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These lecture notes introduce the spectral embedding of graphs, where each node is represented by a
vector of low dimension using the spectral decomposition of the Laplacian matrix. This embedding can in
turn be used to apply classical learning techniques, either semi-supervised (with labels attached to some
nodes) or unsupervised (like ranking or clustering nodes). We shall see that the spectral embedding of
graphs is closely related to random walks in the graph. The analogy with various fields of physics, like
thermodynamics, mechanics and electricity, will also emerge naturally.

These notes are mainly based on [1, 2, 3, 5]. We also refer the reader to [4] for an overview on spectral
clustering.

1 Notion of embedding

Consider a weighted, undirected graph G = (V,E) of n nodes and m edges. Without loss of generality, we
assume that V = {1, . . . , n}. The weights are non-negative and correspond to the strengths of the links
between nodes. The graph is assumed to be connected and without self-loops. We denote by A the weighted
adjacency matrix of the graph, i.e., Aij is the weight of the edge between nodes i and j, if any, and is equal
to 0 otherwise. We denote by 1 the vector of ones and by w = A1 the vector of node weights (i.e., sums of
the weights of incident edges); for unit edge weights, w is the vector of node degrees.

We aim at representing the graph in some Euclidian space of low dimension, say Rk with k << n.
Specifically, each node i ∈ V is represented by some vector xi ∈ Rk. The structure of the graph must
be encoded in its representation x1, . . . , xn in the sense that two “close” nodes i, j in the graph should
correspond to two “close” vectors xi, xj in the embedding space.

2 Random walk

Consider a random walk in the graph G with a probability of moving from node i to node j equal to Aij/wi.
Let X0, X1, X2, . . . be the sequence of nodes visited by the random walk. This defines an irreducible Markov
chain on {1, . . . , n} with transition matrix P = D−1A, where D = diag(w). We have for all t ≥ 1:

∀i = 1, . . . , n, P(Xt = i) =

n∑
j=1

P(Xt−1 = j)Pji.

Denoting the distribution of Xt as a vector πt, we get:

πTt = πTt−1P, (1)

so that
πTt = πT0 P

t,
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where π0 is the initial distribution. If the graph is strongly connected and aperiodic (that is, the largest
common divisor of the cycle lengths is equal to 1), the following limit exists and is unique:

π = lim
t→+∞

πt. (2)

This is the stationary distribution, which satisfies the balance equations:

πT = πTP. (3)

In particular, π is the unique left eigenvector of P for the eigenvalue 1 such that πT 1 = 1 (observe that
P1 = 1, that is, 1 is the corresponding right eigenvector). The vector π gives the frequency of visits of the
random walk to each node. Since the graph is undirected, we have π ∝ w, i.e., nodes are visited in proportion
to their weights. That the stationary distribution π is unique, given by π = w/|w| where |w| = wT 1, follows
from the fact that the eigenvalue 1 of P is simple, as proved in section 4.

Remark 1 It can be shown that the sequence πt converges to π at an exponential rate equal to the modulus
of the second largest eigenvalue of P .

Return time. Let Pi = P(·|X0 = i) and Ei the corresponding expectation. We denote by σi = Ei(τ
+
i )

the mean return time to node i, with τ+i = min{t ≥ 1 : Xt = i}. Since πi is the frequency of visits to node
i, we have

σi =
1

πi
. (4)

This will be proved in section 5.

Hitting time, commute time, escape probability. Let Hij = Ei(τj) be the mean hitting time of
node j from node i, with τi = min{t ≥ 0 : Xt = i}. Observe that Hij = 0 for j = i. We denote by
ρij = Hij +Hji the mean commute time between nodes i and j. The escape probability from node i to node
j is eij = Pi(τj < τ+i ), for any i 6= j. This is the probability of hitting node j before returning to node i.

Proposition 1 We have:

ρij =
1

πieij
.

