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ABSTRACT

We consider signal-carrier and single-user transmission over a
frequency-selective channel. We focus on the data-aided joint
estimation of the dispersive channel and the frequency offset.
We propose a new training sequence selection strategy relevant
for both parameters of interest in the context of a Ricean fading
channel. Our strategy relies on the minimization of the Mean-
Square Error on data symbols at the output of a Wiener equal-
izer after frequency offset compensation. Simulations based
on bit error rate confirm our claim.

1. INTRODUCTION

Usually the transmitted signal can be affected by inter sym-
bol interference due to the multipath channel and a frequency
offset caused by a Doppler effect or a local oscillator drift. Be-
fore applying an offset correction and an equalizer, the channel
and the frequency offset, which are unknown, have to be esti-
mated. In many applications, parameter estimation is achieved
via the transmission of known (training) symbols prior to the
unknown data symbols. A natural question is therefore: how
to select the training sequence at the transmitter side, so that
relevant estimates of the unknown parameters can be obtained
at the receiver side ? Whereas the design of optimal training
sequence is fixed when only the channel is unknown or when
only the frequency offset is unknown [2, 1], the design of the
optimal or relevant training sequence associated with the joint
estimation issue is still an open problem. This is the concern
of this paper.

Let us consider our signal model. We focus on a single-
carrier and single-user communications scheme. Assume that
a training sequencet(0), t(1), . . . , t(NT − 1) with lengthNT

is transmitted. The received signaly(n) has the form:

y(n) = e2ıπfn

L−1
∑

l=0

h(l)t(n − l) + w(n), (1)

where parameterf denotes the frequency offset and where co-
efficientsh(0) . . . h(L − 1) represent the channel coefficients.
Sequencew(n) denotes a white complex-valued circular zero-
mean Gaussian noise of varianceσ2 = E[|w(n)|2]. Here,t(n)
represents the training sequence. In the sequel, we denote by
h = [h(0) . . . h(L − 1)]T the unknown channel vector and by

t = [t(0), t(1) . . . t(NT − 1)]T the vector of training symbols.
Training symbols are assumed to be known by the receiver.
Here, the superscript(.)T represents the transpose operator.
For the sake of simplicity, we assume that training sequence
t(n) is a realization of a random stationary sequence, possibly
correlated. The channel is assumed to be Rice distributedi.e.,

h =

√

K

K + 1
hd +

√

1

K + 1
hr (2)

wherehd is a deterministic vector normalized in such a way
that‖hd‖2 = 1 and wherehr is a complex circular Gaussian
random vector with zero mean and covariance matrixΣ =
E[hrh

H
r ], normalized in such a way that Tr(Σ) = 1. The

superscript(.)H stands for the conjugate transpose operator.
CoefficientK is the so-called Ricean factor. In the sequel,
we respectively refer to the first and the second term of the
righthand side of (2) as the line of sight (LOS) and the non line
of sight (NLOS) components of the channel.

In the present paper, we assume that the LOS componenthd

of the channel is known at both the transmitter and the receiver
sides. This is motivated by the fact that in most wireless ap-
plications, the coherence time corresponding to the LOS com-
ponent is much larger than the coherence time corresponding
to the NLOS component. Note that in this case, the estima-
tion of h is actually equivalent to the estimation of the NLOS
componenthr. We denote the unknown parameter vector as
θ = [f,hR,hI ]

T, wherehR and hI respectively represent
the real and the imaginary part ofh. Although we assume a
stochastic channel model, we focus on a standard determinis-
tic estimation approach for the sake of simplicity (our results
can however be generalized to a Bayesian estimation approach
without difficulty). Therefore we concentrate on the use of the
Maximum Likelihood (ML) estimator, defined by

θ̂ = arg max
θ̃

log p(y(0), y(1) . . . y(NT − 1)‖θ̃). (3)

The implementation and performance of the above estimate of
θ has been extensively studied in the literature [2, 1, 4, 3]. In
the sequel,f̂ and ĥ respectively denote the estimates of the
frequency offset and the channel.

