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ABSTRACT

This paper introduces a family of blind feedforward nonlinear es-
timators for joint estimation of carrier phase, frequency offset and
Doppler rate for burst-mode phase shift keying (PSK) transmis-
sions. An optimal or “matched” nonlinear estimator that exhibits
the smallest asymptotic variance within the family of envisaged es-
timators is developed. The asymptotic performance of theseesti-
mators is established in closed-form expression and compared with
the Cramèr-Rao lower bound for an unmodulated carrier. Finally,
computer simulations are presented to corroborate the theoretical
performance analysis.

1. INTRODUCTION

Non-data aided (NDA) or blind feedforward carrier synchroniza-
tion of burst M-PSK transmissions has received considerable at-
tention in the literature. A generalized form of the MaximumLike-
lihood Feedforward (ML FF) algorithm was originally proposed
by A. J. Viterbi and A. M. Viterbi as a blind carrier phase estima-
tor for fully modulated M-PSK transmissions, and it exhibits im-
proved performance at low and intermediate Signal-to-Noise Ra-
tios (SNRs) [9], [8]. This carrier phase estimator is referred to as
the Viterbi and Viterbi (V&V) algorithm [4], and has been partially
extended in [2] to a family of blind frequency offset estimators
for burst M-PSK modulations. Reference [4] introduces another
non-data aided feedforward carrier frequency offset estimator that
relies on a rather restrictive set of assumptions and whose asymp-
totic variance is evaluated based on several approximations. It is
interesting to remark that [7] proposes a quite general nonlinear
blind least-squares (NLS) estimator, but its performance was nei-
ther analyzed nor optimized.

In this paper, a family of blind feedforward joint carrier phase,
frequency offset and Doppler rate estimators for carriers that are
fully modulated by M-PSK modulations is proposed based on the
V&V algorithm. An optimal or “matched” nonlinear estimatorthat
achieves the smallest asymptotic (large sample) variance within
the family of blind NLS estimators is also proposed. Optimal
monomial approximations of the matched estimator are also de-
veloped. The goal of the present paper is to provide a thorough
and rigorous analysis of the statistical properties of the proposed
family of nonlinear carrier synchronizers, and to propose estima-
tors with improved performance.

As we shall see, the proposed family of estimators presents
high convergence rates, provides high accurate estimates for phase,
frequency offset and Doppler rate, and admits low complexity dig-
ital implementations, without being necessary to oversample (or
fractionally-sample) the received signal faster than the Nyquist
rate. The performance of these algorithms achieves closelythe
Cramèr-Rao bound (CRB) of an unmodulated carrier at medium
and high SNRs.

2. PROBLEM FORMULATION

Consider the baseband representation of an M-PSK modulatedsig-
nal transmitted through an AWGN channel. Assume that filtering
is evenly split between transmitter and receiver so that theover-
all channel is Nyquist. Filtering the received waveform through a
matched filter and sampling at the right time instants yields:

x(n) = w(n)ejφ(n) + v(n), n = 0, . . . , N − 1, (1)

φ(n) = θ + 2πFeTn + ηT 2n2 ,

where{w(n)} is the sequence of zero-mean unit variance (σ2
w :=

E{|w(n)|2} = 1) independently and identically distributed (i.i.d.)
M-PSK symbols,θ, Fe andη stand for carrier phase, frequency
offset and Doppler rate, respectively,T denotes the symbol pe-
riod, and{v(n)} is a zero-mean white Gaussian noise process in-
dependent ofw(n) and with varianceσ2

v := E{|v(n)|2}. The
Signal-to-Noise Ratio is defined as SNR:= 10 log10(σ

2
w/σ2

v).
As depicted by (1), the problem that we pose is to estimate the

unknown phase parameters (θ, Fe andη) of a random amplitude
(w(n)) chirp signal embedded in unknown additive noise (v(n)),
assuming knowledge of the received samples{x(n)}N−1

n=0 . The so-
lution that we pursue consists of evaluating first certain generalized
moments of the output that will remove the unwanted multiplica-
tive effects introduced by the M-PSK modulated sequencew(n).
It turns out that the resulting problem reduces to the standard prob-
lem of estimating the phase parameters of a constant amplitude
chirp signal embedded in additive noise, for which standardNLS
estimators can be developed and their statistical properties ana-
lyzed in a rigorous manner.