Proof. Let τij = min{t > τi : Xt = j} be the hitting time of node j after having visited node i. We have:

ρij = Ei(τji),

= Ei(τ
+
i ) + Ei(τji − τ+i ),

= Ei(τ
+
i ) + Ei((τji − τ+i )1{τji>τ+

i }
),

= Ei(τ
+
i ) + Pi(τji > τ+i )Ei(τji − τ+i |τji > τ+i ),

= Ei(τ
+
i ) + Pi(τj > τ+i )Ei(τji),

= Ei(τ
+
i ) + (1− eij)ρij .

The result then follows from (4). �

Since the commute time is symmetric, in the sense that ρij = ρji for each i 6= j, it follows from Proposition
1 that πieij = πjeji: the frequency of direct paths (without return) from i to j is equal to the frequency of
direct paths from j to i. This is in fact a direct consequence of the reversibility of the Markov chain [1]
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3 Laplacian matrix

Let D = diag(w). The Laplacian matrix is defined by

L = D −A.

This is the discrete version of the usual Laplace operator. The diffusion governed by the heat equation can
be used in semi-supervised learning tasks to propagate labels.

Heat equation. Consider some strict subset S of {1, . . . , n} and assume that the temperature of each
node i ∈ S is set at some fixed value Ti. We are interested in the evolution of the temperatures of the other
nodes. Heat exchanges occur through each edge of the graph proportionally to the temperature difference
between the corresponding nodes, with a coefficient equal to the weight of the edge, thus interpreted as
thermal conductivity. Then,

∀i 6∈ S, dTi
dt

=

n∑
j=1

Aij(Tj − Ti),

that is

∀i 6∈ S, dTi
dt

= −(LT )i,

where T is the vector of temperatures. This is the heat equation in discrete space. At equilibrium, T satisfies
Laplace’s equation:

∀i 6∈ S, (LT )i = 0, (5)

We say that the vector T is harmonic. With the boundary conditions Ti for all i ∈ S, this defines a Dirichlet
problem. Observing that D−1L = I − P , Laplace’s equation can be written equivalently

∀i 6∈ S, Ti = (PT )i. (6)

Proposition 2 (Uniqueness) There is at most one solution to the Dirichlet problem.

Proof. Since P is a stochastic matrix, it follows from (6) that the temperature of node i is the weighted
average of the temperatures of its neighbors.

We first prove that the maximum and the minimum of the vector T are achieved on the boundary, that is
for nodes in S. Let i be any node such that Ti is maximum. If i 6∈ S, it follows from (6) that Tj is maximum
for all neighbors j of i. If no such node belongs to S, we apply again this argument until we reach a node in
S. Such a node exists because the graph is connected. It achieves the maximum of the vector T . The proof
is similar for the minimum.

Now consider two solutions T, T ′ to Laplace’s equation. Then δ = T ′ − T is a solution of Laplace’s
equation with the boundary condition δi = 0 for all i ∈ S. We deduce that δi = 0 for all i (because both the
maximum and the minimum are equal to 0), that is T ′ = T . �

Now let τS = min{t ≥ 0 : Xt ∈ S} be the hitting time of the set S. Define:

PSij = Pi(τj = τS)

This is the probability that the random walker first hits S in node j when starting from node i. Observe
that PS is a stochastic matrix. In particular, PSij = δij (Kronecker delta) for all i ∈ S. By first-step analysis,
we have:

∀i 6∈ S, PSij =

n∑
k=1

PikP
S
kj . (7)

Proposition 3 (Existence) The solution to the Dirichlet problem is

∀i 6∈ S, Ti =
∑
j∈S

PSijTj . (8)
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Proof. The vector T defined by (8) satisfies:

∀i 6∈ S,
n∑
j=1

PijTj =

n∑
j=1

Pij
∑
k∈S

PSjkTk =
∑
k∈S

PSikTk = Ti,

where we have used (7). Thus T satisfies (6). The proof then follows from Proposition 2. �

4 Spectral analysis

The Laplacian matrix L is positive semi-definite:

Proposition 4 We have:

∀v ∈ Rn, vTLv =
∑
i<j

Aij(vi − vj)2.