The aim of the present paper is to propose a method allowing
to select training sequencet in a relevant way. It is natural to
search for the training sequencest which minimize the estima-



tion error. For instance, when the numberNT of training sym-
bols is large, [4] and [2] characterize the training sequences
minimizing the (limit of the) mean square error (MSE) on the
channel:

E
[

‖∆h‖2 ‖t
]

(4)

where∆h = ĥ − h and, on the otherhand, characterize the
training sequences minimizing the MSE on the frequency off-
set:

E
[

(∆f)2 ‖t
]

, (5)

where∆f = f̂ − f . Here,E [. ‖t] denotes the conditional
expectation w.r.t.t and‖.‖ denotes the Euclidian norm. Un-
fortunately, it turns out that the training sequences minimiz-
ing (4) are completely different from the training sequences
minimizing (5). In other words, there isno training sequence
t allowing to jointly minimize the estimation error on the
channel and on the frequency offset. In order to overcome
this problem and to exhibit a single training sequence selec-
tion strategy, [1] investigates the minimization of the sum
E[‖∆h‖2‖t] + E[(∆f)2‖t]. However, channel estimation er-
rors will have a different impact, e.g., on the bit error rate, than
frequency offset estimation errors. Consequently, it is more
reasonable to minimize a weighted sum of the MSE such as
whE[‖∆h‖2‖t]+wfE[(∆f)2‖t] wherewh andwf are respec-
tively chosen in accordance with the impact of the channel and
the frequency offset estimation errors on the overall system
performance e.g., the bit error rate. An even more global ap-
proach suggested by [1] is to search for the training sequences
t which minimize the criterion

Tr
(

WE

[

(θ̂ − θ)(θ̂ − θ)H ‖t
])

(6)

whereW is a weighting matrix which enables to place differ-
ent weights on channel estimation errors and frequency offset
estimation errors. Unfortunately, the choice of weightingma-
trix W is a difficult task. To our knowledge, it has not been
addressed in the literature.

In this paper, our goal is to propose a relevant Training
Sequence Design (TSD) criterion and to exhibit training se-
quences minimizing the latter criterion Furthermore, the re-
sulting “optimal training” sequences should not depend on pa-
rameterθ, sinceθ is unknown at both the transmitter and the
receiver. Solutions should only depend on the prior knowledge
onθ, namelyK, Σ and the LOS componenthd.

2. THE PROPOSED CRITERION

Clearly, the selection of a TSD criterion crucially dependson
the receiver’s architecture. Indeed, each particular receiver
may be more or less sensitive to channel estimation errors / fre-
quency offset estimation errors. Therefore, we propose to con-
struct our TSD criterion based on the simple receiver structure
depicted at subsection 2.1: First, the receiver compensates for
the frequency offset using the estimated valuef̂ of f . Sec-
ond, it compensates for the channel distortion using a classical
Wiener filter based of the estimated valueĥ of h. Next, we de-
rive a TSD criterion in accordance with the receiver structure

of interest. Basically, our TSD strategy consists in searching
for the training sequences such that the mean square error on
data symbols at the output of the Wiener filter, is minimum. Of
course, our “optimal” training sequences will be relevant when
the receiver coincides with the one depicted at subsection 2.1.
Nevertheless, in the case where a different receiver is used, it is
reasonable to believe that the proposed training strategy is still
likely to improve the system performance compared to more
standard training strategies.

2.1. Receiver structure

We assume that the transmission consists in a training mode
during which training sequencet with length NT is trans-
mitted, followed by a data mode during which data sequence
d = [d(0), d(1), . . . , d(ND−1)]T with lengthND is transmit-
ted. For the sake of simplicity,d(n) is assumed to be an inde-
pendent identically distributed (i.i.d.) sequence with variance
σ2

d = E[|d(n)|2]. Note however that our results can be gener-
alized to the case whered(n) is a colored sequence. Parameter
vector θ is estimated using (3). The receiver first compen-
sates for the value of the frequency offset: it generates signal
yc(n) = e−2ıπf̂ny(n). For eachn ≥ NT + L,

yc(n) = e−2ıπ∆fn

L−1
∑

l=0

h(l)d(n − NT − l) + w(n).

Then, a linear equalizer with coefficientsg =
[g(−Lg), . . . , g(Lg)] is used on the received signal. The
output equalizerz(n) is defined by

z(n) =

Lg
∑

k=−Lg

g(k)yc(n − k).

Finally, a hard detector is used on the equalizer output in order
to recover the transmitted data symbols.

