) = CorrCoef(V(D,1), H(D,1))$$

$$P \left[\begin{array}{c} \\ V_{1} \\ \vdots \\ V_{D} \\ V_{1} \\ \vdots \\ V_{D} \\ V$$

Compared to DPA the calculation complexity of PAA is quite low.

h da SIT

HOCHSCHULE DARMSTAD UNIVERSITY OF APPLIED

KINE - Landes-Offensive zur Entwicklung Wissenschaftlichökonomischer Exzellenz

AES-128: Experimental Results (1) Total Trace Usage TTU

AES-128: Experimental Results (2) Summary

Property	DPA	PAA	
Total Trace Usage	7.000	4.800 – 5.500	
		Var	142s
Total Attack Time	247s	Dev	146s

Bottom Line:

- PAA requires both considerably less computation time and power traces than DPA to mount a successful attack.
- PAA features a significant trace misalignment tolerance.
- However, PAA does not identify leakage sources...

Overview

Introduction

- Motivation
- Generic Attack Scenario
- Power Amount Analysis
 - Outline of DPA
 - AWGN Channel Model
 - Statistical Calculations
 - Analysis Results
- Constructive Methods
 - Localization of Leakage
 - Dynamically Mutating Processing Units
 - Virtualization in Multicore HW-Modules
- Summary

IOEWE – Landes-Offensive zur Entwicklung Wissenschaftlich ökonomischer Exzellenz

General Workflow of Constructive Side Channel Analysis

h_da HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES

LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlichökonomischer Exzellenz

Stochastic Approach (1) Basic Model

h_da HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlichökonomischer Exzellenz

Stochastic Approach (2) Deterministic Part $h_t(x,k)$

Hypotheses

 $h_t(x,k)$ represents the physical leakage

 $h_t(\cdot, k)$ is unknown, but by $\widetilde{h}_t^*(\cdot, k)$ it may be approximated from an initial training phase

 $\widetilde{h}_t^*(\cdot,k) = \sum_{j=0}^{u-1} \widetilde{\beta}_{j,t;k} \cdot g_{j,t;k}(\cdot,k)$

Weighting coefficients to model the impact of the basis function on the leakage

Example (1) Leakage of Different AES Implementations

Experiments from SASEBO platform

Fraunhofer

h_da HOCHSCHULE DARMST UNIVERSITY OF APPLIE

LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlich ökonomischer Exzellenz

Example (2) Reason for Characteristic Leakage in TBL

- Different propagation delays between some components may cause data dependent glitches
- The Stochastic Approach can be used as a tool in order to support the development of secure designs by identifying leakage sources

LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlich ökonomischer Exzellenz

Stochastic Approach (4) Symmetry Properties

ökonomischer Exzellenz

- Weight coefficients may be used to identify SCA design flaws
- Implementation issues are a deterministic and independent of the sub key value
- Inappropriate models may lead to sub key value dependent weight coefficients
- Checking the suitability of the model in the profiling phase is mandatory

DARMSTAD

Stochastic Approach (5) Results on the Impact of Symmetries

Attack on one set of power traces with two different models and variable amounts of traces in the profiling phase

Success Rate with Model A

Success Rate with Model B

SLOEWE – Landes-Offensive zur Entwicklung Wissenschaftlich ökonomischer Exzellenz

Countermeasures

h_da HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES

Store - Landes-Offensive zur Entwicklung Wissenschaftlichökonomischer Exzellenz

Dynamically Mutating Processing Units (1) Basic Phenomena

Fraunhofer

HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES

h da

LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlichökonomischer Exzellenz

Dynamically Mutating Processing Units (2) Detailed Concept

Many-dimensional design space for processing units

- Type, i.e., circuit variant of dedicated processing unit
- Parallelization degree within a distinct unit
- Algorithm version for envisaged functionality

Properties

- Inner state not observable during cryptographic processing
- Hiding concepts on different layers to gain maximum resistance effects
- Randomly selected processing unit instance at runtime

MSTADT PLIED SCIENCES Skonomischer Exzellenz

Module Type (1) AES SubBytes

SLOEWE – Landes-Offensive zur Entwicklung Wissenschaftlich ökonomischer Exzellenz

Module Type (2) DPA Resistance of SBox Groups

Mutated SBox group:

- Dynamically mutated, heterogenous architecture of grouped SBoxes
- Selection of bytes and SBoxes by a random number
- Additional costs by switching logic only
- More resistant to DPA attack with 5.000 traces than homogenous architectures