Proof. For all v ∈ Rn,

vTLv = vT (D −A)v,

=

n∑
i,j=1

wiv
2
i −

n∑
i,j=1

vjAijvi,

=

n∑
i,j=1

Aijvi(vi − vj),

=
1

2

n∑
i,j=1

Aij(vi − vj)2,

=
∑
i<j

Aij(vi − vj)2.

�

The spectral theorem yields
L = V ΛV T , (9)

where Λ = diag(λ1, . . . , λn) is the diagonal matrix of eigenvalues of L, with 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn, and
V = (v1, . . . , vn) is the matrix of corresponding eigenvectors, with V TV = I. In view of Proposition 4,
vTLv = 0 implies v ∝ 1 (recall that the graph is connected) so that λ1 = 0 < λ2 and v1 = 1/

√
n. This

proves in turn that the eigenvalue 1 of P is simple, since Pv = v if and only if Lv = 0.

A mechanical system. Consider n points of unit mass where points i and j are linked by a spring of
stiffness Aij following Hooke’s law (i.e., force proportional to the distance). Now if the points are located
according to some vector v ∈ Rn along a line, the potential energy accumulated in the springs is:

1

2

∑
i<j

Aij(vi − vj)2,

that is 1
2v
TLv in view of Proposition 4.

We impose that the moment of inertia of the system (for a rotation around the origin) is equal to 1, that
is vT v = 1. Clearly, the vector v that minimizes the potential energy is v = v1 (the corresponding potential
energy is null). Now if we impose 1T v = 0, meaning that the centre of mass is at the origin, we obtain v = v2
and vTLv = λ2, so that the eigenvalue λ2 corresponds to twice the minimum value of potential energy. This
is a consequence of the following characterization of the spectrum of the Laplacian.
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Theorem 1 For all k = 1, . . . , n,
λk = min

v:vT v=1
vT1 v=0,...,vTk−1v=0

vTLv, (10)

the minimum being attained for v = vk.

Proof. Let v ∈ Rn such that vT v = 1. The vector x = V T v, giving the coordinates x1 = vT1 v, . . . , xn = vTn v
of v in the basis of eigenvectors, satisfies:

xTΛx = vTV ΛV T v = vTLv and xTx = vTV V T v = 1,

so that the optimization problem (10) is equivalent to:

min
x:xT x=1

x1=0,...,xk−1=0

xTΛx.

The result then follows from the equality:

xTΛx =

n∑
i=1

λix
2
i .

�

Assume the system has a uniform circular motion around its center of mass, taken as the origin, so that
1T v = 0, with v 6= 0. Let ω be the angular velocity of the system. By Newton’s second law of motion, the
system is in equilibrium if and only if

∀i = 1, . . . , n,

n∑
j=1

Aij(vj − vi) = −viω2,

that is
Lv = ω2v.

This means that v is an eigenvector of L (different from v1 since 1T v = 0) with eigenvalue ω2. In particular,
the only possible values of angular velocity are

√
λ2, . . . ,

√
λn. Moreover,

vTLv = vT vω2,

where vT v is the moment of inertia of the system. For a unit moment of inertia vT v = 1, we obtain:

vTLv = ω2.

Thus the eigenvalues λ2, . . . , λn are the squares of the possible values of angular velocities (the first eigenvalue
λ1 = 0 corresponding to the absence of rotation) and the eigenvectors v2, . . . , vn are the corresponding
equilibriums with unit moments of inertia.

5 Spectral embedding

Let L+ = V Λ+V T be the pseudo-inverse of L, with Λ+ = diag
(

0, 1
λ2
, . . . , 1

λn

)
.

Proposition 5 We have:

LL+ = L+L = I − 11T

n
.
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Proof. The proof follows from the fact that v1 = 1/
√
n on observing that

LL+ = L+L = V Λ+ΛV T =

n∑
k=2

vkv
T
k = I − v1vT1 .

�

Let:
X =

√
|w|Z(I − π1T ),

where
Z =

√
Λ+V T .

Consider the embedding X = (x1, . . . , xn) of the graph, where node i is represented by the vector xi ∈ Rn.
Observe that the first row of X is null so that only n− 1 coordinates are informative. The embedding X is
a shifted, rescaled version of Z so that:

Xπ = 0.

