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ABSTRACT
By exploiting the received signal’s second-order cyclisteary
statistics, blind algorithms have been recently proposedoint
estimation of the frequency offset and the symbol timingyeif
a linearly modulated waveform transmitted through a fldirfg
channel. The goal of this paper is to establish and analyze th
asymptotic (large sample) performance of the Gini-Giaisgy
and Ghogho-Swami-Durrani [3] estimators as a function ef th
pulse shape bandwidth and the oversampling factor. It is/sho
that the performance of these estimators improves as thee pul
shape bandwidth increases, and the best performance isebta
by selecting small values for the oversampling factor.

1. INTRODUCTION

In mobile radio channels the loss of synchronization oftecucs

[5], and re-acquisition must be performed in a fast andb&iaay

without sacrificing bandwidth for periodic re-training. 8tefore,

developing optimal blind synchronization architecturppears as
an important problem. Recently, blind carrier frequendgetfand
symbol timing delay estimators that exploit the seconcepiay-

clostationary (CS) statistics, introduced by oversangptime re-

ceived waveform, have been proposed in [3], [4], [7]-

The goal of this paper is to analyze and design criteria fer im
proving the performance of the existing blind carrier freacy
offset and symbol timing delay estimators [3], [4] with resp
to (w.r.t.) the pulse shape bandwidth and the oversampbng f
tor. The theoretical asymptotic performance of the Girgw@iakis
(GG) [4] and Ghogho-Swami-Durrani (GSD) [3] estimatorsss e
tablished, and it is shown that significant performance ower
ment can be obtained by selecting small values for the owersa
pling factor (P = 2, 3) and pulse shapes with larger bandwidths.
Both experimental and theoretical results show that lacyer-
sampling factors® = 4, - - -, 8) are not justifiable from a compu-
tational and performance analysis viewpoint. By dividihg te-
ceiver samples into several disjoint subsets and by exmiosep-
arately the resulting subsets, it is shown that the perfoomaf
the GG estimator can be improved by averaging the correspgnd
estimates that are obtained from each subset.

2. MODELING ASSUMPTIONS

Consider the baseband representation of a linearly meatlitag-
nal transmitted through a flat-fading channel. The receinput
can be expressed’as

ze(t) = pe()e™ Y S w(l)he(t — €T = IT) + ve(t) , (1)
!
1We use the subscriptto denote continuous-time signals.

whereu.(t) is the fading-induced noise;(l)’s are zero-mean unit
variance independent and identically distributed (}i.symbols,
h(t) denotes the convolution of the transmitter’s signalingspul
and the receive filter.(¢) is the additive noise]" is the symbol
period, f. ande stand for the frequency offset and the timing delay,
respectively, which are the parameters to be estimated fipiex
ing the second-order CS-statistics of the received wanefor

By oversampling the received signal(¢) (see eq. (1)) with
the sampling period’ := T'/P (P > 2), the following discrete-
time model is obtained:

z(n) = p(n)e?*™ TN " w(l)h(n — IP) + v(n) ,  (2)

with z(n) := z.(nTs), p(n) = pc(nTs), v(n) := ve(nTs), and
h(n) := he(nTs — €T'). In order to simplify the derivation of the
asymptotic performance of estimators [3], [4], we assunedfdh
lowing:

(AS1) w(n) is a zero-mean i.i.d. sequence with = 1.

(AS2) u(n) is a constant fading-induced noise with unit energy.
(AS3) v(n) is a zero-mean white process independentvéf),
with varianceo?.

(A4) the combined filteh.(t) is a raised cosine pulse of band-
width [—(1 4 p)/2T, (1 + p)/2T], where the parameterrepre-
sents the rolloff factorQ < p < 1) [6, Ch. 9].

(ASb) frequency offsetf. is small enough so that the mismatch
of the receive filter due tgf. can be neglected [4]. Generally,
feT < 0.05 is assumed.

3. BLIND CARRIER FREQUENCY OFFSET
AND TIMING DELAY ESTIMATORS

In this paper, the time-varying correlation ofn) is defined as
caz(n;T) == E{z"(n)z(n + 7)}, wherer is an integer lag.
Straightforward calculations show that, (n; 7) = co. (n+P; 1),
Vn, 7. Being periodic,ca-(n;7) admits a Fourier Series (FS)
expansion whose FS-coefficients, termed cyclic correiati@re
given by the following expression fd? > 3 [3], [4]:

2
C2z(k, 7_) _ %6]27#‘6717/1367]27”“67‘2 (k‘, T)egwkT/P
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whereGz(k; 7) := (P/T) _pJor H.(F—k/2T)H.(F+k/2T)

exp (j2n FrT/P)dF, H.(F) denotes the Fourier Transform (FT)
of h(t), andto is a known time delay chosen to ensure causality
of he(t).



