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Consider a weighted, undirected, complete graph G of N nodes. For all i, j = 1, . . . , N , we denote by wij

the weight of edge i, j, by wi =
∑

j wij the weight of node i, and by w =
∑

i wi the total weight of nodes
(or edges). We assume that the graph induced by the positive weights is connected (in particular, the node
weights are positive) and not bipartite (that is, contains cycles of odd length). Some key metrics useful for
ranking and clustering nodes can be expressed in terms of random walks in this graph, that can be seen as
electrons moving at random in the corresponding electrical network where each edge i, j has conductance
wij . These notes are mainly based on [1, 2, 3].

1 Markov chain

Consider a random walk in the graph where the probability of moving from node i to node j is pij = wij/wi.
The successive nodes X0, X1, X2, . . . visited by the random walk form a Markov chain on {1, . . . , N}. We
have for all n ≥ 0:

∀i = 1, . . . , N, P(Xn+1 = i) =

N∑
j=1

P(Xn = j)pji. (1)

Since the graph is connected, the Markov chain is irreducible.
A stationary distribution π of the Markov chain satisfies:

∀i = 1, . . . , N, πi =

N∑
j=1

πjpji. (2)

It can be easily verified that the distribution defined by πi = wi/w satisfies these equations. By the Perron-
Frobenius theorem, this is the unique solution to these equations. We shall see that it is also the limiting
distribution of Xn when n→ +∞, independently of the distribution of X0.

By the ergodic theorem, we have:

1

m

m∑
n=1

1{Xn=i}
p.s.−→ πi when m→ +∞,

so that the frequency of visit of each node is proportional to its weight. Similarly,

1

m

m∑
n=1

1{Xn=i,Xn+1=j}
p.s.−→ πipij when m→ +∞,

so that the frequency of visit of each edge is also proportional to its weight. Observe that the balance
equations (2) can be written

∀i = 1, . . . , N,

N∑
j=1

πipij =

N∑
j=1

πjpji
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and thus interpreted as the frequency of departures from each node being equal to the frequency of arrivals
to this node.

The Markov chain is reversible in the sense that

∀i, j = 1, . . . , N, πipij = πjpji. (3)

Thus the frequency of moves from i to j is equal to the frequency of moves from j to i. These equations,
called the local balance equations, are stronger than the balance equations (2).

Remark 1 Any irreducible, reversible Markov chain with N states corresponds to a random walk on a graph
of N nodes, with weight wij = wπipij between node i and j, for some positive constant w. The weight of
node i is then wi = wπi and the probability of moving from node i to node j is wij/wi = pij.

If X0 has the distribution π, then this is the distribution of X1, X2, . . . and we have for all n ≥ 0:

P(Xn = j|Xn+1 = i) =
P(Xn = j)

P(Xn+1 = i)
P(Xn+1 = i|Xn = j) =

πj
πi
pji = pij ,

so that the random walk in reverse time has the same distribution as the original random walk.

2 Spectral analysis

Let P = D−1A be the transition matrix of the Markov chain X0, X1, X2, . . ., where A = (wij)1≤i,j≤N is the
adjacency matrix of the graph and D = diag(w1, . . . , wN ) the diagonal matrix of node weights. This is a
stochastic matrix in the sense that P ≥ 0 and P1 = 1. Writing the distribution of Xn as a vector π(n) of
dimension N , the equations of evolution (1) and the balance equations (2) can be respectively written in
vectorial form,

π(n+ 1)
T

= π(n)
T
P and πT = πTP.

In particular,
∀n ≥ 0, π(n)T = π(0)TPn, (4)

and πT is the left eigenvector of P for the eigenvalue 1 such that πT 1 = 1.
Unlike the transition matrix P = D−1A, the Laplacian matrix L = D−1/2AD−1/2 is symmetric, with

D−1/2 = diag(1/
√
w1, . . . , 1/

√
wN ). There is some matrix Q such that QTQ = I and QTLQ = Λ, where

Λ = diag(λ1, . . . , λN ) and |λ1| ≥ |λ2| ≥ . . . ≥ |λN |. The columns of Q are the eigenvectors of L for the
respective eigenvalues λ1, . . . , λN . Let U = D1/2Q/

√
w and V = D−1/2Q

√
w. Observe that UTV = I.

