
Non-Data Aided Feedforward Estimation of PSK-Modulated
Carrier Frequency Offset

Y. Wang1, E. Serpedin1 and P. Ciblat2
1 Dept. of Electrical Engineering, Texas A&M University, College Station, TX 77843, USA

2 Ecole Nationale Supérieure des Télécommunications, Paris, France

Abstract— This paper examines the asymptotic (large sample) per-
formance of a family of non-data aided feedforward (NDA FF) nonlin-
ear least-squares (NLS) type carrier frequency estimatorsfor burst-mode
phase shift keying (PSK) modulations transmitted through AWGN and
flat Ricean-fading channels. The asymptotic performance ofthese esti-
mators is established in closed-form expression and compared with the
modified Cramèr-Rao bound (MCRB). A best linear unbiased estimator
(BLUE), which exhibits the lowest asymptotic variance within the family
of NDA FF NLS-type estimators, is also proposed.

I. INTRODUCTION

Burst transmission of digital data and voice is employed
in time division-multiple access (TDMA) and packet demand-
assignment multiple-access (DAMA) satellite communication
and terrestrial mobile cellular radio systems. Conventionally,
synchronization of burst transmissions requires a large number
of overhead symbols, which results in reduced spectral effi-
ciency and increased transmission delays [4].

In this paper, a family of non-data aided (NDA) or blind non-
linear least-squares (NLS) feedforward frequency offset esti-
mators for carriers that are fully modulated by M-ary phase
shift keying (PSK) modulations is proposed and its asymp-
totic (large sample) performance analyzed in a rigorous way.
The proposed frequency offset estimators exploit a general-
ized form of the Maximum Likelihood Feedforward (ML FF)
algorithm, that was originally proposed by A. J. Viterbi and
A. M. Viterbi as a blind carrier phase estimator with improved
performance at low and intermediate Signal-to-Noise Ratios
(SNRs) [12], [10]. This carrier phase estimator is referredin
the literature as the Viterbi and Viterbi (V&V) algorithm [5],
[9, p. 280].

A number of blind frequency offset estimators for burst
M-PSK modulations were reported and partially analyzed for
AWGN channels, without taking into account possible fading
effects [2], [3]. Reference [5] introduces another family of
non-data aided feedforward carrier frequency offset estimators
that rely on a rather restrictive set of assumptions and whose
asymptotic variance is evaluated based on several approxima-
tions. The goal of the present paper is to examine rigorouslythe
performance of the blind least-squares estimator [8] in AWGN
and flat Ricean-fading channels, and to propose estimators with
improved performance.

As we shall see, the proposed family of nonlinear frequency
offset estimators presents high convergence rates (asymptotic
variances on the order of O(1/N3), where N denotes the
number of available samples), provides high accurate fre-
quency offset estimates, can cope with large frequency offsets
(±(50/M)% of the symbol rate), and admits low complex-
ity digital implementations, without being necessary to over-
sample (fractionally-sample) the received signal faster than the
Nyquist rate. The performance of these algorithms achieves
closely the modified Cramèr-Rao bound (MCRB) at medium

and high SNRs, and is robust to Ricean fading effects and tim-
ing errors.

II. PROBLEM FORMULATION

Consider the baseband representation of an M-PSK modu-
lated signal transmitted through an AWGN channel. Assume
that filtering is evenly split between transmitter and receiver
so that the overall channel is Nyquist. Filtering the received
waveform through a matched filter and sampling at the right
time instants yields:

x(n) = w(n)ej(2πFeTn+θ)+v(n) , n = 0, 1, . . . , N−1 , (1)

where {w(n)} is the sequence of zero-mean unit variance
(σ2

w := E{|w(n)|2} = 1) independently and identically dis-
tributed (i.i.d.) M-PSK symbols,θ and fe := FeT stand
for carrier phase and frequency offset, respectively,T denotes
the symbol period, and{v(n)} is a zero-mean white Gaus-
sian noise process independent ofw(n) and with variance
σ2

v := E{|v(n)|2}. The Signal-to-Noise Ratio is defined as
SNR:= 10 log10(σ

2
w/σ2

v). Furthermore, without any loss in
generality, we assume for the rest of the paper thatθ = 0. Note
that a non-zero value forθ is immaterial to the analysis that will
be carried over in this paper. In addition,θ can be estimated by
means of the V&V estimator [12] after the frequency offset is
determined.

