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Abstract— This paper examines the asymptotic (large sample) per- and high SNRs, and is robust to Ricean fading effects and tim-
formance of a family of non-data aided feedforward (NDA FF) ronlin- ing errors.
ear least-squares (NLS) type carrier frequency estimator$or burst-mode

phase shift keying (PSK) modulations transmitted through AVGN and
flat Ricean-fading channels. The asymptotic performance ofhese esti- Il. PROBLEM FORMULATION
mators is established in closed-form expression and comped with the Consider the baseband representation of an M-PSK modu-

modified Cramér-Rao bound (MCRB). A best linear unbiased estimator . .
(BLUE), which exhibits the lowest asymptotic variance within the family  lated signal transmitted through an AWGN channel. Assume

of NDA FF NLS-type estimators, is also proposed. that filtering is evenly split between transmitter and reeei
so that the overall channel is Nyquist. Filtering the reediv
I. INTRODUCTION waveform through a matched filter and sampling at the right

o - o time instants yields:
Burst transmission of digital data and voice is employed

in time division-multiple access (TDMA) and packet demand-z(n) = w(n)e? ®*FeTn+0) Ly(n)  n=0,1,...,N-1, (1)
assignment multiple-access (DAMA) satellite communaati
and terrestrial mobile cellular radio systems. Converatilgn
synchronization of burst transmissions requires a largebar
of overhead symbols, which results in reduced spectral e
ciency and increased transmission delays [4].

In this paper, a family of non-data aided (NDA) or blind non
linear least-squares (NLS) feedforward frequency offséit e >5° 5 . : A ;
mators for carriers that are fully modulated by M-ary pha: ':E{“’(”)' ), The S|gnarl]-to-N0|se R?{“O IS deflmed as
shift keying (PSK) modulations is proposed and its asymp N R— 10logyo(oy,/0y). Furthermore, without any loss in
totic (large sample) performance analyzed in a rigorous wedenerality, we assume for the rest of the paperhato. Note
The proposed frequency offset estimators exploit a generijjat & non-zerovalue féris immaterial to the analysis that will
ized form of the Maximum Likelihood Feedforward (ML FF)P€ carried over in this paper. In additighcan be estimated by
algorithm, that was originally proposed by A. J. Viterbi andneans.of the V&V estimator [12] after the frequency offset is
A. M. Viterbi as a blind carrier phase estimator with imprdve d€termined. . .
performance at low and intermediate Signal-to-Noise Ratig. As depicted by (1), the problem that we pose is to estimate

(SNRs) [12], [10]. This carrier phase estimator is referired | € unknol\f[\_/nl_fretquency’e of g h(?dr_rponic embedded in un-
the literature as the Viterbi and Viterbi (V&V) algorithm]js Known multiplicative u(r)) and additive noisex(n)), assum-

[9, p. 280]. ing knowledge of the received samples(n)} ! The solu-

A number of blind frequency offset estimators for burstion that we pursue consists of evaluating first certain muse
M-PSK modulations were reported and partially analyzed f&@f the output that will remove the unwanted multiplicative e
AWGN channels, without taking into account possible fadinEfCtS introduced by the M-PSK modulated sequence). It
effects [2], [3] Reference [5] introduces another fam"’y 0 urns out that the I_’esultlng problem reduces to the Standard
non-data aided feedforward carrier frequency offset extins  Problem of estimating the frequency of a constant amplitude
that rely on a rather restrictive set of assumptions and ehg3armonic embedded in additive noise, for which standard-NLS
asymptotic variance is evaluated based on several appaexirfyP€ estimators can be developed and their statisticakpties
tions. The goal of the present paper is to examine rigordhely a@nalyzed in a rigorous manner.

erformance of the blind least-squares estimator [8] in AVG
gnd flat Ricean-fading channels,qand to propose egti]matths w . FREQUENCY OFFSET ESTIMATION

where {w(n)} is the sequence of zero-mean unit variance

(02 := E{|w(n)|*} = 1) independently and identically dis-
ibuted (i.i.d.) M-PSK symbols§ and f. := F.T stand

or carrier phase and frequency offset, respectivElgenotes

the symbol period, andv(n)} is a zero-mean white Gaus-

sian noise process independentwofn) and with variance

improved performance. Consider the polar representation:
As we shall see, the proposed family of nonlinear frequency Je(n)
offset estimators presents high convergence rates (asyimpt z(n) = p(n)e ) ()

variances on the order of O(N?), where N denotes the gnd define the family of processes:
number of available samples), provides high accurate fre- ‘

guency offset estimates, can cope with large frequenceisffs yr(n) = pk(n)eJM"o(”) , k=0,1,...,M. 3)
(+=(50/M)% of the symbol rate), and admits low complex- . . ]
ity (dig/ital)implementations, without being necessary t@mv Fork =0,..., M, introduce the class of frequency estimators:
sample (fractionally-sample) the received signal fastanthe 1 1 V=l )
Nyquist rate. The performance of these algorithms achieves  f(F)—_— a1¢ max |— Zyk(n)e*ﬂ“fﬂn 4)
closely the modified Cramer-Rao bound (MCRB) at medium ° M |fol<1/2 | N —o




