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Abstract 
This paper introduces 0 family of optimal blind feed- 

forward estimators for joint estimation of the carrier 
phase and frequency offset of general quadrature am- 
plitude modulated (QAM) transmissions. The asymp- 
totic (large sample) performance of these estimators is 
established in closed-form expression. A pmctical im- 
plementation of the proposed optimally matched esti- 
mator, which is a computationally eficient approxama- 
tion of the latter and exhibits negligible performance 
loss, is also derived. It is shown that the proposed 
family of constellation-dependent optimal estimators 
outperforms all the existing carrier synchronizers, and 
serves as an unifying framework for designing blind 
feedforward carrier recovery schemes for large QAM 
modulations. Finally, computer simulations are pre- 
sented to show the merit of the proposed optimal esti- 
mators. 

1 Introduction 
Quadrature amplitude modulations (&AM) are 

currently used in throughput efficient high speed 
communication applications such as digital TV and 
TDMA systems. One of the main problems associ- 
ated with the use of QAM modulations is that of car- 
rier acquisition which for efficiency reasons must be 
performed without using preambles [l], [2], [3]. 

Carrier recovery involves the acquisition of both the 
carrier frequency and phase. Recently, assuming that 
the frequency recovery has already been achieved, a 
number of blind phase estimators for square and cross 
&AM modulations were reported in [l], [Z], [3], [5, 
pp. 266-2771 and 161. These estimators exploit the 
angle information contained in the fourth or higher- 
order statistics of the received signal. However, none 
of the above estimators has been optimized, thus, they 
all exhibit rather poor performance (larger symbol er- 
ror rate (SER)) at medium and high Signal-to-Noise 
Ratios (SNRs). 
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In this paper, a family of non-data aided (NDA) 
or blind feedforward joint carrier phase and frequency 
offset estimators for general QAM modulations is prw 
posed and its asymptotic performance analyzed in 
a rigorous way. The proposed estimators represent 
a generalized form of the maximum likelihood feed- 
forward algorithm, which was originally proposed by 
A. J. Viterbi and A. M. Viterbi as a blind carrier 
phase estimator for fully modulated M-PSK transmis- 
sions [9], [7]. An optimally "matched" estimator that 
achieves the smallest asymptotic variance within this 
family of blind estimators, together with a practical 
computationally efficient algorithm, is proposed and 
shown to improve the performance of the estimators 
proposed in the literature, especially in medium and 
high SNR ranges. 

2 Problem Formulation 
Let us consider the following baseband model 

z(n) = w(n)e3"J(n) + u(n), 
q(n) := 6' + 2aFeTn,  

n = 0, .  . . , N - I, (1) 

where {zu(n)} is the independently and identically dis- 
tributed (i.i.d.) input M-QAM symbol stream with 
zero-mean and unit variance (U; := E{lw(n)Iz} = 1). 
T denotes the symbol period, {U(.)} is a zerwmean 
circular white Gaussian noise process independent of 
~ ( n )  and with variance U," := E{Iu(n)l'}, 0 and 
fe := F,T stand for the unknown carrier phase and 
frequency offset, respectively, which are the parame- 
ters to be estimated based only on knowledge of re- 
ceived samples {~(n)}:::. The Signal-to-Noise Ratio 
per symbol is defined as SNR= 10 log lo (u~ /o~) .  

Because the input QAM constellation has quadrant 
( ~ / 2 )  symmetry, it follows that the estimates of 6' and 
fe present 4-fold ambiguity, which can be counteracted 
by applying differential encoding. Without any loss of 
generality, we assume that the unknown phase 0 lies 
in the interval ( - ~ / 4 ,  7r/4) and I f e /  < 1/8. 
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3 Estimators for $AM Constellations 
For convenience, we introduce a new notation AM 

to denote the range of Al-QAAt constellations. With 
normalized energy, w(n)  takes a value from the set 
( 1 / ? - ~ ) { * ( 1 + 2 1 ) ~ ~ ( 1 + 2 ~ ) ,  ( 1 : k )  E AM},  where AM 
is dehed  for square QAM constellations (i.e., with 
sizes A4 = ZZm, m = 1 , 2 , .  . .) and cross QAM constel- 
lations (i.e., with sizes A t  = 22mt1, m = 2 , 3 , . .  .) 
as AM := {(0,1,2 ,..., zm-' - l)'} and AM := 

respectively, and 
{(O, 1 , .  . . ,3.2m-2 - 1)2 - (2-1:. . . ~ 3 ' 2m-2 - 1)2}, 

4 
?-; := - [(l + 21)Z + (1 + 2k)2 ]  