As depicted by (1), the problem that we pose is to estimate
the unknown frequencyfe of a harmonic embedded in un-
known multiplicative (w(n)) and additive noise (v(n)), assum-
ing knowledge of the received samples{x(n)}N−1

n=0 . The solu-
tion that we pursue consists of evaluating first certain moments
of the output that will remove the unwanted multiplicative ef-
fects introduced by the M-PSK modulated sequencew(n). It
turns out that the resulting problem reduces to the standard
problem of estimating the frequency of a constant amplitude
harmonic embedded in additive noise, for which standard NLS-
type estimators can be developed and their statistical properties
analyzed in a rigorous manner.

III. FREQUENCY OFFSET ESTIMATION

Consider the polar representation:

x(n) = ρ(n)ejϕ(n) , (2)

and define the family of processes:

yk(n) = ρk(n)ejMϕ(n) , k = 0, 1, . . . , M . (3)

Fork = 0, . . . , M , introduce the class of frequency estimators:

f̂ (k)
e =

1

M
arg max

|f̄0|<1/2

∣∣∣∣∣
1

N

N−1∑

n=0

yk(n)e−j2πf̄0n

∣∣∣∣∣ . (4)



In order to establish the asymptotic unbiasedness and consis-
tency of estimators (4), some preparatory results are reviewed
next. Conditioned onw(n), x(n) is normally distributed
with the probability density function (pdf)f(x(n)|w(n) =
2πl/M, 0 ≤ l ≤ M − 1) ∼ N (w(n) exp(j2πfen), σ2

v).
Due to (2), it follows that:

f
(
ρ(n), ϕ(n)|w(n) = 2πl/M

)
=

ρ(n)

πσ2
v

e−(ρ2(n)+1)/σ2
v

· e2ρ(n) cos[ϕ(n)−2π(l+Mfen)/M ]/σ2
v . (5)

Based on (5), the joint and marginal pdf ofρ(n) andϕ(n) take
the expressions:

f
(
ρ(n), ϕ(n)

)
=

1

M

M−1∑

l=0

f
(
ρ(n), ϕ(n)|w(n) =

2πl

M

)

=
1

M

M−1∑

l=0

ρ(n)

πσ2
v

e
− ρ2(n)+1

σ2
v e

2ρ(n)

σ2
v

cos
(
ϕ(n)− 2π(l+Mfen)

M

)
, (6)

f
(
ρ(n)

)
=

∫ π

−π

f
(
ρ(n), ϕ(n)

)
dϕ(n)

=
2ρ(n)

σ2
v

e−(ρ2(n)+1)/σ2
v I0

(2ρ(n)

σ2
v

)
, (7)

whereI0(·) stands for the zero-order modified Bessel function
of the first kind [1, eq. (9.6.16)]. Using (6), some direct calcu-
lations show that:

E{yk(n)} =
1

αk
ej2πMfene−

γ
2

∫ ∞

0

ζk+1e−
ζ2

2 IM (αζ)dζ ,

(8)
where: α :=

√
2/σv, γ := α2, ζ := αρ(n) andIM (·) de-

notes the M-order modified Bessel function of the first kind [1,
eq. (9.6.19)]. Based on [7, eq. (6.643,2)] and [1, eq. (13.1.32)],
the RHS of (8) can be expressed in terms of the confluent hy-
pergeometric functionΦ(·, ·, ·):

E{yk(n)} = Akej2πMfen , k = 0, 1, . . . , M , (9)

Ak:=
Γ(k+M

2 + 1)e−
γ
2

Γ(M + 1)σM−k
v

Φ
(k + M

2
+ 1, M + 1,

γ

2

)
. (10)