SLOEWE – Landes-Offensive zur Entwicklung Wissenschaftlich ökonomischer Exzellenz

Module Type (3) Leakage of Module Instances

Leakage (blue areas in Leakage Monitor)

Nearly no leakage

TECHNISCHE

UNIVERSITÄT

DARMSTADT

h_da

LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlich ökonomischer Exzellenz

Parallization Degree (1) Architecture of eMSK Multiplier

eMSK: enhanced Multi-Segment-Karatsuba

Fraunhofer

h da

TADT ED SCIENCES SKONOME

LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlichökonomischer Exzellenz

Parallelization Degree (2) SC Resistance of eMSK₂₄ 192 Bit MULT

Power Analysis without Countermeasure:

 $P(t_i) = P_{process}(t_i) + P_{noise}(t_i)$ $Var(P(t_i)) = Var(P_{data}(t_i)) + \underbrace{Var(P_{Op}(t_i))}_{Var(P_{Op}(t_i)) \to 0} + \sigma$

Power Analysis with Countermeasure:

DPA result: 500 traces on unsecured eMSK asure:

0.3

Fraunhofer

X LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlic ökonomischer Exzellenz

Dynamically Mutating Processing Units (3) Application to ECC (I)

Information Leakage of ECC Implementation

- Finite Field Multiplication
 - With respect to the application
- Point-addition and -double Operation
 - Runtime dependency based on parallelism
- ECC Arithmetic
 - Point-addtion and -double algorithm
 - Point-multiplication algorithm

Dynamically Mutating Processing Units (4) Application to ECC (II)

Focus on Second Axis of Design Space Parallelism

- Heterogenous, parallel multiplier scheme
- Different power signature of ECC arithmetic
- Different point-multiplication algorithms
- Virtualization methods in hardware
- Architectures with dynamical concurrency

h da

Virtualization (1) Memory with Integrity (I)

Private Memory Space

- Workload balancing with respect to the integrity of each user space
- Status register manager stores and recovers the context switching data
- Intermediate state information and data of each CPU can not be transferred to another user space

Virtualization (2) Memory with Integrity (II)

Private Memory Space

User1

User3

User2

 Middleware encapsulates the processing units from the memory

User2

 Different users can share resources - without losing the integrity of their data

User1

User3

User2

Time

ECC

AES

Virtualization (3) Runtime System Reconfiguration

Reconfiguration Architecture

- Reconfiguration without stopping current running processes
- Abstraction between control flow and data flow
- Hiding IP-Core configuration time (up to 100 ms) by workload balancing

h da

Virtualization (4) Tamper Resistance of FPGAs

Tamper Monitoring

- Detect malicious IP-Core reconfiguration during runtime - without any loss of throughput
- Self-healing of tampered IP-Core via reconfiguration
- During the healing process the middleware uses a not reconfigured IP-Core for work balancing

DARMSTADT ZUR DF APPLIED SCIENCES ÖKO

h da

Virtualization (5) Side Channel Resistance (I)

Concurrency

- Executes different control flows for point multiplication without changing the program code
- Data-independent runtime variation
- Different amounts of noise caused by varying parallelism of Finite Field multiplications

Science - Landes-Offensive zur Entwicklung Wissenschaftlich ökonomischer Exzellenz

Virtualization (6) **Side Channel Resistance (II)**

Topology

- Change of the binding of each multiplication process
- Effect on the propagation delay of each multiplication - from execution to execution
- Varying power consumption caused by different glitch situations

Science - Landes-Offensive zur Entwicklung Wissenschaftlich ökonomischer Exzellenz

Overview

Introduction

- Motivation
- Generic Attack Scenario
- Power Amount Analysis
 - Outline of DPA
 - AWGN Channel Model
 - Statistical Calculations
 - Analysis Results
- Constructive Methods
 - Localization of Leakage
 - Dynamically Mutating Processing Units
 - Virtualization in Multicore HW-Modules
- Summary

LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlich ökonomischer Exzellenz

Conclusions

- Fast power trace analysis methods are mandatory for design space exploration purposes.
- Localization of leakage sources from power trace analysis is a prerequisite to SCA-aware module construction.
- The novel concept of dynamically mutating processing elements and virtualization techniques is a viable foundation to a new SCA-aware construction methodology.

Ongoing Work: Automatic SCA-aware Hardware Synthesis

LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlichökonomischer Exzellenz The Engineer's Destiny...

h_da HSCHULE DARMSTADT VERSITY OF APPLIED SCIENCES

X LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlichökonomischer Exzellenz