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ABSTRACT 2. PROBLEM FORMULATION

This paper introduces a family of blind feedforward nondines- Consider the baseband representation of an M-PSK moddigted
timators for joint estimation of carrier phase, frequentfget and nal transmitted through an AWGN channel. Assume that filteri
Doppler rate for burst-mode phase shift keying (PSK) traasm is evenly split between transmitter and receiver so thaitres-

sions. An optimal or “matched” nonlinear estimator thatibith all channel is Nyquist. Filtering the received wavefornotigh a

the smallest asymptotic variance within the family of eagied es- matched filter and sampling at the right time instants yields

timators is developed. The asymptotic performance of tkste ,

mators is established in closed-form expression and cadpeith z(n) =w(n)e®™ +v(n), n=0,...,N —1, (1)

the Cramer-Rao lower bound for an unmodulated carrieral§in $(n) =0 + 2rF.Tn + nTn?

computer simulations are presented to corroborate theetieal

performance analysis. where{w(n)} is the sequence of zero-mean unit variancg (=

E{|w(n)|?} = 1) independently and identically distributed (i.i.d.)

1. INTRODUCTION M-PSK symbols,d, F. andn stand for carrier phase, frequency

offset and Doppler rate, respectivellj, denotes the symbol pe-
riod, and{v(n)} is a zero-mean white Gaussian noise process in-
dependent ofv(n) and with variancer? := E{|v(n)|?}. The
Signal-to-Noise Ratio is defined as SNR10log; (02 /02).

As depicted by (1), the problem that we pose is to estimate the
unknown phase parameters F. andn) of a random amplitude
(w(n)) chirp signal embedded in unknown additive noisén()),
assuming knowledge of the received samgleg) }\_'. The so-
lution that we pursue consists of evaluating first certamegalized
moments of the output that will remove the unwanted muttgpli
tive effects introduced by the M-PSK modulated sequente).

It turns out that the resulting problem reduces to the stahpiab-
lem of estimating the phase parameters of a constant amplitu
chirp signal embedded in additive noise, for which standéict®
estimators can be developed and their statistical prgsedna-
lyzed in a rigorous manner.

Non-data aided (NDA) or blind feedforward carrier syncliran
tion of burst M-PSK transmissions has received considerabl
tention in the literature. A generalized form of the Maximuike-
lihood Feedforward (ML FF) algorithm was originally progas
by A. J. Viterbi and A. M. Viterbi as a blind carrier phase et
tor for fully modulated M-PSK transmissions, and it extshitn-
proved performance at low and intermediate Signal-to-&l&ia-
tios (SNRs) [9], [8]. This carrier phase estimator is reddrto as
the Viterbi and Viterbi (V&V) algorithm [4], and has been fHally
extended in [2] to a family of blind frequency offset estiorat
for burst M-PSK modulations. Reference [4] introduces heot
non-data aided feedforward carrier frequency offset etimthat
relies on a rather restrictive set of assumptions and whegeg:
totic variance is evaluated based on several approxinstitiris
interesting to remark that [7] proposes a quite generalineat
blind least-squares (NLS) estimator, but its performanas nei-
ther analyzed nor optimized. i . 3. NONLINEAR CARRIER SYNCHRONIZER
In this paper, a family of blind feedforward joint carriergse, ) .
frequency offset and Doppler rate estimators for carrieas are ~ Consider the polar representation:
fully modulated by M-PSK modulations is proposed based en th je(n)
V&YV algorithm. An optimal or “matched” nonlinear estimatiat z(n) = p(n)e ) @)
achieves the smallest asymptotic (large sample) variarttenw
the family of blind NLS estimators is also proposed. Optimal
monomial approximations of the matched estimator are aéso d o FMp(n)
veloped. The goal of the present paper is to provide a thdroug y(n) = F(p(n))e ’ ©)
and rigorous analysis of the statistical properties of tteppsed
family of nonlinear carrier synchronizers, and to propostnea-

and define the proceggn) via the nonlinear transformation:

whereF(-) is in general a nonlinear function.
Conditioned onw(n), z(n) is normally distributed with the

tors with improved performance. _ _ probability density function (pdfY (z(n)|w(n) = 2rm/M, 0 <