Sincew(n) andv(n) are i.i.d. and mutually independent, it
follows thatvk(n) := yk(n) − E{yk(n)} is i.i.d., too. Conse-
quently,

yk(n) = Akej2πMfen + vk(n) , n = 0, 1, . . . , N − 1 , (11)

andyk(n) can be viewed as a constant amplitude harmonic em-
bedded in white noise. Notice that in general,vk(n) is not cir-
cular. Due to well-known properties of NLS-estimators, it fol-
lows immediately that estimator (4) is asymptotically unbiased
and consistent [11, p. 147]. Identifiability offe in (4) requires
that |2πMfe| < π, which implies|Fe| < 1/(2MT ). Hence,
estimators (4) can cope with relatively large frequency offsets
(±(50/M)% of the symbol rate). Following the procedures of
[6], one can derive the asymptotic variance of (4) as:

avar(f̂ (k)
e ) := lim

N→∞
N3E{(f̂ (k)

e − fe)
2} =

6(Bk − Ck)

4π2M2|Ak|2
,

(12)

where:

Bk := E{|yk(n)|2} = E{ρ2k(n)} ,

Ck := |E{y2
k(n)}| = |E{ρ2k(n)ej2Mϕ(n)}| .

Exploiting (7) and [7, eq. (6.643.4)], the following relation
was derived in [12, (A17)]:

E{ρ2k(n)} = σ2k
v

k∑

q=0

(
k

q

)2

(
γ

2
)k−q · q! . (13)

Similar to (10),Ck can be obtained as:

Ck =
Γ(k + M + 1)e−

γ
2

Γ(2M + 1)σ2M−2k
v

Φ
(
k +M +1, 2M +1,

γ

2

)
. (14)

Following a similar approach to that presented in [12], one can
obtain a slightly more compact expression for the confluent hy-
pergeometric function in (14):

Ck =
1

γk

[
γk

M+k∑

p=0

p!

(
M + k

p

)(
M − k + p − 1

p

)(−2

γ

)p

+(−1)M+k+12ke−
γ
2

(2

γ

)k+1 M−k−1∑

p=0

(
M + k + p

p

)

· (M + k)!

(M − k − p − 1)!

(2

γ

)p
]

, if k = 0, 1, . . . , M − 1 ,

Ck = 1 , if k = M . (15)

Plugging (10), (13) and (15) back into (12), a closed-form
expression for the asymptotic varianceavar(f̂

(k)
e ) is obtained.

Now it is interesting to compare the asymptotic variances
(12) corresponding to different estimator ordersk. First, we
will study the high SNR asymptotic regime (SNR→ ∞). Using
[1, eq. (13.1.4)], some direct calculations show that:

lim
SNR→∞

Ak = 1 , (16)

for any k = 0, 1, . . . , M . Hence, based on (13) and (15) we
obtain:

lim
SNR→∞

avar(f̂ (k)
e ) =

6

4π2
· 1

SNR
+ O

( 1

SNR2

)
. (17)

Consequently,

lim
SNR→∞

avar(f̂
(k)
e )

avar(f̂
(M)
e )

= 1 + O
( 1

SNR

)
, (18)

which shows that at high SNR asymptotic regime, the perfor-
mance of estimators (4) for different ordersk is asymptotically
the same. The study of the asymptotic low SNR behavior of es-
timators (4) requires evaluating confluent hypergeometricfunc-
tions in terms of the power series expansion [1, eq. (13.1.2)].
From the plots depicted in Figs. 2–3, it turns out that the best
performance in the low SNR range is achieved fork = 1 and 2



in the case of envisaged M-PSK constellations (M = 2, 4 and
8). It should be pointed out that whenk is even (M is usually
a power of two), similar to (15), one can obtain:

Ak =
1

γt

[
γt

s+t∑

p=0

p!

(
s + t

p

)(
s − t + p − 1

p

)(−2

γ

)p

+(−1)s+t+12te−
γ
2

(2

γ

)t+1 s−t−1∑

p=0

(
s + t + p

p

)

· (s + t)!

(s − t − p − 1)!