3. NONLINEAR CARRIER SYNCHRONIZER

Consider the polar representation:

x(n) = ρ(n)ejϕ(n) , (2)

and define the processy(n) via the nonlinear transformation:

y(n) := F
(
ρ(n)

)
ejMϕ(n) , (3)

whereF (·) is in general a nonlinear function.
Conditioned onw(n), x(n) is normally distributed with the

probability density function (pdf)f(x(n)|w(n) = 2πm/M, 0 ≤
m ≤ M − 1) ∼ N (w(n) exp(jφ(n)), σ2

v). Throughout the
paper, the notationf(·) will stand for the pdf of certain RVs. Due
to (2), it follows that:

f
(
ρ(n), ϕ(n)|w(n) = 2πm/M

)
=

ρ(n)

πσ2
v

e−(ρ2(n)+1)/σ2
v

· e2ρ(n) cos[ϕ(n)−2πm/M−φ(n)]/σ2
v . (4)



Based on (4), the joint and marginal pdf ofρ(n) andϕ(n) take
the expressions:

f
(
ρ(n), ϕ(n)

)
=

1

M

M−1∑

m=0

f
(

ρ(n), ϕ(n)|w(n) =
2πm

M

)

=
1

M

M−1∑

m=0

ρ(n)

πσ2
v

e
−

ρ2(n)+1

σ2
v e

2ρ(n)

σ2
v

cos[ϕ(n)− 2πm
M

−φ(n)]
, (5)

f
(
ρ(n)

)
=

∫ π

−π

f
(
ρ(n), ϕ(n)

)
dϕ(n)

=
2ρ(n)

σ2
v

e−(ρ2(n)+1)/σ2
vI0

(
2ρ(n)

σ2
v

)
, (6)

whereI0(·) stands for the zero-order modified Bessel function of
the first kind [1, eq. (9.6.16)]. Using (5), some calculations show
that:

E{y(n)} = E
{
F

(
ρ(n)

)
ejMϕ(n)

}
= CejMφ(n) , (7)

C :=
∣∣E{y(n)}

∣∣ = E
{

F
(
ρ(n)

)IM

(
2ρ(n)

σ2
v

)

I0

(
2ρ(n)

σ2
v

)
}

, (8)

whereIM (·) denotes the M-order modified Bessel function of the
first kind [1, eq. (9.6.19)], the expectation in (8) is with respect
to (w.r.t.) the marginal distribution ofρ(n) (6) and the resulting
amplitudeC is a real constant. Sincew(n) andv(n) are i.i.d. and
mutually independent, it follows thatu(n) := y(n)− E{y(n)} is
i.i.d., too. Consequently,

y(n) = CejMφ(n) + u(n) , n = 0, 1, . . . , N − 1 , (9)

andy(n) can be viewed as a constant amplitude chirp signal em-
bedded in white noise. Note that in general,u(n) is not circular.

Let ω := [ C ω0 ω1 ω2]
T = [ C Mθ 2πMFeT MηT 2]T ,

and introduce the following NLS estimator (c.f. [3], [7]):

ω̂ = arg min
ω̄

J(ω̄) ,

J(ω̄) =
1

N

N−1∑

n=0

∣∣y(n) − C̄e
j
∑2

l=0
ω̄ln

l∣∣2 . (10)

After some algebra manipulations, the NLS estimates ofωl, l =
0, 1, 2 are obtained as [3]:

(ω̂1, ω̂2) = arg max
ω̄1, ω̄2

1

N

∣∣
N−1∑

n=0

y(n)e
−j

∑
2

l=1
ω̄ln

l∣∣2,

ω̂0 = angle
{ N−1∑

n=0

y(n)e
−j

∑
2

l=1
ω̂ln

l}
.

It is well-known that estimator (10) is asymptotically unbiased and
consistent, and also almost asymptotically efficient at high SNR
[3] and [5].

Following a procedure similar to the one presented in [3], one
can derive the asymptotic variancesavar(ω̂l) := N2l+1E(ω̂l −
ωl)

2 of ω̂l, l = 0, 1, 2, which are given by:

avar(ω̂l) =
B − D
C2

· 1

2N2l+1
· 1

2l + 1

[
(l + 3)!

(l!)2(2 − l)!

]2

,(11)

B := E{|y(n)|2} = E
{
F 2

(
ρ(n)

)}
, (12)

D :=
∣∣E{y2(n)}

∣∣ = E
{

F 2
(
ρ(n)

)I2M

(
2ρ(n)

σ2
v

)

I0

(
2ρ(n)

σ2
v

)
}

. (13)

Next, we choose an optimal or “matched” nonlinearityF (·)
which minimizes the asymptotic variance (11). Since in (11), only
B, C, D depend onF (·), finding an optimalF (·) resorts to solv-
ing the optimization problem:

Fmin

(
ρ(n)

)
= arg min

F

B − D
C2

.