In practice, the cyclic correlationSa. (k; 7) have to be esti-
mated from a finite number of sampl@s. The standard sample
estimate o’ is given by (see e.g., [2] and [4]):

N—-7—1
Z z* (n)x(n+7)e 72 >0, (4)
n=0
The GG estimator determines the frequency offsednd the tim-
ing delaye from the following egs. [4, egs. (10), (11)]:

C’Qz(k; T) = N

2 P A .
fe= o o arg{Caz (1;7)Cor(—1;7)} , (5)
¢ == arg{Co(r)e” ST ()
¥[8

As described in [3], the accuracy of the estimators in (5) and

(6) does not vary significantly with. In this paper, we choogse=

1 for the GG estimator. One can see that in this case, the fnegue
offset estimators corresponding to GSD [3, eq. (7)] and GG [4
eg. (10)] algorithms coincide. However, the timing delatjreator
corresponding to the GSD algorithm [3, eq. (8)] is differrom
the GG estimator (6) and is given by the following relation:

)

j2rtg

1 R .
€= “or arg{Ca;(1;0)e T }.

4. PERFORMANCE ANALYSIS

The estimators of. ande are asymptotically unbiased and consis-
tent [3], [4]. In this section, we will establish the asymiptovari-
ances off. ande, which are defined dsmy ..o NE{(f. —f.)?}
andlimy—. NE{(¢ — €)?}, respectively. Because of lack of
space, only the results fd? > 4 are presented here. If we define
the normalized unconjugated/conjugated asymptotic neeis of
the cyclic correlations by means of the following relati¢2k

{r(k,m)} Jim E{ (ég,c(k, u) — Oz (k, U))
(CQ:IJ( Caz(m, U))*} )

v) —
= lim NE{ (02,5 (k, u) C’g,c(lc,u))

N—o0

= lim N
U,V

]

u,v

(Coutmv) = Cantm,)) }

wherek, m = =+1, then the following proposition, which is an
extension of the result presented in [2], can be established
Proposition 1. The asymptotic variances of the cyclic correlations

are given by:
o]
+ kPC2% (—1;u)Cs. (—1;v)
{I‘“’l)} = Z Cou(0; 7 + u — v)C5, (05 T)efﬂﬂ/}j
+ kPC2 (1;u)C5,(1;0)
= Z Cow(1;7 4 u — v)Coy (=15 7)e? 2™ 07/ P

=
+ £PCo: (1;u)C3, (—150)
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wherex stands for the kurtosis of symbol sequende.).
SinceCy, (k; 7) = e?2™7/P ¢35 (—k; —7) [1], it follows that:

[f(k,m):| _ ej27rm'u/P |:1-\(k,7m):|

s u,—v

4.1. GG Estimator

By exploiting Proposition 1 and the egs. (5) and (6), the gsym
totic variances off. andé can be obtained and are given by:
Proposition 2. The asymptotic variance of the frequency offset
estimator (5) is given by:

Jim NE{(f. - )"} =G <‘;—1 + ‘;—1 - %ﬁ)
wheré:
o= P tan(4nTf/P)
AT 1+ tan?(4xTf./P)’
a1 := Cay(1;1)Car(—1;1) — C5,(1;1)C5,(—1;1)
Br = Caa(L 1)0235 —11) + Co (1, 1)Co(—151)

Vi = 2re( O3 e ( b 71)) +2re(CQI( 1; 1)1"(1 1))

(1
+ 4re(C’2¢ (1;1)Caa( 131)f‘§,_11’1))
(cax Lori)
— 205, (1;1)C3, (1; )T Y
— 205, (~1;1)C5, (- 1; )TV

= 2re (0221(1; l)f‘gjll’_l)) + 2re (0221(—1; 1)f$il))

— 4re( Coy(1;1)Cs, (—

V12
+ dre(Cas (1:1)Can (- L DE )
—1,1

;1)F§,1 ))

+ 2C, (15 1)C5, (1; )T
+ 200, (~1;1)C5, (1 )TV

Vig = j2{im(0§z(1; 1)1~“§;1"1’) + im((ﬁz(—l; 1)1~“§fil))
1; 1)1~“§j11’1>)} .