Theorem 1 (Spectral decomposition) We have:

P = V ΛUT . (5)

Proof. This follows from:
P = D−1/2LD1/2 = D−1/2QΛQTD1/2 = V ΛUT .

�

In view of (5), we have
UTP = ΛUT and PV = V Λ

so that the lines of UT and the columns of V are the left and right eigenvectors of P for the respective
eigenvalues λ1, . . . , λN . By Perron-Frobenius Theorem, we have λ1 = 1 > |λ2| ≥ . . . ≥ |λN |. Let q1, . . . , qN
be the columns of the matrix Q, u1, . . . , uN and v1, . . . , vN be the columns of the matrices U and V ,
respectively. Observing that

LD1/21 = D−1/2A1 = D−1/2D1 = D1/21,
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we get q1 = ±
√
π. Choosing q1 =

√
π, we obtain u1 = π and v1 = 1. Now for all n ≥ 1,

Pn = V ΛnUT = v1u
T
1 +

N∑
k=2

λnkvku
T
k . (6)

Denoting by Π the matrix 1πT (all lines equal to πT ), we get

lim
n→+∞

Pn = Π.

In view of (4), for any initial distribution π(0),

lim
n→+∞

π(n)T = π(0)T Π = πT .

Moreover, in view of (6), the convergence rate depends mainly on the second largest eigenvalue (in modulus)
of P , known as the spectral gap of the matrix.

3 Hitting times

Let Pi = P(·|X0 = i) be the probability measure conditioned on the fact that the random walk starts from
node i, Ei the corresponding expectation and Ti = min{n ≥ 1 : Xn = i} the hitting time of node i. We are
interested in the mean hitting time of node j from node i,

hij = Ei(Tj).

When i = j, this is the mean return time to node i; since node i is visited at frequency i, we must have

hii =
1

πi
. (7)

This will be proved in section 5.

Proposition 1 We have

∀i, j = 1, . . . , N, hij = 1 +
∑
k 6=j

pikhkj . (8)

Proof. The proof follows by first-step analysis:

hij = E(Tj |X0 = i),

=
N∑

k=1

P(X1 = k|X0 = i)E(Tj |X0 = i,X1 = k),

=

N∑
k=1

pikE(Tj |X1 = k),

= 1 +
∑
k 6=j

pikE(Tj |X0 = k),

= 1 +
∑
k 6=j

pikhkj .

�

3



Now consider the mean hitting time of node i in steady state:

hi =

N∑
j=1

πjhji.

This defines a measure of centrality of the nodes: node i is more central than node j if hi < hj . We shall
see in section 5 that for all i, j,

hi − hj = hji − hij .

Observe that hij 6= hji in general.
We define the mean commute time between nodes i and j by:

σij = hij + hji.

The mean commute time is related to the mean escape probability from node i to node j,

eij = Pi(Tj < Ti).

Observe that eij > 0 for any distinct nodes i, j, so that σij <∞ and hij <∞ for all nodes i, j.

Proposition 2 For any distinct nodes i, j,

σij =
1

πieij
. (9)

Proof. Let Si = min{n ≥ 1 : Xn = i, Tj < n}. This is the hitting time of i after having visited j. We have:

σij = Ei(Si),

= Ei(Ti) + Ei(Si − Ti),
= Ei(Ti) + Ei((Si − Ti)1Si>Ti),

= Ei(Ti) + Pi(Si > Ti)Ei(Si − Ti|Si > Ti),

= Ei(Ti) + Pi(Tj > Ti)Ei(Si).

The result then follows from (7) and the fact that eij = Pi(Tj < Ti) = 1− Pi(Tj > Ti). �

Remark 2 It follows from (9) that πieij = πjeji for all nodes i, j: the frequency of paths starting from i
and hitting j before i is equal to the frequency of paths starting from j and hitting i before j.