As we shall see, the proposed family of estimators presents,, - 57 _ 1) ~ N(w(n)exp(jé(n)), o2). Throughout the
high convergence rates, provides high accurate estimatphdse,  paner, the notatiorfi(-) will stand for the pdf of certain RVs. Due
frequency offset and Doppler rate, and admits low compfedii- to (2), it follows that:

ital implementations, without being necessary to oversantgr
fractionally-sample) the received signal faster than thyejuist p(n) _(p2(n)+1)/02
rate. The performance of these algorithms achieves cldgely F(p(n), (n)|w(n) = 2mm /M) = - ’
Crameér-Rao bound (CRB) of an unmodulated carrier at medium

mn ) cos n)—smm — n 0'2
and high SNR® . 20 coslip(m)=2mm/M—6(m]/o% (g



Based on (4), the joint and marginal pdf ofn) andy(n) take
the expressions:

M-—1

7 (o), o(m) = = Zf( mlu(n) = )
M—1 p2(n)t1 2p
:% 3 fr(:%)e S 20 cosliotn) -2 Poowl
m=0
F(om) = [ (o0} otm)doto)
_ 277(;) e‘(pz(")+1)/”3lo(2i(§)) 7 ©)

wherel(-) stands for the zero-order modified Bessel function of
the first kind [1, eq. (9.6.16)]. Using (5), some calculasiciow
that:

E{y(n)} = E{F(p(n))e’M*™} = ce/M?™ - (7)
o (222)
= |E{y(n)}| = E{F(P(”))@} ; (8)

wherel,(-) denotes the M-order modified Bessel function of the
first kind [1, eq. (9.6.19)], the expectation in (8) is witlspect
to (w.r.t.) the marginal distribution gf(n) (6) and the resulting
amplitudeC is a real constant. Sinae(n) andv(n) are i.i.d. and

mutually independent, it follows that(n) := y(n) — E{y(n)} is
i.i.d., too. Consequently,
y(n):CejM‘i’(")Jru(n), n=01,...,N—1, (9)

andy(n) can be viewed as a constant amplitude chirp signal em-
bedded in white noise. Note that in genetdly) is not circular.

Letw :=[C wo w1 wo]T =[C MO 2xrMF.T MnT?%,
and introduce the following NLS estimator (c.f. [3], [7]):

w =argmin J(@) ,
w

—1

|y(n)

z

L
N

n

. 2
J(@) = G Lo | (10)

Il
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After some algebra manipulations, the NLS estimates;ofl =
0,1, 2 are obtained as [3]:

2 -
(w1, @2) = arg max _| E ]lelwln ‘27
w1, w2
— 2 .
0 —ange 3 y(me—.?zlzlwm Y
n=0

Itis well-known that estimator (10) is asymptotically uaséd and
consistent, and also almost asymptotically efficient ah If8iNR
[3] and [5].

Following a procedure similar to the one presented in [3§ on
can derive the asymptotic variancesar(w;) := N* E(0, —
w)? of &y, 1 =0, 1,2, which are given by:

[(l!

1
oN2i+1

1

B-D
20 +1

CQ

(1+3)! 12
)2(271)!} (11)

avar(@;) =

B = E{ly(n)*} = B{F*(p(n)) } ,

Tonr (22 (2)
:E{FQ(p(n)) ( v

)

(12)

= |BE{y* (n)}| (13)

Next, we choose an optimal or “matched” nonlinearfty-)
which minimizes the asymptotic variance (11). Since in (bh)y
B, C, D depend orF (), finding an optimalF’(-) resorts to solv-
ing the optimization problem:

B—-D

CQ
Using (8), (12) and (13}Fmin(+) is obtained using Cauchy-Schwarz’
inequality and can be expressed as:

I (*25°)
Io(228) — Lans (3232)
where ) is an arbitrary nonzero constant. The asymptotic vari-

ances ofv;, [ = 0, 1, 2 corresponding to the matched nonlinearity
(14) can be expressed as:
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oN2+1
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M\752
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_ 2p(n)
0
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4. MONOMIAL NONLINEAR ESTIMATORS