(2

γ

)p
]

, if k = 0, 2, . . . , M − 2 ,

Ak = 1 , if k = M ,

wheres := M/2 andt := k/2.
Next, we determine the best linear unbiased estimator

(BLUE) that achieves the lowest asymptotic variance within
the class of all moment estimators (4). Define the estimator:

f̂ (lin)
e =

1

M
arg max

|f̄0|<1/2

∣∣∣∣∣
1

N

N−1∑

n=0

g(n)e−j2πf̄0n

∣∣∣∣∣ , (19)

g(n) :=

M∑

k=0

gkyk(n) = (%T (n) · g)ejMϕ(n) , ∀n, (20)

wheregk, k = 0, 1, . . . , M , are some scalars that will be cho-
sen to minimize the asymptotic variance off̂

(lin)
e in (19), and:

g := [g0 g1 . . . gM ]T ,

%(n) := [1 |x(n)| |x(n)|2 . . . |x(n)|M ]T .

Using (20) and (9), we obtain that:

E{g(n)} :=
( M∑

k=0

gkAk

)
ej2πMfen =

(
aT g

)
ej2πMfen , (21)

wherea := [A0 A1 . . . AM ]T . Sincew(n) and v(n) are
i.i.d. and mutually independent, it follows thatv(lin)(n) :=
g(n) − E{g(n)} is also a white noise sequence. We have also:

E{|g(n)|2} = gT · R · g , |E{g2(n)}| = gT · R̃ · g , (22)

with R := E{%(n)%T (n)} and [R̃]k, l=0,1,...,M :=

|E{ρk+l(n) exp(j2Mϕ(n))}|. Exploiting (21) and (22), we
obtain the asymptotic variance of estimator (19), which canbe
expressed as:

avar(f̂ (lin)
e ) := lim

N→∞
N3E{(f̂ (lin)

e − fe)
2}

=
6

4π2M2

(gT · (R − R̃) · g
|gT · a|2

)
. (23)

Hence, finding BLUE resorts to solving the optimization
problem:

ĝ(BLUE) = arg min
g6=0

gT · (R − R̃) · g
|gT · a|2 , (24)

whose standard solution is given by (c.f. [11, ch. 5]):

ĝ(BLUE) = (R − R̃)−1 · a . (25)

Plugging (25) back into (23), we obtain:

avar(f̂ (BLUE)
e ) =

6

4π2M2

( 1

aT · (R − R̃)−1 · a

)
. (26)

Fig. 1 plots the loss in performance of estimators (4) w.r.t.
BLUE (19) (−10 log10[avar(f̂

(k)
e )/avar(f̂

(BLUE)
e )]) in the

case of a BPSK modulation (M = 2).
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IV. EXTENSION TO FLAT RICEAN-FADING
CHANNELS

In the foregoing discussion, we assumed AWGN channels.
In this section, we will see that the frequency offset estima-
tors (4) remain unbiased and consistent in the presence of flat
Ricean-fading channels.

When the channel is flat Ricean-fading channel, (1) will be
modified to:

x(n) = µ(n)w(n)ej(2πFeTn+θ) + v(n) , ∀n , (27)

where µ(n) = ρµ(n) exp(jϕµ(n)) is the fading process
with non-zero meanE{µ(n)} := ρ1 exp(jϕ1) and variance
σ2

µ := E{|µ(n) − E{µ(n)}|2}. Using the Jakes model, we
have: E{[µ(n) − E{µ(n)}]∗[µ(n + τ) − E{µ(n + τ)}]} =
σ2

µJ0(2πfdτ), whereJ0(.) denotes the zero-order Bessel func-
tion of the first kind, andfd is the normalized Doppler spread.
The joint and marginal pdf ofρµ(n) andϕµ(n) are given by:

f
(
ρµ(n), ϕµ(n)

)
=

ρµ(n)

πσ2
µ

e
−

ρ2
µ(n)+ρ2

1−2ρµ(n)ρ1 cos(ϕµ(n)−ϕ1)

σ2
µ , (28)

f
(
ρµ(n)

)
=

2ρµ(n)

σ2
µ

e
−

ρ2
µ(n)+ρ2

1

σ2
µ I0

(2ρµ(n)ρ1

σ2
µ

)
. (29)