In order to establish the asymptotic unbiasedness andssonsihere:
tency of estimators (4), some preparatory results arewede ) ok
next. Conditioned onw(n), x(n) is normally distributed By :=E{lyx(n)[*} = E{p™"(n)} ,
with the probability density function (pdff(z(n)|w(n) = — 2 _ 2k, \ i2Mp(n)
2rl/M, 0 < I < M — 1) ~ N(w(n)exp(j2rfen), o2). Cri= [E{yi(n)} = [E{p™ (n)e H-

Due to (2), it follows that:
) ) Exploiting (7) and [7, eq. (6.643.4)], the following relaxti
fp(n), p(n)|w(n) = 2nl/M) = %e“” (m)+1)/ was derived in [12, (A17)]:
. er(n) cos[p(n)—2mw(I4+M fen)/M] /o> ) (5)

k 2
k
E{p*(n)} = o2 <>1’W-!. 13
Based on (5), the joint and marginal pdfaf:) ande(n) take ) =0y qz::o q (2) ¢ (13)

the expressions:
- Similar to (10),C} can be obtained as:
Yy

Flotn).om) = 1 3 £(olm) ) = 27 it M 4 Do
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M fen)
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Following a similar approach to that presented in [12], oaie ¢
obtain a slightly more compact expression for the conflugnt h

F(o(n) = /” £ (o), o(n))de(n) pergeometric function in (14):
o : . L[ M4k (M—k+p—1\/-2\?
el o asgl y( ()

of the first kind [1, eq. (9.6.16)]. Using (6), some directotal ~ »

ifi ; M—k—1
wherel, (-) stands for the zero-order modified Bessel function ()M kg (2) k+1 <M +k+ p>
lations show that: p=0

1 o I 00 2 (M +E)! 2\P . .
E{yc(n)} = Jeﬂ Mfen 2/0 e = Iy (a€)dC .(M—k—p—l)!(;) ,ifk=0,1,...,.M -1,
B Crp=1,ifk=M. (15)

where: a := 2/0,, v := a?, ¢ := ap(n) andIj;(-) de-

notes the M-order modified Bessel function of the first kind [1 Plugging (10), (13) and (15) back into (12), a closed-form
eg. (9.6.19)]. Based on [7, eq. (6.643,2)] and [1, eq. (B2)1, expression for the asymptotic varianoeu( Ae(k)) is obtained.

the RHS of (8) can be expressed in terms of the confluent hy-Now it is interesting to compare the asymptotic variances
pergeometric functio®(-, -, -): (12) corresponding to different estimator ordérsFirst, we

_ j2n M fun _ will study the high SNR asymptotic regime (SNRoo). Using
E{y’“(n)i _MA’feJ y k=01,.... M, (9 [1, eq. (13.1.4)], some direct calculations show that:
MM 4 1)ems  k+ M v
= +1,M+1,2). (10 - —
"TT(M + 1)) ( 2 2) (10) o Ae=1, (16)
Sincew(n) andv(n) are i.i.d. and mutually independent, itfor anyk = 0,1,..., M. Hence, based on (13) and (15) we
follows thatvy (n) := yr(n) — E{yx(n)} is i.i.d., too. Conse- obtain:

quently, 6 1

R 1
. : K)y — 2~ .
y(n) = Ape®™MIn { o) n=0,1,... N—1, A1)  swB V) = 5y T O(SNRz) - @

andyy,(n) can be viewed as a constant amplitude harmonic epnsequently,
bedded in white noise. Notice that in genetgl(n) is not cir-

cular. Due to well-known properties of NLS-estimatorspit f

lows immediately that estimator (4) is asymptotically wasmd im ———=- =1+ (—) , (18)
and consistent [11, p. 147]. Identifiability ¢f in (4) requires SNR—o0 ayar( f{M)) SNR

that |27 M f.| < «, which implies|F.| < 1/(2MT). Hence, . . ) .

estimators (4) can cope with relatively large frequencgetf Which shows that at high SNR asymptotic regime, the perfor-
(+(50/M)% of the symbol rate). Following the procedures ofance of estimators (4) for different orddrss asymptotically