( l , k ) € d n i  

is an energy normalization constant. 
Represent z(n) in its polar form: 

z(n) = p(n)ejd(n) , (2) 

y(n) := F(p(n))ei4$(") , (3) 

and define the process y(n) via the nonlinear transfor- 
mation: 

where F( . )  is a real-valued non-negative arbitrary non- 
linear function. It is interesting to remark that the 
transformation (3) differs from the class of nonlin- 
ear transformations introduced in [7], [SI. This dif- 
ference is due to the fact that all QAM constellations 
exhibit quadrant symmetries which translate into non- 
zero fourth-order moments ( E { w 4 ( n ) }  # 0). and con- 
sequently justify the special form of the exponential 
factor in (3). 

Conditioned on the signal w(n) ,  z(n) is normally 
distributed with the probability density function (pdf) 

out the paper, the notation f(.) will stand for the pdf 
of certain random variables (RVs). Due to  (2), it is 
easy to infer that the joint pdf of p(n) and +(n), and 
marginal pdf of p(n) take the expressions: 

f(z(n)lw(n)) - N(w(n)  exp(jv(n)), U:). Through- 

where ~ l , k  := J [ ( l  + 21)2 + (1 + 2k)2]/r,, @l,k := 
arctan((1+21;)/(1+21)): and IO(.)  stands for the zero- 

order modified Bessel function of the first kind. More- 
over, since w(n)  and v(n) are i.i.d. and mutually inde- 
pendent, based on (1) and ( 2 ) ,  it is not difficult to  find 
that the joint pdf of the RVs p(n l ) ,  4(n1), p ( n z ) ,  Q(nz)  
satisfies the following factorization: 

f ( P b l ) >  ,i+d:P(nZ)>O(nz)) 

= f(p(n1),4(nl)).f(p(nz),4(n2)),fo~ nl # nz. (6) 

Exploiting (4), some lengthy calculations lead to the 
following relations: 

E { y ( n ) }  = E { F ( p ( n ) ) e j 4 4 ( n ) }  = Cej(Tt4q(n)) , (7) 

C := IE{y(n)}l  = IE{F(p(n))ej4*(")}/  , (8) 

where the amplitude C is a real-valued constant which 
does not depend on n. From (6), it follows that 
U(.) := y(n) - E{y(n)} is wide sense stationary i.i.d., 
too. Consequently, 

= Cej("+471(")) +u(n), n = 0 , 1 ,  ..., N - 1 .  (9) 

Let w := [WO w1lT = [40 8af,IT and 0 be the trial 
value of w ,  and introduce the following NLS estimator 
(see e.g., 141): 

2 

I (10) 
3, = argm%, k E:': y(n)e-?Y"n I { ijo =angle{ - y(n)e-j'ln} . 

It is obvious that when F ( p ( n ) )  = p4(n) ,  the estimator 
(10) is just the standard fourth-power estimator [5, 
pp. 281-2821, [6]. 