As can be observed from (14min (p(n)) is a function that de-
pends on the SNR. This is not a restrictive requirement ditind
SNR estimators that exhibit good performance can be used- Ho
ever, if estimating the SNR is not desirable, we show next tha
there exist optimal monomial approximatign§(n), k = 0,..., M
of the matched nonlinearitfy,in (p(n)) that have almost the same
asymptotic variance as (15) and their performance doesauetsa
sitate knowledge of the SNR.

It turns out that at high SNRs (SNR oo dB ), based on [8,
ed. (15)], the optimal monomial i§', (p(n)) = p(n). Similarly,
at low SNRs (SNR« 0 dB), based on [8, eq. (16)], the optimal
monomial isG (p(n)) = p™ (n).

Finin (p(n)) = arg n};n

Frin (p(n)) = (14)

1
20+1

avarmin (&) =

[uéié?l)!z)!r

(15)

Define the class of processggs(n), k = 0,..., N, via the
monomial transformations:
ye(n) = pF(n)e?™e™ L =o0,.... M (16)

Now it is interesting to study the asymptotic performancéhef
following class of NLS estimators:

o)
—ed Lo )

(k) = ar -
¢ min
w(’«)

(1 +3)!
)22 -1

avar(d)fk)) =

totic variances are given by:
2
)
Bi := E{lyx(n)|*} = E{p™* (n)} ,

3 bt
which can be viewed as a special case of (10) and whose asymp-
By — Dy, 1 1
C? 2N2+120+1
Cr == [E{ye(n)}] = [E{p" (n)e*™}] |
= [E{gi(n)}| = [E{p™* (n)e’**}| .



Exploiting (6) and [6, eq. (6.643.4)], the following relai was
derived in [9, (A17)]:

k k‘ 2
B’“:Z<q> oyl ql.

q=0

(19)

Using (6), we can also obtain that:
1 iM¢(n) —ZL ~ k41 2
E{ye(n)} = —e e ? e T Iu(ad)dd,
0

where: o := \/i/av, v := o and¢ := ap(n). Based on [6,
eq. (6.643,2)] and [1, eq. (13.1.32), can be expressed in terms
of the confluent hypergeometric functidr(-, -, -):

Cr =

DM 4 1)e 3 (k+M

v
L,M+1,2). (20
(M +1)od* g LM ’2) (20)

Similarly,

T(k+M+1)e 2 ( v
Dy, = o k:+M+1,2M+1,—).21
" T@M +1)e2M 2 3) @

Following a similar approach to that presented in [9], onge ca
obtain a slightly more compact expression for the conflugpeh
geometric function in (21):

1] o~ M4k (M—k+p—1)/-2\7
o= [ B () )
* 7’“{7 2 ( P )( P v

p=0

+(—1)M+k+12ke—% (2) k+1 Mi,l (M + k+ P)
Y " p

(M +k)! 2\l L
m(;) ,ifk=0,1,...,.M -1,

De=1,ifk=M. (22)

Plugging (19), (20) and (21) back into (18), a closed-form ex

pression for the asymptotic variance@ar(azl(k)) is obtained for
k=0,...,Mandl = 0, 1,2. Note that at high SNR-{ oo dB),
using [1, eq. (13.1.4)], some calculations show that:

D O = 1 @)
foranyk = 0,1,..., M. Hence, based on (18), (19), (22) and
(23) we obtain:

. ~ (k) 2 1
SNI&QOO avar(w;"’) o« M SNR

which does not depend on the estimator oridere., it turns out
that at high SNRs, the performance of estimators (17) féeint
ordersk is asymptotically the same.