The Gram matrix of Z is the pseudo-inverse of the Laplacian L:

ZTZ = V Λ+V T = L+.

We deduce the Gram matrix of X,

G = XTX = |w|(I − 1πT )L+(I − π1T ). (11)

Observe that
Gπ = 0. (12)

For any matrix M , we denote by d(M) the diagonal matrix with the same diagonal as that of M .

Random walk. By one-step analysis, the mean hitting time of node j from node i satisfies:

Hij =

{
0 if i = j,
1 +

∑n
k=1 PikHkj otherwise.

(13)

We deduce that the matrix (I − P )H − 11T is diagonal. Equivalently, the matrix LH − w1T is diagonal.

Lemma 1 There is at most one matrix H such that d(H) = 0 and the matrix LH − w1T is diagonal.

Proof. Let H,H ′ be two such matrices and ∆ = H−H ′. We have L∆ = 0 so that each column of ∆ is either
null or proportional to 1. Since d(∆) = 0, we get ∆ = 0, that is H ′ = H. �

Theorem 2 We have:
H = 11T d(G)−G, (14)

where G = XTX is the Gram matrix of X.

Proof. Using the fact that L1 = 0, the matrix H defined by (14) satisfies:

LH = −LG,
= −|w|L(I − 1πT )L+(I − π1T ),

= −|w|LL+(I − π1T ),

= −|w|(I − 11T

n
)(I − π1T ),

= −|w|(I − π1T ),

= −|w|I + w1T , (15)
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so that the matrix LH − w1T is diagonal. Since d(H) = 0, the proof follows from Lemma 1. �

Observe that the mean return time to node i satisfies:

σi = 1 +

n∑
j=1

PijHji,

so that the corresponding vector σ forms the diagonal of the matrix PH + 11T . The following result then
proves (4).

Proposition 6 We have:
d(PH + 11T ) = diag(π)−1.

Proof. In view of (15), (I −P )H = −diag(π)−1 + 11T , and the result follows on observing that d(H) = 0. �

Let hi be the mean hitting time of node i in stationary regime (that is, starting from a node chosen at
random from the stationary distribution):

hi =

n∑
j=1

πjhji.

The corresponding vector h satisfies hT = πTH. In view of Theorem 2 and equation (12),

hT = 1T d(G),

In particular,
H = 1hT −G,

that is
xTi xj = hj −Hij = hi −Hji,

and, since hii = 0,
||xi||2 = hi.

In particular, the mean commute time between nodes i and j is given by:

ρij = Hij +Hji = ||xi − xj ||2.

6 Electric networks

Consider the electric network induced by the graph, with a resistor of conductance Aij between nodes i and
j. We denote by 1i the unit vector on component i.

Effective conductance, effective resistance. For any distinct nodes s, t, assume the electric potentials
of s and t are set to 1 and 0, respectively. Let Ui be the electric potential of any node i. We have Us = 1
and Ut = 0. By Ohm’s law, the current that flows from i to j is

Aij(Ui − Uj).

By Kirchoff’s law, the net current at any node i 6= s, t is null. We get

n∑
j=1

Aij(Ui − Uj) = 0,

that is (LU)i = 0. Thus the vector of electric potentials U is harmonic. Moreover, (LU)s + (LU)t = 0, so
that LU = α(1s − 1t) for some constant α, equal to the current flowing from s to t.
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Proposition 7 We have:

Ui =
(xi − xt)T (xs − xt)
||xs − xt||2

.

Proof. In view of Proposition 5, (
I − 11T

n

)
U = L+LU = αL+(1s − 1t),

that is
U = αL+(1s − 1t) + β1,

with β = 1TU/n. We obtain:

αzTs (zs − zt) + β = 1,

αzTt (zs − zt) + β = 0,

so that

α =
1

||zs − zt||2
, β = −z

T
t (zs − zt)
||zs − zt||2

Finally,

Ui =
(zi − zt)T (zs − zt)
||zs − zt||2

,

and the proof follows from the fact that xi − xj =
√
|w|(zi − zj) for all i, j = 1, . . . , n. �

The current α flowing from s to t, which is the current induced by a unit electric potential, is called the
effective conductance between s and t. In view of the proof of Proposition 7, we have:

α =
1

||zs − zt||2
=
|w|
ρst

,

so that the effective conductance between s and t is proportional to 1/ρst, the inverse of the mean commute
time of the random walk between s and t. Equivalently, the mean commute time ρst between nodes s and t
can be interpreted as the effective resistance between s and t in the electric network, in some arbitrary unit.