Conditioned on the fading processµ(n) and the input sym-
bol w(n), the joint pdf ofρ(n) andϕ(n) takes the form:

f
(
ρ(n), ϕ(n)|w(n), ρµ(n), ϕµ(n)

)
=

ρ(n)

πσ2
v

e−(ρ2(n)+ρ2
µ(n))/σ2

v

· e2ρ(n)ρµ(n) cos[ϕ(n)−ϕµ(n)−2π(l+Mfen)/M ]/σ2
v . (30)



Using (27) to (30), in a similar way to that presented in the last
section, some straightforward but lengthy calculations lead to:

E{yk(n)} = AkejMϕ1ej2πMfen , k = 0, 1, . . . , M ,

Ak:=
Γ(k+M

2 + 1)e−
γ1
2 ρM

1

Γ(M + 1)σM−k
1

Φ
(k + M

2
+ 1, M + 1,

γ1

2

)
,

with σ2
1 := σ2

µ + σ2
v andγ1 := 2ρ2

1/σ2
1 . Hence,yk(n) can

still be viewed as a constant amplitude harmonic embedded in
additive noisevk(n) = yk(n) − E{yk(n)}, and the consis-
tency of estimators (4) hold true in the presence of flat Ricean-
fading channels. However, we should notice that due to the
fading effect,vk(n) is not white any more, but a zero-mean
colored stationary process, whose autocorrelation and spec-
tral density are defined asrvk

(τ) := E{v∗k(n)vk(n + τ)} and
Svk

(f) :=
∑

τ rvk
(τ) exp(−j2πfτ), respectively. Establish-

ing the asymptotic variance of estimators (4) in flat Ricean-
fading channels for anyk is generally, if not impossible, at
least very complicated fork = 0, . . . , M − 1. In the special
casek = M , vM (n) is a circular noise process. Therefore, the
asymptotic variance of (4) is now given by [11]:

avar(f̂ (M)
e ) =

6SvM
(Mfe)

4π2M2|AM |2 . (31)

The calculation of the power spectral densitySvM
(·) is

tractable and is briefly detailed next. Let us first define the
following variables:

c(k)
v := E{|v(n)|2k} =

(σ2
v

2

)k 1

2kk!

k∑

l=0

(
k

l

)2

(2l)!(2k − 2l)! ,

c(k)
µ := E{|µ(n) − E{µ(n)}|2k}

=
(σ2

µ

2

)k 1

2kk!

k∑

l=0

(
k

l

)2

(2l)!(2k − 2l)! ,

r(k)
µ := E{|µ(n)|2k} = ρ2k

1 +

k∑

l=1

(
k

l

)2

ρ2k−2l
1 c(l)

µ .

Some direct calculations lead to the following expression:

SvM
(Mfe) =

∑

τ

M∑

k=1

(
M

k

)2

ρ2M−2k
1 c(k)

µ Jk
0 (2πfdτ)

+

M∑

k=1

(
M

k

)2

c(k)
v r(M−k)

µ . (32)

V. SIMULATION RESULTS

In this section, we study thoroughly the performance of esti-
mators (4) and (19) using computer simulations. Experimental
mean-square error (MSE) results of (4) and (19) will be com-
pared with the theoretical asymptotic bounds, too. The exper-
imental results are obtained by performing a number of 200

Monte Carlo trials and all the simulations are performed as-
suming the frequency offsetFeT = 0.011.

In this section, we also compare the asymptotic performance
of proposed estimators w.r.t. MCRB, which can be expressed
asMCRB(f̂e) = 6σ2

v/(4π2N3) [9, eq. (2.4.23)].
Experiment 1-Asymptotic variances of estimators (4) and

(19) w.r.t. SNR:Figs. 2–3 illustrate the theoretical asymp-
totic variances of estimators (4) and (19) and the MCRB ver-
sus SNR. Fig. 2 depicts the asymptotic variances (12) and
(26) for a BPSK modulation, assuming the number of sam-
ples N = 50. Fig. 3 shows the performance loss (i.e.,
−10 log10[avar(f̂

(k)
e )/(N3 · MCRB(f̂e))]) w.r.t. MCRB ver-

sus SNR, assuming a QPSK modulation. It can be seen that
the proposed estimators exhibit good accuracy. At high SNR
they coincide with the MCRB. In low SNR range, we can im-
prove the performance of estimators (4) by adopting low order
estimators (k = 1 and 2). Although BLUE has the best perfor-
mance in the entire SNR range, the improvement is minor.