4 Electrical network

We shall see that the mean commute time σij between i and j can be interpreted as the effective resistance
between i and j in the electric network induced by the graph, where each edge is a resistor with conductance
equal to the weight of this edge. Consider this network with node i set at electric potential 1 (in V, say)
and node j set at electric potential 0. Let Vk be the electric potential of any node k. We have Vi = 1 and
Vj = 0.

By Ohm’s law, the current that flows from k to ` is

Ik` = (Vk − V`)wk`.

By Kirchoff’s law, we have for any k 6= i, j, ∑
`

Ik` = 0,
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that is
Vkwk =

∑
`

V`wk`.

Finally,

∀k 6= i, j, Vk =
∑
`

V`Pk`. (10)

Thus the potential in each node k 6= i, j is the weighted average of the potential of its neighbors; this is
a harmonic function of the graph. We shall see that there is a unique solution to these equations, given
the boundary condition Vi = 1 and Vj = 0. The following result shows that Vk can be interpreted as the
probability that the random walk starting from k reaches i before j.

Proposition 3 For any k 6= i, j,
Vk = Pk(Ti < Tj). (11)

Proof. Let V ′k = Pk(Ti < Tj), for each k 6= i, j, V ′i = 1 and V ′j = 0. Then

V ′k = Pki +
∑
6̀=i,j

Pk`V
′
` =

∑
`

V ′`Pk`.

Thus V ′ is a solution to the equations (10). Since the solution is unique, we have Vk = V ′k for all k. �

The effective conductance between node i and node j is the current that flows out of node i (equivalently,
in node j), that is

Ceff
ij =

∑
k

Iik =
∑
k

(1− Vk)wik = wi −
∑
k

Vkwik = wi(1−
∑
k

VkPik).

Now in view of (11), we have ∑
k

VkPik =
∑
k

PikPk(Ti < Tj) = Pi(Ti < Tj),

so that, in view of (9),

Ceff
ij = wieij =

w

σij
.

This shows that σij/w is the effective resistance between i and j.
More generally, consider some set of nodes B ⊂ {1, . . . , n} with |B| 6= 1, n and some potential function

V : B → R. By the same argument as above, the potential function in any other node satisfies:

∀k 6∈ B, Vk =
∑
`

V`Pk`. (12)

Proposition 4 There is a unique solution to the equations (12).

Proof. We first prove that maxk Vk = maxk∈B Vk and mink Vk = mink∈B Vk. Let k be any node such that
Vk is maximum. If k 6∈ B, it follows from (12) that V` is maximum for all neighbors ` of k. If no neighbor
of k belongs to B, we apply again this argument until we reach a node in B; such a node exists because the
graph is connected. The proof is similar for the minimum.

Now consider two solutions V ′ and V ′′ of (12). Then V = V ′− V ′′ is a solution of (12) such that Vk = 0
for all k ∈ B. We deduce that Vk = 0 for all k (because maxk Vk = mink Vk = 0) so that V ′ = V ′′. �

Proposition 3 can then be extended as follows:
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Proposition 5 Let T = min{n ≥ 1 : Xn ∈ B} be the hitting time of the set B. For any k 6∈ B,

Vk =
∑
i∈B

Pk(Ti = T )Vi. (13)

Proof. Define for all k 6∈ B,

V ′k =
∑
i∈B

Pk(Ti = T )Vi,

and V ′k = Vk for all k ∈ B. Then

V ′k =
∑
i∈B

PkiVi +
∑
` 6∈B

Pk`P`(Ti = T )Vi

 =
∑
i∈B

PkiVi +
∑
` 6∈B

Pk`V
′
` =

∑
`

V ′`Pk`.

Thus V ′ is a solution to the equations (10). Since the solution is unique, we have Vk = V ′k for all k. �

5 Spectral embedding

Define the fundamental matrix of the Markov chain as

Z = I +
∑
n≥1

(Pn −Π).

The entry i, j of the matrix Z − I is the limit when n→ +∞ of the difference between the mean number of
visits to node j starting from node i in n steps and the mean number of visits to node j starting from the
steady state in n steps. This limit exists and is finite in view of the following result.

Theorem 2 The matrix Z exists and is the inverse of I − P + Π.