Thompson’s principle. The energy dissipation through any transistor is the product of voltage and
current (both in absolute value), that is

Aij(Uj − Ui)2

between nodes i and j. We obtain the total energy dissipation:

E =
1

2

n∑
i,j=1

Aij(Uj − Ui)2,

that is, in view of Proposition 4,
E = UTLU.

Thompson’s principle states that the potential vector U minimizes energy dissipation. Taking the derivative
in Ui, we obtain:

n∑
j=1

Aij(Uj − Ui) = 0,

that is (LU)i = 0, which is Laplace’s equation.
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Interpretation of voltage and current. Observe that the electric potential is the solution to the heat
equation with Ts = 1 and Tt = 0. In view of (8), we have Ui = PSis, i.e., the electric potential of any
node is the probability that the random walk reaches node s before node t. Thus everything happens as if
each electron were a random walker in the graph. We shall see that the current between two nodes can be
interpreted as the net flow of electrons between these two nodes.

For convenience, we consider positive particles starting from node s and captured by node t (thus in
the direction of the current) instead of electrons starting from node t and captured by node s, but the
interpretation is exactly the same. Consider the path of a particule starting from node s before it is captured
by node t. Let Ni be the mean number of times it visits node i before being captured by node t. We take
the initial state into account in the number of visits so that, by Proposition 1,

Ns =
1

est
= πsρst,

while Nt = 0. For any i 6= s, t, we have by one-step analysis,

Ni =

n∑
j=1

PjiNj .

Using the local balance equation πiPij = πjPji, we get

Ni
πi

=

n∑
j=1

Pij
Nj
πj
.

We deduce that the vector U defined by

Ui =
Ni
πiρst

is harmonic, with Us = 1 and Ut = 0. This is the electric potential. The net current from node i to node j is

Aij(Ui − Uj) =
1

ρst

(
Ni
πi
Aij −

Nj
πj
Aji

)
=
|w|
ρst

(NiPij −NjPji),

This is the net frequency of particle moving from node i to node j, with a flow of particles entering the
network at node s at rate

α =
|w|
ρst

,

which is the current flowing from node s to node t.

General solution. Now consider the case where the electric potential of node s is set to 1 while those of
K other nodes, say t1, . . . , tK , are set to 0. The following result extends Proposition 7.

Proposition 8 We have:

Ui =

K∑
k=1

αk(xi − xtl)T (xs − xtk),

where l is an arbitrary element of {1, . . . , k} and the vector α = (α1, . . . , αK)T is the unique solution to the
equation Mα = |w|1, with M the Gram matrix of the vectors (xs − xt1 , . . . , xs − xtK ).

Proof. Let αk be the current going out of node tk, for k = 1, . . . ,K. Then
∑K
k=1 αk is the current entering

node s and

LU =

K∑
k=1

αk(1s − 1tk).
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By Proposition 5, (
I − 11T

n

)
U =

K∑
k=1

αkL
+(1s − 1tk),

that is

U =

K∑
k=1

αkL
+(1s − 1tk) + β1,

with β = 1TU/n. We get:

K∑
k=1

αkz
T
s (zs − ztk) + β = 1,

K∑
k=1

αkz
T
tl

(zs − ztk) + β = 0, l = 1, . . . ,K.

In particular,
K∑
k=1

αk(zs − ztl)T (zs − ztk) = 1, l = 1, . . . ,K,

so that α is the unique solution to the equation Mα = |w|1 (recall that xj − xi =
√
|w|(zj − zi) for all i, j).