Ae(k))

avar(

[6]’ one can derive the asymptotic Variance Of (4) as: the same. The St.udy of the a_symptOtIC low SNR behaVIO_r of es-
timators (4) requires evaluating confluent hypergeomgitric-
avar(f(k)) — lim NSE{(JE(k) L)y = 6(Bx — Ck) tions in terms of the power series expansion [1, eq. (13-1.2)
¢ N—oo € © Am2M2|Ag)2 From the plots depicted in Figs. 2—3, it turns out that the bes

(12) performance in the low SNR range is achievedifet 1 and 2



in the case of envisaged M-PSK constellatiohs £ 2,4 and whose standard solution is given by (c.f. [11, ch. 5]):
8). It should be pointed out that whénis even (\/ is usually

a power of two), similar to (15), one can obtain: gt — (R-R)! (25)
A= 1 { . ir:tp' <5 + t> <5 —t+p— 1) (—_2)p Plugging (25) back into (23), we obtain:
k ’Yt Y part . » » ~ - ; .
9\ t+1 s—t—1 Lt avar(f ) 47T2M2 ( (R R) ) . (26)
_’_(_1)s+t+12te—% (_) Z (8 p)
v p=0 p Fig. 1 plots the loss in performance of estimators (4) w.r.t.
~(BLUE) .
(s+1)! 2\p] . BLUE (19) (- 101og10[avar( )/avar( )]) in the
Ap=1,if k=M, S i S ——
wheres := M/2 andt := k/2. j ]

Next, we determine the best linear unbiased estimator -os
(BLUE) that achieves the lowest asymptotic variance within
the class of all moment estimators (4). Define the estimator:

7j27rfn
NZ E
n=

n)i= ngyk(m = (@"(n)-@)e™?™ vn, (20)
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Fig. 1. Theoretical degradation ¢§* w.r.t. 75V versus SNR for BPSK
k=0 constellation.
wheregg, k = 0,1,..., M, are some scalars that will be cho-
sen to minimize the asymptotic variancefof™ in (19), and: IV. EXTENSION TO FLAT RICEAN-FADING
. CHANNELS
9:=g0 g1 --- gum]" In the foregoing discussion, we assumed AWGN channels.
o(n):=[1 |z(n)| |z(m)]* ... |z(m)|M]". In this section, we will see that the frequency offset estima

tors (4) remain unbiased and consistent in the presencetof fla
Ricean-fading channels.

Using (20) and (9), we obtain that: When the channel is flat Ricean-fading channel, (1) will be

M modified to:
N 2w M fenn __ T 2t M fen .
E{g(n)} := <;gmk>eﬂ = (a'g)¢’ - (21) (n) = p(n)w(n)e! G FT 0 Loy Yo, (27)
— T g where u(n) = pu(n)exp(jeu(n)) is the fading process
wherea := [Ao A ... Au]". Sincew(n) andz;(n) ar€ yith non-zero meam{u(n)} = p1exp(jor) and variance
i.i.d. and mutually independent, it follows that™™ (n) := g2 := E{|u(n) — E{u(n)}|2}. Using the Jakes model, we
g(n) — E{g(n)} is also a white noise sequence. We have aIsR i H o 9 '
;e@E{Jg <)> hE{lj(?%}(]j itn + 7) ~ Bt + D)) =
E{lgm))>}=d" -R-g, |[E{*(n)} =9d"-R-g, (22 o2 Jo(27 f47), WhereJy(.) denotes the zero-order Bessel func-
{gtml} =g"-R-g. [B{g* )}|~ R-9, () tion of the first kind, and; is the normalized Doppler spread.
with R := E{g(n)e’(n)} and [R]i i—0,1,...n := Thejointand marginal pdf gf,(n) andy,(n) are given by:
|E{p**!(n) exp(j2M¢(n))}|. Exploiting (21) and (22), we 2 0?30 (m2n conto ()
obtain the asymptotic variance of estimator (19), whichlsan pu(n) — etz colen 1)
expressed as: F(pu(n)spu(n))= o2 © 8 , (28)
1
avar(féli'rt)) -— lim NBE{(fe(lin) *fe)g} 20, (n _pu(n)ﬂ)f 9 n
= N Floutm)) = 220 5 g (2eleny (a9
_ 6 (QT~(BfB)'g) 23) # g
T Am2 M2 lgT - a2 )