2.2. Training Sequence Design criterion

A natural approach would be to exhibit the training strategy
which leads to the minimum bit error rate at the detector out-
put. Unfortunately, such a criterion is very difficult to express
as a simple function of the training strategy. Here, we propose
to minimize the MSE at the output equalizer. In the sequel, we
define

MSE(n, t) = E
[

|z(n) − d(n − NT )|2 ‖t
]

.

It is worth noting thatz(n) is a non stationary sequence due to
the presence of factore−2ıπ∆fn. Therefore, the above expres-
sion of the MSE depends on indexn. It is of course impracti-
cal to minimize the MSE for all possible values ofn. Here, we
propose to minimize the average MSE w.r.t. all data symbols:

MSE(t) =
1

ND

NT +ND−1
∑

n=NT

MSE(n, t). (7)

The above criterion depends on the training sequencet via the
estimation errors on parametersh andf . The objective of the
next section is to express MSE(t) in closed-form.



3. THE CRITERION EVALUATION

In order to express (7) in a more convenient way, the first step
is to provide a simple expression of MSE(t) as a function of
the estimation error on parametersh andf . The second step
is to relate the latter estimation errors to the training strategy.
The third step is to obtain a simplified version of Eq. (7).

Step 1: MSE as a function of the estimation error After
straightforward but tedious algebraic manipulations, we obtain

MSE(t) = Eh[MSE(t‖h)]

where

MSE(t‖h)= σ2
d + σ2

∫ 1

0

|(g + ∆g)(ν)|2dν

+ σ2
d

∫ 1

0

|h(ν)|2|(g + ∆g)(ν − ∆f)|2dν

− 2σ2
dℜ
[

S(∆f)

∫ 1

0

(g + ∆g)(ν − ∆f)h(ν)dν

]

with

S(ν) =
1

ND

NT +ND−1
∑

n=NT

e−2ıπνn

and g (resp. g + ∆g) is the Wiener filter associated with
h (resp. h + ∆h). In the above expression, we use the
notationp(ν) =

∑L2

l=−L1
p(l)e−2ıπνn for any vectorp =

[p(−L2), · · · , p(L1)]
T of length (L1 + L2 + 1). The nota-

tion MSE(t‖h) stands for the MSE given a realization ofh.
ℜ[.] represents the real part of a complex-valued term.

In order to obtain a simple link between MSE(t‖h) and the
estimation error, we consider the ”asymptotic” regime,i.e., we
assume thatboth the sizeNT of the training sequence and the
sizeND of the data sequence tends to infinity, while the ratio
ND/NT converges to a constant. We assume that

lim
NT →∞

ND/NT = α

whereα is a constant depending on the system of interest. We
recall (cf. [4, 2]) that the MSE of channel estimation is of
order1/NT while the MSE of frequency offset estimation is of
order1/N3

T . Consequently, functionS(f) can be decomposed
as follows

S(∆f) = 1 − ıπ(2 + α)NT ∆f

− 2π2(1 + α + α2/3)N2
T (∆f)2 + op(1/NT )

where op(1/NT ) is negligible w.r.t. 1/NT in probability.
Based on the above decomposition, we are able to show that

MSE(t‖h) = e0 + e1 + e2 + e3 + op(1/NT )

where

e0 = σ2
d +

∫ 1

0

(σ2
d|h(ν)|2 + σ2)|g(ν)|2dν

− 2σ2
dℜ
[
∫ 1

0

h(ν)g(ν)dν

]

e1 =

∫ 1

0

(σ2
d|h(ν)|2 + σ2)γg,g(ν)dν

e2 = 2σ2
d(2 + α)πNTℑ

[
∫ 1

0

h(ν)γg,f (ν)dν

]

e3 = 4σ2
dπ2(1 + α + α2/3)N2

T γf,fℜ
[
∫ 1

0

g(ν)h(ν)dν

]

whereℑ[.] represents the imaginary part and where

γg,g(ν) = E[|∆g(ν)|2] (8)

γg,f (ν) = E[∆g(ν)∆f ] (9)

γf,f = E[(∆f)2]. (10)

The terme0 represents the error due to the Wiener filter based
receiver whenh and f are known. Errore1 (resp. e3) is
the extra term associated with the mis-estimation ofh (resp.
f ). Finally e3 is the supplementary error caused by the mis-
estimation of bothh andf .