Proof. The proof relies on the fact that ΠP = PΠ = Π, so that ΠPn = PnΠ = Π for all n ≥ 1. We first
prove that the matrix I − P + Π is invertible. Let u be some vector such that (I − P + Π)u = 0. Then for
all n ≥ 1,

Pnu− Pn+1u+ Πu = 0.

Taking the limit, we get Πu = 0, so that u = Pu. By Perron-Frobenius Theorem, this implies that u = α1
for some α ∈ R. Finally, α = 0 because Πu = α1πT 1 = 0.

To conclude the proof, we observe that for all n ≥ 1,

(P −Π)n =

n∑
k=0

(
n

k

)
P k(−Π)n−k = Pn + Π

n∑
k=0

(−1)k = Pn −Π.

With M = P −Π, we have

(I −M)(I +M + . . .+Mn−1) = I −Mn = I − Pn + Π.

Since I −M is invertible and Pn → Π when n→ +∞, the matrix∑
n≥0

Mn = I +
∑
n≥1

(Pn −Π)

is well defined and is the inverse of I −M . �
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Proposition 6 We have:

Z = v1u
T
1 +

n∑
k=2

1

1− λk
vku

T
k . (14)

Proof. For all n ≥ 1,

Pn = V ΛnUT = v1u
T
1 +

N∑
k=2

λnkvku
T
k

and since UTV = V UT = I,

I = v1u
T
1 +

N∑
k=2

vku
T
k

The proof follows from the fact that v1u
T
1 = 1πT = Π �

Let H = (hij)1≤i,j≤N be the matrix of mean hitting times. In view of (8), we have

H = 11T + P (H − d(H)), (15)

where for any square matrix M , d(M) is the diagonal matrix which has the same diagonal as M .

Theorem 3 There is a unique solution to (15), given by

H = (I − Z + 11T d(Z))d(Π)−1. (16)

Proof. We first prove that the matrix H as defined by (16) satisfies (15). Observing that d(H) = d(Π)−1,
we get

H − d(H) = (−Z + 11T d(Z))d(Π)−1

and
H − P (H − d(H)) = (I − Z + PZ)d(Π)−1.

Using the fact that (I − P + Π)Z = I and ΠZ = Π (because πTZ = πT ), we obtain

H − P (H − d(H)) = Πd(Π)−1 = 1πT d(Π)−1 = 11T .

Now take any solution H ′ of (15). Since

πTH ′ = πT (11T + P (H ′ − d(H ′)) = 1T + πTH ′ − πT d(H ′),

we have πT d(H ′) = 1T so that d(H ′) = d(Π)−1 = d(H). Now let ∆ = H −H ′. We have d(∆) = 0 and, in
view of (15), ∆ = P∆. This implies that each column of ∆ is proportional to the vector 1. Since d(∆) = 0,
we get ∆ = 0 and H ′ = H. �

Let h = (hi)1≤i≤N be the vector of mean hitting times in steady state, hT = πTH. In view of (16), we
have:

hT = 1T d(Z)d(Π)−1 (17)

and
H = d(Π)−1 − Zd(Π)−1 + 1hT . (18)

Using (14) and the equality wD−1U = V , we get

Zd(Π)−1 = v1v
T
1 +

n∑
k=2

1

1− λk
vkv

T
k .
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Now let (~v1, . . . , ~vN ) be the rows of matrix V . This is the embedding of the nodes in the vectorial space
RN equipped with the basis (u1, . . . , uN ), the left eigenvectors of P . Define the scalar product:

< ~a,~b >= a1b1 +

N∑
k=2

1

1− λk
akbk.

It follows from (17) and (18) that
∀i, hi =< ~vi, ~vi >= ||~vi||2

and

∀i 6= j, hij = − < ~vi, ~vj > +hj , ∀i, hii =
1

πi
.

Moreover,
σij = ||~vi||2 − 2 < ~vi, ~vj > +||~vj ||2 = ||~vi − ~vj ||2.

Thus
√
σij is the distance between i and j in this vectorial space, while

√
hi is the distance between i and

the origin (which may be considered as the embedding of a random node, drawn from the distribution π).
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