Using (8), (12) and (13),Fmin(·) is obtained using Cauchy-Schwarz’
inequality and can be expressed as:

Fmin

(
ρ(n)

)
= λ

IM

(
2ρ(n)

σ2
v

)

I0

(
2ρ(n)

σ2
v

)
− I2M

(
2ρ(n)

σ2
v

) , (14)

whereλ is an arbitrary nonzero constant. The asymptotic vari-
ances of̂ωl, l = 0, 1, 2 corresponding to the matched nonlinearity
(14) can be expressed as:

avarmin(ω̂l) =
1

2N2l+1
· 1

2l + 1
·
[

(l + 3)!

(l!)2(2 − l)!

]2

· 1

E
{ I2

M

(
2ρ(n)

σ2
v

)

I2
0

(
2ρ(n)

σ2
v

)
−I0

(
2ρ(n)

σ2
v

)
I2M

(
2ρ(n)

σ2
v

)
} . (15)

4. MONOMIAL NONLINEAR ESTIMATORS
As can be observed from (14),Fmin

(
ρ(n)

)
is a function that de-

pends on the SNR. This is not a restrictive requirement sinceblind
SNR estimators that exhibit good performance can be used. How-
ever, if estimating the SNR is not desirable, we show next that
there exist optimal monomial approximationsρk(n), k = 0, . . . , M

of the matched nonlinearityFmin

(
ρ(n)

)
that have almost the same

asymptotic variance as (15) and their performance does not neces-
sitate knowledge of the SNR.

It turns out that at high SNRs (SNR→ ∞ dB ), based on [8,
eq. (15)], the optimal monomial isGh

(
ρ(n)

)
= ρ(n). Similarly,

at low SNRs (SNR� 0 dB), based on [8, eq. (16)], the optimal
monomial isGl

(
ρ(n)

)
= ρM (n).

Define the class of processesyk(n), k = 0, . . . , N , via the
monomial transformations:

yk(n) = ρk(n)ejMϕ(n) , k = 0, . . . , M . (16)

Now it is interesting to study the asymptotic performance ofthe
following class of NLS estimators:

ω̂
(k) = arg min

ω̄
(k)

1

N

N−1∑

n=0

∣∣yk(n) − C̄e
j
∑2

l=0
ω̄

(k)

l
nl ∣∣2 , (17)

which can be viewed as a special case of (10) and whose asymp-
totic variances are given by:

avar(ω̂
(k)
l )=

Bk −Dk

C2
k

1

2N2l+1

1

2l + 1

[
(l + 3)!

(l!)2(2 − l)!

]2

, (18)

Bk := E{|yk(n)|2} = E{ρ2k(n)} ,

Ck := |E{yk(n)}| = |E{ρk(n)ejMϕ(n)}| ,

Dk := |E{y2
k(n)}| = |E{ρ2k(n)ej2Mϕ(n)}| .



Exploiting (6) and [6, eq. (6.643.4)], the following relation was
derived in [9, (A17)]:

Bk =

k∑

q=0

(
k

q

)2

σ2q
v · q! . (19)

Using (6), we can also obtain that:

E{yk(n)} =
1

αk
ejMφ(n)e−

γ
2

∫
∞

0

ζk+1e−
ζ2

2 IM (αζ)dζ ,

where: α :=
√

2/σv, γ := α2 andζ := αρ(n). Based on [6,
eq. (6.643,2)] and [1, eq. (13.1.32)],Ck can be expressed in terms
of the confluent hypergeometric functionΦ(·, ·, ·):

Ck =
Γ( k+M

2
+ 1)e−

γ
2

Γ(M + 1)σM−k
v

Φ
(

k + M

2
+ 1, M + 1,

γ

2

)
. (20)

Similarly,

Dk =
Γ(k + M + 1)e−

γ
2

Γ(2M + 1)σ2M−2k
v

Φ
(

k + M + 1, 2M + 1,
γ

2

)
.(21)

Following a similar approach to that presented in [9], one can
obtain a slightly more compact expression for the confluent hyper-
geometric function in (21):

Dk =
1

γk

[
γk

M+k∑

p=0

p!

(
M + k

p

)(
M − k + p − 1

p

)(−2

γ

)p

+(−1)M+k+12ke−
γ
2

(
2

γ

)k+1
M−k−1∑

p=0

(
M + k + p

p

)

· (M + k)!

(M − k − p − 1)!