Our aim is now to express the error on the Wiener filter as a
function of the error on the channel filter. Under the assump-
tion of an infinite length Wiener filter (i.e., Lg → ∞) , it is
easy to check that

∆g(ν) =
−σ4

dh(ν)
2
∆h(ν) + σ2

dσ2∆h(ν)

(σ2
d|h(ν)|2 + σ2)2

Then we have

γg,g(ν) =
(σ8

d|h(ν)|4 + σ4
dσ4)γh,h(ν)

(σ2
d|h(ν)|2 + σ2)4

(11)

−
2ℜ
[

σ6
dσ2h(ν)

2
γ̃h,h(ν)

]

(σ2
d|h(ν)|2 + σ2)4

γg,f (ν) =
σ2

dσ2γh,f (ν) − σ4
dh(ν)

2
γh,f (ν)

(σ2
d|h(ν)|2 + σ2)2

(12)

where

γ̃h,h(ν) = E[∆h(ν)2]

and whereγh,h(ν) (resp. γh,f (ν)) is defined similarly to
Eq. (8) (resp. Eq. (9)).

Step 2: MSE as a function of the TS statistics In the se-
quel, we expressγh,h(ν), γh,f (ν) andγf,f (ν) as a function
of the training sequence, actually, as a function of the training
sequence statistics. Before going further, we consider thetrain-
ing sequence as a realization of a zero-mean stationary random
sequence.



WhenNT is large, it is known that (cf. [1])

E[∆h∆hH] =
σ2

NT

(

R−1
t +

3

2

hhH

hHRth

)

E[∆h∆hT] =
3σ2

2NT

hhT

hHRth

E[∆h∆f ] = −ı
3σ2

2πN2
T

h

hHRth

E[(∆f)2] =
3σ2

2π2N3
T

1

hHRth

whereRt is theL-dimensional covariance matrix defined by
{r(k − l)}k,l=0,··· ,L−1 with r(k − l) = E[t(n + k)t(n + l)].
If we assume that the sequence{r(k); k = 0,±1, · · · } is ab-
solutely summable, then we can define the following spectrum
associated with the training sequence

Stt(ν) = |q(ν)|2 =
∑

k∈Z

r(k)e−2ıπkν

It is easy to check that

r(k) =

∫ 1

0

|q(u)|2e2ıπkudu

This implies that

hHRth =

∫ 1

0

|q(u)|2|h(u)|2du

Consequently, we have

γ̃h,h(ν) = − 3σ2

2NT

(h(ν))2
∫ 1

0
|q(u)|2|h(u)|2du

γh,f (ν) = −ı
3σ2

2πN2
T

h(ν)
∫ 1

0
|q(u)|2|h(u)|2du

γf,f =
3σ2

2π2N3
T

1
∫ 1

0
|q(u)|2|h(u)|2du

.

A closed-form expression forγh,h(ν) is more complicated
since we have to handle matrixR−1

t . More precisely,
γh,h(ν) depends ondL(ν)R−1

t dL(ν)H where dL(ν) =
[1, · · · , e−2ıπ(L−1)ν ]. In order to express the latter quantity
as a simple function ofq(ν), we notice that, when the channel
lengthL is large enough,Rt becomes a large Toeplitz matrix
for which the inverseR−1

t can be well approximated by a cir-
culant matrix (cf. [5]) described by its first row

[
∫ 1

0

1

|q(u)|2 e2ıπkudu

]

k=0,··· ,L−1

Based on this approximation, we obtain

γh,h(ν) =
σ2

NT

(

L

|q(ν)|2 +
3

2

|h(ν)|2
∫ 1

0
|q(u)|2|h(u)|2du

)

When bothNT andL become large, the MSE finally becomes

MSE(t) = MSE0 +
σ2

dσ2

NT

J(q) (13)

where MSE0 is a constant which represents the average MSE
that one would have observed if the estimation was perfect, and
where the “excess MSE”J(q) has the following form

J(q) =

∫ 1

0

c1(ν)

|q(ν)|2 dν + βE

[

1
∫ 1

0
c2(ν)|q(ν)|2dν

]

. (14)

with β = 27/2 + 9α + 2α2. c1(ν) is a deterministic function
defined by

c1(ν) = Lσ2
dE

[

σ4
d|h(ν)|4 + σ4

(σ2
d|h(ν)|2 + σ2)3

]

. (15)