The asymptotic variance of estimator (10) is estab- 
lished in the following theorem: 

Theorem 1 The asymptotic variance of the esti- 
mates ijr, 1 = 0 , l  in (10) is given by: 

645 



where for i = 1 , 2 , 3  the following relations hold: 

and  PI,^ := $m..{~,k),min{~.k). 
It is of interest to compare the asymptotic variance 

(11) with the Cramkr-Rao lower bound (CRB). In [8], 
the CRBs for carrier phase and frequency offset esti- 
mates are derived for fully QAhl-modulated carriers, 
and with the notations adopted so far admit the fol- 
lowing expression for large N 

where CRBcw corresponds to the CRB for an un- 
modulated carrier wave, and R(u:) denotes the 
constellation-dependent ratio of the true CRB to 
CRBcw, which can be evaluated by means of numeri- 
cal integration or Monte Carlo evaluations (MCE) [8]. 
Based on (11) and the expression of CRB, one can ob- 
serve that the asymptotic variances of the estimator 
(10) decay at the same rate as the CRB. 

In the absence of frequency offset (fe), the proposed 
NLS estimator (10) reduces to the phase estimator: 

whose asymptotic variance is one quarter of that cor- 
responding to the case of joint phase and frequency 
offset estimation [SI, and is given by: 

" B - v  
avar(6') = - 

32NC2 

Next, we determine the optimal "matched" nonlin- 
earity F( . )  which minimizes the asymptotic variances. 
Since in (ll),  only the terms 8, C, V depend on F( . ) ,  
finding an optimal F ( . )  resorts to solving the opti- 
mization problem: 

B - V  ~ , , ~ ~ ( p ( n ) )  = argmin - . 
F(.) cz 

Based on (14)-(16), the optimum nonlinearity F,i, is 
obtained by using Cauchy-Schwarz' inequality and is 
given by the following theorem: 

Theorem 2 The optimal "matched" nonlinearity 
F,i,(.) that'minimizes the asymptotic variance of the 

proposed family of estimators (10) is given by: 

where X is an arbitmnJ nonzero constant selected such 
that Fmin(.) is non-negative. 

Plugging (20) back into (14)-(16), and substituting 
these values into (U), the asymptotic variance corre- 
sponding to the optimal matched estimates 21, can be 
expressed as: 

. .  
In Fig. 1, assuming the number of samples N = 500, 

we evaluate the theoretical asymptotic variances of 
the proposed optimal matched and fourth-power esti- 
mators versus SNR for 16-QAM. Sinct, the djfference 
between the asymptotic variances of 6' and fe is just 
a constant for a given SNR, only the variance of 6' 
(19) is plotted. From Fig. 1, one can observe that at 
low SNRs, both the optimal estimator and the fourth- 
power estimator achieve CRB, which means that at 
very low SNRs, the classic fourth-power estimator is 
always the best choice. This is not a surprising result 
since the fourth-power estimator is simply a low-SNR 
approximation of the hlL estimator [6]. However, in 
the more practical regime of medium and high SNRs, 
the optimum nonlinear estimator provides a significant 
improvement over the fourth-power estimator while 
the latter exhibits the error floor due to its self-induced 
noise [6], [8]. 

I 
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Figure 1: Theoretical bounds of 6 versus SNR (16- 
&AM constellation). 

4 Implementation of the Optimal Esti- 
mator 

The result shown in Fig. 1 illustrates the good prop  
erty of the optimal nonlinearity (20) for higher-order 
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QAh4 modulations at medium and high SNR ranges. 
As can be observed from (17) and (20)> F,,,i,(p(n)) 
is a.function that depends on the SNR, and presents 
high implementation complexity, which makes the op- 
timal estimator impractical. Fortunately, computer 
simulations indicate that the sensitivity of the o p  
tinial estimator to SNR is limited in medium and 
high SNR ranges. By considering approximations of 
( Z O ) ,  we propose next computationally efficient SNR- 
independent estimators, which will be referred to as 
APP-estimators. 

We select 16-QAM as an example to illustrate the 
derivation of the constellation-dependent APP estima- 
tor. Fig. 2 plots the optimal nonlinearity (20) versus 
the magnitude p of the received data at SNR= 20dB 
for 16-QAM modulation. The curve presented in 
Fig. 2 suggests that for 16-QAM a good design for the 
APP estimator is a piecewise linear approximation of 
the following form: 

122.2733p(n) if p(n) 5 0.7 
F,kpple(p(n))= 331.885p(n) - 30.4524 if p(n) 2 1.2 

Since F.~PP(.) is constellation-dependent, we will 
not present the detailed expressions of F ~ p p  for other 
QAM modulations in this paper. The APP nonlinear- 
ities for general QAM constellations can be obtained 
in a similar way. Careful examination of the expres- 
sions of APP nonlinearities illustrates that the intrin- 
sic principle of APP estimators is to emphasize the 
weight of the points located on the diagonals of the 
signal constellation, and discard all the off-diagonal 
points. It appears also that only a subset of the points 
located on the diagonals is selected. 