5. SSIMULATION RESULTS

In this section, we study thoroughly the performance ofnesti
tors (10) and (17) using computer simulations. The expertaie
mean-square error (MSE) results of (17) will be comparedti thie
theoretical asymptotic bounds. The experimental resuéisoh-
tained by performing a number of 200 Monte Carlo trials, tte a
ditive noise is generated as zero-mean Gaussian white witise

variances? and all the simulations are performed assuming the
carrier phasé = 0.1, frequency offsef. T = 0.011 and Doppler
ratenT? = 0.03. There exist several methods to implement esti-
mators (17). In this paper, we use the so-called high-onadigu-

ity function (HAF) approach, which has become a “standaod] t
for analyzing constant amplitude chirp signals since itvjgtes

a computationally efficient yet statistically accurateraator [3].
Due to space limit, we will not illustrate its details herein

In this section, we also compare the asymptotic performance
of proposed estimators w.r.t. the CRB for an unmodulatederar
i.e., M = 1, which is given as (c.f. [5]):

CRB(&) =

o2 1 [

‘ (1+3)! r
2N2H1 2141 I

22 —1

Experiment 1-Performance loss of estimators (16)-(17) w.r.t. the
matched estimator (14)-(10): Figs. 1-2 plot the loss in perfor-
mance of estimators (16)-(17) w.r.t. the optimal nonliitgagsti-
mator (14)-(10) €10 log;, [avar(dzl(k))/avarmin(d)l)]) in the case
of a BPSK modulation{/ = 2) and QPSK modulation){ = 4),
respectively. It turns out that in almost the entire SNR oagi
of interest, the optimal nonlinearit§min (p(n)) can be approx-
imated without much loss in performance pyn) (BPSK) and
p%(n) (QPSK), respectively.

Experiment 2-Asymptotic variances of estimators (14)-(10) and
(16)-(17) w.r.t. CRB: Fig. 3 illustrates the theoretical asymptotic
variances of estimators (10) and (17) versus SNR. The ttieake
asymptotic variances are compared with the CRB. Fig. 3 tepic
the performance loss of the asymptotic variances (15) a8j (1
w.rt. CRB (i.e.,—101log,,[avar(®*)/CRB(&,)]), assuming a
QPSK modulation. It can be seen that the proposed estimaters
hibit good accuracy. In high SNR range they coincide with the
CRB. In low SNR range (near 0dB), we can improve the perfor-
mance of estimators (17) by adopting low order estimators (1
and 2). Although the optimal nonlinearity estimator has likst
performance in the entire SNR range, the improvement is mino
From Figs. 1-3, we can also observe that at high SNRs, the-mono
mial estimators (16)-(17) for different ordeksexhibit the same
asymptotic variance.

Experiment 3-Comparison of MSE of estimators (17) with the the-
oretical bounds: In Figs. 4 — 6, the theoretical bounds (18) are
compared with experimental MSEs of the estimators (17). The
results are plotted versus SNR, assumitfig= 50, BPSK modu-
lation. These figures show that for medium and high SNR, the ex
perimental results are well predicted by the asymptoticdside-
rived in Section 4, and the proposed estimators provide geoygl
estimates of carrier phase, frequency offset and Doppler esen
when a reduced number of samples are us€d=€ 50). This
shows the potential of these estimators for fast synchatioiz of
burst transmissions.

6. CONCLUSIONS

In this paper, we have introduced and analyzed a family ofdbli
feedforward joint carrier phase, frequency offset and Depate
estimators for burst-mode M-PSK modulations. A matched non
linear estimator together with a class of monomial nonlireesi-
mators were introduced and their performance established.
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Fig. 1. Theoretical degradation dfl““) w.r.t. optimal nonlinearity
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Fig. 2. Theoretical degradation d)‘l(k) w.r.t. optimal nonlinearity
versus SNR for QPSK constellation.
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Fig. 3. Performance loss w.r.t. CRB versus SNR for QPSK
lation.

10°

107"

MSE()

107®

Theoretical bound: k=1
Experimental MSE: k=1

*

o 5

10 20 25 30

15
SNR (dB)

Fig. 4. MSEs of versus SNR for BPSK modulation.
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Fig. 5. MSEs of F. T versus SNR for BPSK modulation.
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Fig. 6. MSEs ofn/T\2 versus SNR for BPSK modulation.
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