Finally c2(ν) is a random process defined by

c2(ν) =
|h(ν)|2

∫ 1

0

σ2

d
|h(u)|2

σ2

d
|h(u)|2+σ2

du
. (16)

Our approach consists in selecting the value of the power spec-
trum |q(ν)|2 of the training sequence which minimizes the ex-
cess MSEJ(q). To that end, we should obtain a closed form
expression ofJ(q). In particular, the expectation in the second
term of the righthand side of (14) should be derived in closed
form. This task is however involved and, due to the lack of
space, will only be investigated in an extended version of this
paper. Here, instead of directly minimizing (14), we rather
minimize a simplier criterionJd(q) which can be interpreted
as an approximation of the initial criterionJ(q).

Step 3: Approximated MSE As explained above, we now
propose a simplier training sequence design criterion based
on (14). Our criterion is based on the following observation.
For any continuous functionalF of the channel coefficientsh,
E [F(h)] converges toF(hd) as the Ricean factorK tends to
infinity. Following this idea, the proposed simplified criterion
consists in replacing each occurence ofh(ν) in (14) with the
transfert functionhd(ν) of the LOS component. The simplified
training sequence design criterion is defined by

Jd(q) =

∫ 1

0

cd
1(ν)

|q(ν)|2 dν + β
1

∫ 1

0
cd
2(ν)|q(ν)|2dν

. (17)

wherecd
1(ν) is obtained by removing the mathematical expec-

tation and by replacingh(ν) with hd(ν) in Eq. (15), and where
cd
2(ν) is obtained by replacingh(ν) with hd(ν) in Eq. (16).

Of course, the above criterionJd(q) is likely to be a relevant
approximation ofJ(q) provided that the Ricean factorK is
large enough. The training strategy proposed in the forthcom-
ing section is therefore appropriate whenK is large. On the
otherhand, the minimization of the initial criterionJ(q) which
is likely to provide better results for moderate values ofK, will
be investigated in future works.

4. OPTIMAL TRAINING SEQUENCE

It can be shown that the minimization ofJd(q) w.r.t. q reduces
to a convex optimization problem. Using Lagrange optimiza-
tion method, we prove the following result. The proof is omit-
ted due to the lack of space.



Theorem 1 Criterion Jd defined by Eq. (17) is minimum un-
der power constraint

∫ 1

0
|q(ν)|2dν ≤ P for

|q(ν)|2 = P

√

cd
1(ν)/(µ − cd

2(ν))
∫ 1

0

√

cd
1(u)/(µ − cd

2(u))du
(18)

whereµ is such that
∫ 1

0
cd
2(u)

√

cd
1(u)/(µ − cd

2(u))du =
√

β.

We now make the following comments.

• In practice, a training sequence with power spectrum (18)
can be very simply generated as the output of a digital filter
with relevant coefficients excited by a known sequence.

• The generation of a training sequence following (18) can
be achieved without any additional computational complexity
compared to a traditional (white) training sequence since the
above filter has to be evaluated only once by transmission.

• When K is large but cannot be considered as infinite, as
mentioned in previous section, we propose to still make use
of the proposed training sequence (18). Indeed, simulations
show that performance gains can be obtained by using the “col-
ored” training sequence (18) when compared to an uncorre-
lated training sequence.

5. SIMULATIONS

We considerNt = 50, L = 5 andα = 10. The carrier fre-
quency offset is fixed tof = 0.1. All simulated points are
averaged over100 Monte-Carlo runs for which we have mod-
ified the deterministic and random part of the channel at each
trial with respect to the zero-mean unit-variance Gaussiandis-
tribution.

In Figure 1, we display the theoretical MSE versus SNR
(with K = 5) when the parameters are perfectly known
and when the parameters have to be estimated with either a
white training sequence or the suggested training sequence.
In Figure 2, we also plot the theoretical MSE versusK (with
SNR=15dB). We observe that the gain in terms of MSE exists
but is small between the white and colored training sequence.
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In Figure 3, we plot the Bit Error Rate (BER) versus SNR
(with K = 5) when a frequency compensation and a Wiener
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equalizer based on the estimated values of the parameters are
employed. We remark that the gain in performance is of inter-
est. Moreover we guess that the gain may be more important
if we carry out the training sequence design relying on the true
criterion (14) instead of on the simplified Eq.(17).
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