The result then follows easily. �

Similarly, the electric potential U is the solution to the heat equation with Us = 1 and Ut1 , . . . , UtK = 0.
It follows from (8) that Ui = PSis, the probability that a random walk starting from i hits the set S =
{s, t1, . . . , tK} in s. Thus applying Proposition 8 to each s ∈ S provides the full matrix PS and thus the
solution for any boundary condition. Specifically, setting the electric potential Ui of node i, for each i ∈ S,
yields the solution:

∀i 6∈ S, Ui =
∑
j∈S

PSijUj .

7 Applications

Finally, we show how to apply previous results to problems of node ranking and clustering. The first step
consists in computing the embedding of the graph, X = (x1, . . . , xn):

Parameter: k, dimension of the embedding

1. Check that the graph is connected

2. Form the Laplacian L = D −A

3. Compute v1, . . . , vk, the k eigenvectors of L associated with
the lowest eigenvalues, λ1 ≤ . . . ≤ λk

4. Compute Z = diag
(

1√
λ2
, . . . , 1√

λk

)
(v2, . . . , vk)T

5. Return X =
√
|w|Z(I−π1T ) where w = w1 and π = w/|w|

Embedding
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Ranking. A first way to rank nodes is to consider their centrality, in terms of mean hitting time: the more
central the node, the shorter time it takes on average for a random walk to hit this node. By the results of
section 5, we get the following ranking, the most central nodes appearing first:

Output: nodes in increasing order of ||xi||2

Centrality

In practice, it is often interesting to rank nodes relative to another node. We then rank nodes with
respect to their local centrality, defined as the mean hitting time from the node of interest. This approach
easily extends to a set of nodes. By the results of section 5, we get:

Input: s, node of interest
Output: nodes in increasing order of xTi (xi − xs)

Local centrality

It may also be interesting to include, in addition to the node of interest, a repulsive node. We can then
rank nodes with respect to their directional centrality, corresponding to the probability to hit the node of
interest before the repulsive node (which can be interpreted as an electric potential in view of the results of
section 6). Again, the approach easily extends to a set of repulsive nodes.

Input: s, node of interest; t, repulsive node
Output: nodes in increasing order of xTi (xt − xs)

Directional centrality

Clustering. For clustering the nodes of the graph, one may apply classical clustering techniques in Eu-
clidian spaces. The most popular algorithm is K-means (or variants like fuzzy K-means to enable overlaps),
which consists in finding the partition C1, . . . , CK of {1, . . . , n} that minimizes:

J =

K∑
k=1

∑
i∈Ck

||xi − g(Ck)||2,

where

g(Ck) =
1

|Ck|
∑
i∈Ck

xi

is the centroid of cluster Ck. We have the following classical result:

Proposition 9 Let g be the centroid of n vectors x1, . . . , xn. Then,

n∑
i=1

||xi − g||2 =
1

2n

n∑
i,j=1

||xi − xj ||2.
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Proof. We have

n∑
i=1

||xi − g||2 =

n∑
i=1

xTi (xi − g) =

n∑
i=1

||xi||2 −
1

n

n∑
i,j=1

xTi xj =
1

2n

n∑
i,j=1

||xi − xj ||2.

�

In view of Proposition 9, we have

J =

K∑
k=1

1

2|Ck|
∑
i,j∈Ck

||xi − xj ||2.

Thus the cost function J can be interpreted, up to a factor n/2, as the mean square distance of a random
point to another random point of the same cluster. In view of the results of section 5, the best clustering for
the cost function J is that minimizing the mean commute time of the random walk between a random node
and another node taken uniformly at random in the same cluster.

Hierarchical clustering. The main drawback of K-means is the need to specify the number of clusters
K. An alternative consists in representing the graph by a binary tree, revealing the multi-scale structure of
the graph, at different resolutions. This is known as hierarchical clustering. The most popular algorithm is
the Ward method [6]. This is an agglomerative algorithm based on the sum of square errors, as in K-means.
Appropriate cuts of the tree provide relevant clusterings of the graph. All these clusterings are encoded in
a single data structure, a binary tree, with requires O(n) memory only.
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