(
2

γ

)p
]

, if k = 0, 1, . . . , M − 1 ,

Dk = 1 , if k = M . (22)

Plugging (19), (20) and (21) back into (18), a closed-form ex-
pression for the asymptotic variancesavar(ω̂

(k)
l ) is obtained for

k = 0, . . . , M andl = 0, 1, 2. Note that at high SNR (→ ∞ dB),
using [1, eq. (13.1.4)], some calculations show that:

lim
SNR→∞

Ck = 1 , (23)

for any k = 0, 1, . . . , M . Hence, based on (18), (19), (22) and
(23) we obtain:

lim
SNR→∞

avar(ω̂
(k)
l ) ∝ M2 1

SNR
,

which does not depend on the estimator orderk, i.e., it turns out
that at high SNRs, the performance of estimators (17) for different
ordersk is asymptotically the same.

5. SIMULATION RESULTS

In this section, we study thoroughly the performance of estima-
tors (10) and (17) using computer simulations. The experimental
mean-square error (MSE) results of (17) will be compared with the
theoretical asymptotic bounds. The experimental results are ob-
tained by performing a number of 200 Monte Carlo trials, the ad-
ditive noise is generated as zero-mean Gaussian white noisewith

varianceσ2
v and all the simulations are performed assuming the

carrier phaseθ = 0.1, frequency offsetFeT = 0.011 and Doppler
rateηT 2 = 0.03. There exist several methods to implement esti-
mators (17). In this paper, we use the so-called high-order ambigu-
ity function (HAF) approach, which has become a “standard” tool
for analyzing constant amplitude chirp signals since it provides
a computationally efficient yet statistically accurate estimator [3].
Due to space limit, we will not illustrate its details herein.

In this section, we also compare the asymptotic performance
of proposed estimators w.r.t. the CRB for an unmodulated carrier,
i.e.,M = 1, which is given as (c.f. [5]):

CRB(ω̂l) =
σ2

v

2N2l+1
· 1

2l + 1

[
(l + 3)!

(l!)2(2 − l)!

]2

.

Experiment 1-Performance loss of estimators (16)-(17) w.r.t. the
matched estimator (14)-(10): Figs. 1–2 plot the loss in perfor-
mance of estimators (16)-(17) w.r.t. the optimal nonlinearity esti-
mator (14)-(10) (−10 log10[avar(ω̂

(k)
l )/avarmin(ω̂l)]) in the case

of a BPSK modulation (M = 2) and QPSK modulation (M = 4),
respectively. It turns out that in almost the entire SNR region
of interest, the optimal nonlinearityFmin

(
ρ(n)

)
can be approx-

imated without much loss in performance byρ(n) (BPSK) and
ρ2(n) (QPSK), respectively.

Experiment 2-Asymptotic variances of estimators (14)-(10) and
(16)-(17) w.r.t. CRB: Fig. 3 illustrates the theoretical asymptotic
variances of estimators (10) and (17) versus SNR. The theoretical
asymptotic variances are compared with the CRB. Fig. 3 depicts
the performance loss of the asymptotic variances (15) and (18)
w.r.t. CRB (i.e.,−10 log10[avar(ω̂

(k)
l )/CRB(ω̂l)]), assuming a

QPSK modulation. It can be seen that the proposed estimatorsex-
hibit good accuracy. In high SNR range they coincide with the
CRB. In low SNR range (near 0dB), we can improve the perfor-
mance of estimators (17) by adopting low order estimators (k = 1
and 2). Although the optimal nonlinearity estimator has thebest
performance in the entire SNR range, the improvement is minor.
From Figs. 1–3, we can also observe that at high SNRs, the mono-
mial estimators (16)-(17) for different ordersk exhibit the same
asymptotic variance.

Experiment 3-Comparison of MSE of estimators (17) with the the-
oretical bounds: In Figs. 4 – 6, the theoretical bounds (18) are
compared with experimental MSEs of the estimators (17). The
results are plotted versus SNR, assumingN = 50, BPSK modu-
lation. These figures show that for medium and high SNR, the ex-
perimental results are well predicted by the asymptotic bounds de-
rived in Section 4, and the proposed estimators provide verygood
estimates of carrier phase, frequency offset and Doppler rate, even
when a reduced number of samples are used (N = 50). This
shows the potential of these estimators for fast synchronization of
burst transmissions.

6. CONCLUSIONS

In this paper, we have introduced and analyzed a family of blind
feedforward joint carrier phase, frequency offset and Doppler rate
estimators for burst-mode M-PSK modulations. A matched non-
linear estimator together with a class of monomial nonlinear esti-
mators were introduced and their performance established.
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