Experiment 2-Comparison of MSE of estimators (4) and (19)
with the theoretical bounds:In Figs. 4 and 5, the theoretical
bounds (12) and (26) are compared with experimental MSEs
of the FO-estimators (4) and (19), respectively. The results are
plotted versus SNR, assumingN = 50, QPSK and BPSK mod-
ulations, respectively. Figs. 4 and 5 show that for medium and
high SNR, the experimental results are well predicted by the
asymptotic bounds derived in Section III, and the proposed fre-
quency estimators provide very good frequency estimates even
when a reduced number of samples is used (N = 50). This
shows the potential of these estimators for fast synchronization
of burst transmissions.

Experiment 3-Frequency offset estimators in the presence
of flat Ricean-fading channel:In this experiment, we will
see that the proposed frequency offset estimators perform
well in the presence of Ricean-fading effects. In Fig. 6, the
asymptotic variances (31) are plotted versus SNR. We assume
that the Ricean-fading process has a normalized energy (i.e.,
E{|µ(n)|2} = 1) with Ricean factorκ := ρ2

1/σ2
µ = 1. The

Doppler spreadfd is chosen as 0.005, 0.05 and 0.5, respec-
tively. The transmitted symbol is BPSK and the number of
samples is chosen asN = 200. In Fig. 6, the MSE of estimator
(4) with k = 2 andfd = 0.005 is also plotted. From Fig. 6,
it turns out that although there exists an error floor due to the
random fading effects, the accuracy of the proposed frequency
offset estimators is still satisfying at medium and high SNRs.

Experiment 4-Frequency offset estimators in the presence of
timing error: Until now, we assumed a perfect timing refer-
ence at receiver. The simulation results presented in Fig. 7il-
lustrate that estimators (4) are robust to timing errors. Inthis
simulation, we assume that there is a normalized timing-error
εT = 0.1, the transmit and receive filters are square-root raised
cosine filters with roll-off factorβ = 0.5. The symbol modula-
tion is BPSK and the number of samples is chosen asN = 50,
200 and 300, respectively.

VI. CONCLUSIONS
In this paper, we have introduced and analyzed a family of

non-data aided feedforward carrier frequency offset estimators.
The closed-form expressions of the asymptotic variances are
derived and it is shown that the proposed estimators exhibit
high convergence rate and good accuracy. These estimators



can deal with large frequency offsets (±1/2M of the symbol
rate). In addition, a best linear unbiased estimator is introduced
and its asymptotic variance is established, too.
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Fig. 2. Theoretical performance versus SNR for BPSK modulation.

0 5 10 15 20 25 30
−14

−12

−10

−8

−6

−4

−2

0

SNR (dB)

Lo
ss

 (d
B)

 w
.r.t

. M
CR

B

k=0
k=2
k=4

Fig. 3. Performance loss w.r.t. MCRB versus SNR for QPSK modulation.

0 5 10 15 20 25 30
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

SNR (dB)

MS
E(

fe)

Theoretical Bound: k=4
Experimental MSE: k=4
MCRB

Fig. 4. MSEs off̂e versus SNR for QPSK modulation (zero-padding 1024).
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Fig. 5. MSEs off̂e versus SNR for BPSK modulation (zero-padding 2048).
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Fig. 6. MSEs off̂e versus SNR for BPSK modulation in the presence of a flat
Ricean-fading channel (zero-padding 1024)
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Fig. 7. MSEs off̂e versus SNR for BPSK modulation in the presence of
timing error (N = 50: zero-padding 1024,N = 200: zero-padding 1224,
N = 300: zero-padding 2048)


