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Reinforcement learning refers to a set of problems where an agent takes sequential decisions and receives
feedback through rewards. The actions might modify the state of the environment. This can be represented
by a Markov Decision Process.

1 Markov Decision Process

Consider an agent taking sequential decisions at time t = 0, 1, 2, . . .. There are a finite set of states and
a finite set of actions. At time t, the agent is in state st and takes action at. The agent then receives
reward rt and the environment moves to state st+1. The system, known as a Markov Decision Process, is
thus defined by two conditional distributions, for the reward and for the new state.

A Markov Decision Process (MDP) is defined by:

• the reward distribution, p(r|s, a),

• the state transition distribution, p(s′|s, a),

for each state s and action a.

Some states might be terminal, meaning that the process stops. This is the case of most games (e.g.,
chess). We denote by S the set of non-terminal states. Let A be the set of actions. Some actions might be
forbidden in some states. We denote by A(s) ⊂ A the set of all available actions in state s ∈ S.

Assuming discrete rewards, we have:

∀s ∈ S, ∀a ∈ A(s),
∑
r

p(r|s, a) = 1.

Similarly, we have the the state transitions:

∀s ∈ S, ∀a ∈ A(s),
∑
s′

p(s′|s, a) = 1.

In some environments, the reward depends only on new state s′, i.e., the reward is r = f(s′) for some
deterministic function f . This is the case of most games for instance, where the reward (+1 for a win, −1
for a defeat and 0 otherwise) is a simple (known) function of the state s′. Observe that this is a particular
case of the above framework, with:

p(r|s, a) =
∑

s′:r=f(s′)

p(s′|s, a).
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2 Policy

The policy defines the behavior of the agent in each non-terminal state. Specifically, it is a probability
distribution over the actions, conditionally to the state.

We say that the agent applies policy π if the probability to take action a in state s is π(a|s).

So a policy is stochastic in general, and we have:

∀s ∈ S,
∑

a∈A(s)

π(a|s) = 1.

Given a policy, the sequence of states s0, s1, s2, . . . defines aMarkov chain with state transition distribution:

∀s ∈ S, p(s′|s) =
∑

a∈A(s)

π(a|s)p(s′|s, a).

When the policy is deterministic, we use the simple notation π(s) for the action selected in state s.

For a deterministic policy π, we denote by a = π(s) the action taken in state s.

The objective of reinforcement learning is to find an optimal policy, in a sense to be defined later.
In particular, we might consider a sequence of policies π0, π1, π2, . . ., corresponding to different versions of
the learning agent, converging to the optimal policy. Each such policy will define a Markov chain for the
sequence of states. We will also consider a single policy that evolves over time, while the agent interacts with
the environment. In this case, the probability distribution π is not stationary and the resulting sequence of
states s0, s1, s2, . . . is no longer a Markov chain.

3 Value function

The agent will collect a sequence of rewards r0, r1, r2, . . ., possibly finite. The objective is to maximize the
gain, defined as the discounted total reward.

The agent aims at maximizing the gain:

G = r0 + γr1 + γ2r2 + . . . ,

where γ ∈ [0, 1] is the discount factor.

In the absence of terminal states, we take γ < 1.

The value function of a policy characterizes its expected gain in each state.

The value of state s under policy π is the expected gain when starting from s, that is:

Vπ(s) = E(G|s0 = s)

with the convention that Vπ(s) = 0 for all s ̸∈ S (terminal states).
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4 Bellman’s equation

The gain G is a random variable whose probability distribution is not explicit. To compute the value function
of a policy π, we can use Bellman’s equation, exploiting the Markov property of the system. The proof is
provided in the Appendix.

The value function Vπ of policy π is a solution to Bellman’s equation:

∀s ∈ S, V (s) = E(r0 + γV (s1)|s0 = s)

This defines a linear system with n = |S| variables, written in developed form as:

∀s ∈ S, V (s) =
∑

a∈A(s)

π(a|s)
∑
r

rp(r|s, a) + γ
∑

a∈A(s)

π(a|s)
∑
s′∈S

V (s′)p(s′|s, a).

Solving this system exactly involves the inversion of a square matrix of size n, for a computational cost in
O(n3). In practice, we can find a very good approximation by fixed-point iteration, for a computational cost
in O(kn2) where k is the number of iterations. The convergence is geometric at rate γ, as shown in the
Appendix.

If γ < 1, the value function Vπ of policy π is the unique solution to Bellman’s equation and follows
from the fixed-point iteration:

∀s ∈ S, V (s)← E(r0 + γV (s1)|s0 = s)

Appendix

A Proof of Bellman’s equation

By definition,

G = r0 + γr1 + γ2r2 + . . . ,

= r0 + γ(r1 + γr2 + . . .),

= r0 + γG1,

where G1 is the gain starting from state s1. We deduce:

Vπ(s) = E(G|s0 = s) = E(r0|s0 = s) + γE(G1|s0 = s).

By conditional expectation,
E(G1|s0 = s) = E(E(G1|s0 = s, s1)|s0 = s).

Now it follows from the Markov property that:

E(G1|s0 = s, s1) = E(G1|s1) = Vπ(s1).

We conclude that:
Vπ(s) = E(r0 + γVπ(s1)|s0 = s).
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B Proof of the fixed-point iteration

Let F be the operator defined by:

F (V ) = E(r0 + γV (s1)|s0 = s),

for any function V : S → R.
Considering the sup norm, we get:

||F (V )− F (U)||∞ = γ sup
s∈S
|E(V (s1)− U(s1)|s0 = s)|,

= γ sup
s∈S
|
∑
s′

p(s1 = s′|s0 = s)(V (s′)− U(s′))|,

≤ γ sup
s′∈S
|V (s′)− U(s′)|,

= γ||V − U ||∞.

Thus the operator is contracting for the sup norm, and the convergence is a consequence of Banach fixed-point
theorem.
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