( 0  elsewhere. 
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. .  

/ 

1 / 
, . .  . . . . . . . . . . . . . . . .  

Figure 2: F,i, versus p (16-$AM constellation at 
SNR= 20dB). 

5 Simulation Experiments 
In this section, we study thoroughly the perfor- 

mance of estimators ( IO)  and (18) using computer sim- 

ulations. The experimental mean-square error (MSE) 
results of the proposed estimators will be compared 
with the theoretical asymptotic bounds and the CRB. 
The impact of the nonlinearity F(.)  on SER is also 
assessed. The additive noise is generated as zero- 
mean Gaussian white noise, the carrier phase 6' = 0.2 
and frequency offset F,T = 0.05, the number of sam- 
ples is assumed N = 500, and the experimental re- 
sults are obtained by performing a large number of 
MC = loo? 000 Monte Carlo trials to ensure accuracy. 
Experiment I-Comparison of the MSE of the PTO- 

posed estimators with the theoretical bounds uersus 
SNR: This experiment compares the theoretical (The.) 
bounds with the experimental (Exp.) MSEs of the 
proposed estimators (10) for 16-QAM (Figs. 3 and 
4). These figures show that for medium and high 
SNRs, the experimental results of the optimal estima- 
tor and the fourth-power estimator are well predicted 
by the asymptotic bounds derived in this paper, and 
the proposed optimal estimator provides considerable 
improvement over the fourth-power estimator. 
Experiment %The impact of the nonlinearity on SER: 
In Fig. 5, we show the SER performance of the carrier 
synchronizer (18) exploiting different nonlinearities for 
32-QAh4. We also plot the result of the eighth-order 
statistics based phase estimator (EOE) proposed for 
cross QAM in [l]. To show the superior performance 
of the optimal estimator, we also plot as a lower hound 
the SER curves in the case of perfect carrier recovery, 
i.e., in the case when the transmitted symbols are only 
corrupted by additive white Gaussian noise (AWGN). 
Fig. 5 indicates that the optimal estimator approaches 
closely this lower bound, and improves significantly 
the performance of the conventional fourth-power es- 
timator and EOE for medium and high SNRs. We 
can also observe that APP is a satisfying realizable 
alternative to the optimal estimator. 
Experiment 3-The performance of the proposed esti- 
mators in the m e  of higher-order QAM modulations: 
Fig. 6 illustrates the performance of the optimal es- 
timator and APP for larger-order QAM modulation 
(256-QAh4), compared with the fourth-power estima- 
tor. Since higher-order &AM modulations often o p  
erate at larger SNRs, we pay special attention to the 
medium and high SNRs, where the SER is in the range 
SER5 This figure shows again the merit of the 
proposed optimal estimator and APP. 

6 Conclusions 
In this paper, we have introduced and analyzed a 

family of blind feedforward carrier synchronizers for 
general QAM modulations. Based on a generalization 
of the V&V algorithm, an optimal matched nonlin- 



ear estimator is introduced and its performance es- 
tablished in closed-form expressions. A framework 
for designing computationally efficient approximations 
of the proposed optimal estimator without incurring 
much performance loss, is also proposed. Simula- 
tion results indicate the superior performance of the 
proposed (approximate) optimal estimator compared 
with the existing methods, and the merit of the per- 
formance analysis presented in this paper. 
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Figure 4: Comparison of MSEs of fe versus SNR (16- 
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Figure 5:  SER curves versus SNR (32-QAM). 
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Figure 6:  SER curves versus SNR (256-QAhI). 

648 