Conditioned on the fading procegén) and the input sym-

Hence, finding BLUE resorts to solving the optlmlzatlonbo w(n), the joint pdf ofp(n) andy(n) takes the form:

problem: o(n) o ]
. f(p(n), w(n)w(n), p.(n), goﬂ(n)):_Qe—(p (n)+p%(n) /o
gELuE) _ g - (R-R)-g oy

arg mln ’ (24) n T ) COS n)— n)—am n [og
@0 " -aP 2p(n)pu(n) cos[p(n) —pu(n) =27 (I4+M fen) /M] /oy (30)



Monte Carlo trials and all the simulations are performed as-
Using (27) to (30), in a similar way to that presented in thet lasuming the frequency offsét. 7" = 0.011.

section, some straightforward but lengthy calculatioasl le: In this section, we also compare the asymptotic performance
' _ of proposed estimators w.r.t. MCRB, which can be expressed
E{ye(n)} = Ape?Mere2mMIin =01, M, asMCRB(f.) = 602/(47*N?) [9, eq. (2.4.23)].
D(EEM 4 1)6—”71 oM kM - Experiment 1-Asymptotic variances of estimators (4) and
Ap:= 2 TR ( +1,M+1, —) ; (19) w.r.t. SNR:Figs. 2-3 illustrate the theoretical asymp-
(M +1)oy 2 2 totic variances of estimators (4) and (19) and the MCRB ver-

sus SNR. Fig. 2 depicts the asymptotic variances (12) and
with of := o7 + o2 andv, := 2pi/o7. Hence,y,(n) can (26) for a BPSK modulation, assuming the number of sam-
still be viewed as a constant amplitude harmonic embeddedgles N = 50. Fig. 3 shows the performance loss (i.e.,
additive noisevi(n) = yir(n) — E{yx(n)}, and the consis- _ £(K) 3, ; ;
tency of estimators (4) hold true in the presence of flat Rieeasulso ls(ﬁlRO,[a;g;(”;m)g/ gNprKcﬁséﬂigﬂgxl r,i c'\a/mlrE: EeB ;gén that
fading channels. However, we should notice that due to thes hroposed estimators exhibit good accuracy. At high SNR
fading effect, v, (n) is not white any more, but a zero-meany ey coincide with the MCRB. In low SNR range, we can im-
colored stationary process, whose autocorrelation and-spgyoye the performance of estimators (4) by adopting low orde
tral density are defined as, (1) := E{vi(n)us(n + 7)} and  egtimatorsk = 1 and 2). Although BLUE has the best perfor-
Su(f) = 22, 10, (T) exp(—j2m f7), respectively. Establish- jance in the entire SNR range, the improvement is minor.
ing the asymptotic variance of estimators (4) in flat Ricean- g, o riment 2-Comparison of MSE of estimators (4) and (19)
Ifadlng channelsl_for ag% |s_generall§\/,4|f not I|mph053|ble,_ "’llt with the theoretical boundstn Figs. 4 and 5, the theoretical
east very complicated fok = 0,..., M — 1. In the special 1, nq5 (12) and (26) are compared with experimental MSEs
casek = M, vyr(n) is a circular noise process. Therefore, thgsyhe FO_estimators (4) and (19), respectively. The resaré
asymptotic variance of (4) is now given by [11]: plotted versus SNR, assuming— 50, QPSK and BPSK mod-
R 6, (M F.) ulations, respectively. Figs. 4 and 5 show that for mediuth an
avar( e(M)) — Puvm\ el (31) high SNR, the experimental results are well predicted by the
Am2 M2 Ap[? asymptotic bounds derived in Section I1I, and the proposed f
) ) _quency estimators provide very good frequency estimateis ev
The calculation of the power spectral densify,, (-) IS when a reduced number of samples is us¥d= 50). This
tractable and is briefly detailed next. Let us first define théhows the potential of these estimators for fast synchatioiz
following variables: of burst transmissions.
, ) ) fEﬂxperiment ?-Erequer?cy orfsethestimators in the pres"ence
ook 1 k of flat Ricean-fading channelin this experiment, we wi
Cq()k) = E{|v(n)|*} = (7) k! (l) (2D!(2k —2D)!,  see that the proposed frequency offset estimators perform
1=0 well in the presence of Ricean-fading effects. In Fig. 6, the

P =B{|u(n) — E{u(n)}*"} asymptotic variances (31) are plotted versus SNR. We assume
: X ) that the Ricean-fading process has a normalized energy (i.e
N k o112k — 911 E{|u(n)]*} = 1) with Ricean factor := pi /o7, = 1. The