Proposition 3. The asymptotic variance of the timing delay esti-
mator (6) is given by:

n 4re<ng(1; 10 (~1

+ 2im (02,(1; 1)Caa(—

. R Va1 V22 2V23
lim NE 2, 2 ,
Ngnoo {(é - ) b= C2 ( 72 agﬁg)
where
Coim 1 tan(2me) W = oI (2t0/T—1/P) 7

21 1+ tan?(2me) ’
az 1= 11 Cao (1 1) 2T/ — iy, (151) 27T/
Ba = 1 Caa (13 )e 27 TP 4 403, (15 1) T/T

2«re” and “im” stand for the real and imaginary part, respesiij.
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andavar( f.) denotes the asymptotic variance fof

4.2. GSD Estimator

When compared with the GG algorithm (6), the symbol timing de
lay estimator corresponding to the GSD algorithm is obthinem
the eq. (6) by fixing- = 0. Note that such a choice efdecouples
the symbol timing delay estimator (6) from the frequencyseff
estimator (5) in the sense that the estimationa dbes not require
an initial estimate off. [3]. The following result holds:

Proposition 4. The asymptotic variance of the timing delay esti-

mator (7) is given by:
2Vs3
azfz )’

Va1 = 2re(1s’TY) — 200", gy 1= 7270/ T

V32 = 2re(q/)22f861)) + QF(()T(,)U Vs = j21m(¢22f$()1)),
ag 1= 12C2,(1;0) — 95 C5,(1;0) = j2im(12C2,(1;0)) ,
B3 := 1P2C2,(1;0) + 15 C5,(1;0) = 2re(w2Ca,(1;0)) .

lim NE{(e-o’}=¢ <E 4 Y

ag - fj

with:

5. SSIMULATION EXPERIMENTS

In this section, the experimental results and theoretigaingtotic
bounds are compared. The experimental results are obthined
performing a number of 400 Monte Carlo trials assuming that t

transmitted symbols are i.i.d. QPSK symbols. The transmit a
receive filters are square-root raised cosine filters andddéive
noise is generated as Gaussian white noise. To render ttretgis
time noise uncorrelated, a front end filter with two-sideadba
width P/T is used [3]. All the simulations are performed with
feT =0.011 andeT = 0.37.

1) Performance w.r.t. the oversampling rak& By changing the
oversampling raté’, we compare the MSEs of GG and GSD es-
timators with their theoretical asymptotic variances. Tienber

of symbols NV is set to 400 and the rolloff factor of the filter is
p = 0.5. SNRis fixed at 20 dB. The results are depicted in Figures
1-2. Both frequency offset and timing delay estimators stiat
increasing the oversampling rate will impair the perforeenT his

is due to the fact that for largd?, less cyclic correlation informa-
tion is obtained. Moreover, although more samples are atelte
as P increases, their correlation increases too, which is kntmvn
increase the estimators’ variance [4].

2) Performance w.r.t. the filter bandwidtiBy varying the rolloff
factor p, we can obtain different bandwidths for the combined filter
h(t). Larger values op correspond to wider bandwidths. Con-
sider the parameter® = 8, N = 400 and SNR= 20dB. From
Figures 3—4, one can see that a small@auses a poorer perfor-
mance. This is due to the small values of the second-orddiccyc
correlations. In fact, since(n) is given by the equation (2), it is
well known that under assumptioA$2), the cyclic spectrum of
z(n), which is defined as the FT @2, (k; 7) w.r.t. 7 [4], can be
expressed fok # 0 as (cf. [8]):

Saalli f) = HH(f = LT (= [T = k/P)e 7, (@)

whereH (f) is the discrete-time FT df(). Based on (8) and since
h(t) is bandlimited, it follows that as the bandwidth decreases,
the supports of the functions— H(f— f.Ts)andf — H*(f —

feTs — k/P) become more and more disjoint, which leads to less
cyclic correlation information. Also, it turns out that thiening
delay estimator corresponding to the GG method perforrghtdji
better than the GSD estimator.

3) Averaging improves the performance of the GG estimatax:
sume that the received waveform and a time delayed replica of
the received waveform are both oversampled with the oversam
pling factor P = 2. In addition, assume that the GG estimator
is applied separately on the two resulting sets of samplégteaat

the resulting frequency and timing delay estimates areagest.
Surprisingly, Figures 5-6 reveal the fact that this newnestor
improves significantly the performance of the GG estimatene

in the presence of a very small rolloff factgr £ 0.1, N = 400).

6. CONCLUSIONS

In this paper, we have analyzed the asymptotic performafiteo
blind carrier frequency offset and timing delay estima{8is[4],
which rely on the second-order cyclostationary statigi@serated
by oversampling the output of the receive filter. We haveveeri
the asymptotic variance expressionsf@fandé and shown that a
smaller oversampling rateP( = 2, 3) and a wider pulse shape
bandwidth p € [0.6, 0.9]) can improve the estimation accuracy
as well as reduce the computational complexity of the estirma
Due to space constraints, we have only illustrated the perfo
mance analysis for circular input sequences (QPSK) ancaner
pling ratesP > 4. The analysis of the more general estimators that
consider arbitrary oversampling factdPsand arbitrary input con-
stellations, in the presence of time-varying fading efettigether
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with a rigorous performance analysis of the proposed estima
which relies on the averaging of the estimates obtained plyap
ing the GG estimator on different subsets of samples, hagady
been implemented and are to be reported in a future paper.
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