- (7) 2k k! = \1 (20)(2k —20)!, Doppler spreadf, is chosen as 0.005, 0.05 and 0.5, respec-

i , tively. The transmitted symbol is BPSK and the number of
k samples is chosen &6 = 200. In Fig. 6, the MSE of estimator
r =B{|pn)*} = ptF + ) (l) pih el (4) with k = 2 and f; = 0.005 is also plotted. From Fig. 6,
=1 it turns out that although there exists an error floor due ¢o th
random fading effects, the accuracy of the proposed frezyuen
Some direct calculations lead to the following expression: offset estimators is still satisfying at medium and high SNR
Experiment 4-Frequency offset estimators in the presehce o

Mo 2 timing error: Until now, we assumed a perfect timing refer-
S (Mf) =" ( ) piM 2Bk (2m far) ence at receiver. The simulation results presented in Filg. 7
T k=1 k lustrate that estimators (4) are robust to timing errorsthis
M 2 simulation, we assume that there is a normalized timingrerr
+ (M ) () (M=k) (32) €I'= 0.1, the transmit and receive filters are square-root raised
—\k ! cosine filters with roll-off factop3 = 0.5. The symbol modula-

tion is BPSK and the number of samples is choseN as 50,
200 and 300, respectively.

V. SIMULATION RESULTS VI. CONCLUSIONS

In this section, we study thoroughly the performance of esti In this paper, we have introduced and analyzed a family of
mators (4) and (19) using computer simulations. Experiaennon-data aided feedforward carrier frequency offset egtins.
mean-square error (MSE) results of (4) and (19) will be conThe closed-form expressions of the asymptotic variances ar
pared with the theoretical asymptotic bounds, too. The expelerived and it is shown that the proposed estimators exhibit
imental results are obtained by performing a number of 2Gligh convergence rate and good accuracy. These estimators



can deal with large frequency offsets {/2M of the symbol
rate). In addition, a best linear unbiased estimator isthiced
and its asymptotic variance is established, too.
Acknowledgement: This work was supported by the NSF
Career Award No. CCR-0092901.

REFERENCES
[1] M. Abramowitz and I. A. Stegun, Edddandbook of Mathematical Func-
tions, Washington, DC: National Bureau of Standards, 1964.
[2] S. Bellini, C. Molinari and G. Tartara, “Digital frequen estimation in

burst mode QPSK transmissiot2EE Trans. Communicationsol. 38,
no. 7, pp. 959-961, July 1990.

S. Bellini, “Frequency estimators for M-PSK operatirtgoae sample per
symbol,” Conf. Rec., GLOBECOM’'94an Francisco, 1994.

J. C.-I. Chuang and N. R. Sollenberger, “Burst coherarhddulation
with combined symbol timing, frequency offset estimatiand diversity
selection,”|EEE Trans. Communicationsol. 39, no. 7, pp. 1157-1164,
1991.

F. Classen, H. Meyr, and P. Sehier, “Maximum likelihogzea loop car-
rier synchronizer for digital radioConf. Rec., ICC'93Geneva, 1993.
M. Ghogho and A. Swami, “Non-efficiency of the non-linebrast
squares estimator of polynomial phase signals in coloréseridConf.
Rec., Asilomar'98Pacific Grove, 1998.

(3]
(4]

(5]
(6]

[7] 1. S. Gradshteyn and I. M. Ryzhiable of Integrals, Series, and Prod-
ucts New York: Academic, 1965.
[8] F. Mazzenga and G. E. Corazza, “Blind least-squaresnesitn of car-

rier phase, Doppler shift, and Doppler rate for M-PSK burah$mis-

sion,” IEEE Communications Lettersol. 2, no. 3, pp. 73-75, 1998.

U. Mengali and A. N. D’ AndreaSynchronization Techniques for Digital

ReceiversPlenum Press, New York, 1997.

B. E. Paden, “A matched nonlinearity for phase estioraif a PSK-

modulated carrier,”IEEE Trans. Information Theoryvol. 32, no. 3,

pp. 419-422, May 1986.

P. Stoica and R. MoseBjtroduction to Spectral Analysi®rentice-Hall,

1997.

[12] A.J. Viterbi and A. M. Viterbi, “Nonlinear estimationf ® SK-modulated
carrier phase with application to burst digital transnasesi’IEEE Trans.
Information Theoryvol. 29, no. 4, pp. 543-551, July 1983.

(9
(10]

(11]

10°°

10°°

Theoretical Asymptotci

=
30

o 5 10 20 25

15
SNR (dB)

. 2. Theoretical performance versus SNR for BPSK moihriat

Loss (dB) w.r.t MCRB

10 20

15
SNR (dB)

Fig. 3. Performance loss w.r.t. MCRB versus SNR for QPSK rfatitun.
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Fig. 4. MSEs offe versus SNR for QPSK modulation (zero-padding 1024).
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