Reinforcement Learning
Markov Decision Process

Thomas Bonald
Institut Polytechnique de Paris

March 2024

Reinforcement learning refers to a set of problems where an agent takes sequential decisions and receives
feedback through rewards. The actions might modify the state of the environment. This can be represented
by a Markov Decision Process.

1 Markov Decision Process

Consider an agent taking sequential decisions at time ¢ = 0,1,2,.... There are a finite set of states and
a finite set of actions. At time ¢, the agent is in state s; and takes action a;. The agent then receives
reward r, and the environment moves to state s;y1. The system, known as a Markov Decision Process, is
thus defined by two conditional distributions, for the reward and for the new state.

A Markov Decision Process (MDP) is defined by:
e the reward distribution, p(r|s, a),
e the state transition distribution, p(s'|s, a),

for each state s and action a.

Some states might be terminal, meaning that the process stops. This is the case of most games (e.g.,
chess). We denote by S the set of non-terminal states. Let A be the set of actions. Some actions might be
forbidden in some states. We denote by A(s) C A the set of all available actions in state s € S.

Assuming discrete rewards, we have:

Vs €S, Ya € A(s), Zp(r|s,a) =1.

Similarly, we have the the state transitions:

Vs € S,Va € A(s), Zp(s’|s,a) =1

In some environments, the reward depends only on new state s', i.e., the reward is r = f(s’) for some
deterministic function f. This is the case of most games for instance, where the reward (41 for a win, —1
for a defeat and 0 otherwise) is a simple (known) function of the state s’. Observe that this is a particular
case of the above framework, with:

pris.a) = 3 p(s)s.a).

s"ir=f(s")

2 Policy

The policy defines the behavior of the agent in each non-terminal state. Specifically, it is a probability
distribution over the actions, conditionally to the state.

We say that the agent applies policy 7 if the probability to take action a in state s is 7(als).

So a policy is stochastic in general, and we have:

VsesS, > mlals)=1.

a€A(s)
Given a policy, the sequence of states sg, 1, S2, . . . defines a Mlarkov chain with state transition distribution:
vseS, pls)= 3. nlals)p(s']s,a).
a€A(s)

When the policy is deterministic, we use the simple notation 7 (s) for the action selected in state s.

For a deterministic policy 7, we denote by a = m(s) the action taken in state s.

The objective of reinforcement learning is to find an optimal policy, in a sense to be defined later.
In particular, we might consider a sequence of policies mg, 71, o, . .., corresponding to different versions of
the learning agent, converging to the optimal policy. Each such policy will define a Markov chain for the
sequence of states. We will also consider a single policy that evolves over time, while the agent interacts with
the environment. In this case, the probability distribution 7 is not stationary and the resulting sequence of
states sg, s1, S2, ... is no longer a Markov chain.

3 Value function

The agent will collect a sequence of rewards rg, 71,72, ..., possibly finite. The objective is to maximize the
gain, defined as the discounted total reward.

The agent aims at maximizing the gain:
G=ro+ym +v°ro+...,

where 7 € [0,1] is the discount factor.

In the absence of terminal states, we take v < 1.

The value function of a policy characterizes its expected gain in each state.

The value of state s under policy 7 is the expected gain when starting from s, that is:
Vi(s) = E(G|sg = s)

with the convention that V,(s) = 0 for all s € S (terminal states).

4 Bellman’s equation

The gain G is a random variable whose probability distribution is not explicit. To compute the value function
of a policy 7, we can use Bellman’s equation, exploiting the Markov property of the system. The proof is
provided in the Appendix.

The value function V. of policy 7 is a solution to Bellman’s equation:

Vse S, V(s)=E(@ro+vV(s1)|so=35)

This defines a linear system with n = |S| variables, written in developed form as:

Vse S, V(s)= Z 7(als) er(r|s,a) +7 Z w(als) Z V(s')p(s'|s,a).

a€A(s) a€A(s) s'esS

Solving this system exactly involves the inversion of a square matrix of size n, for a computational cost in
O(n?). In practice, we can find a very good approximation by fixed-point iteration, for a computational cost
in O(kn?) where k is the number of iterations. The convergence is geometric at rate -, as shown in the
Appendix.

If v < 1, the value function V. of policy 7 is the unique solution to Bellman’s equation and follows
from the fixed-point iteration:

Vs e S, V(s)+ E(ro+7V(s1)|so = s)

Appendix

A Proof of Bellman’s equation
By definition,

G=ro+r +7%ra+...,
=ro+y(ri+yra+...),
=ro+ vGy,

where G is the gain starting from state s;. We deduce:
Vz(s) = E(Glso = 5) = E(ro|so = s) + 7E(G1lso = s).

By conditional expectation,
E(G1lso = s) = E(E(G1]so = s, 51)|s0 = 5).

Now it follows from the Markov property that:
E(G1|SO = 8781) = E(G1|Sl) = Vﬂ-(Sl).

We conclude that:
Vr(s) = E(ro +vVz(s1)|s0 =).

B Proof of the fixed-point iteration
Let F' be the operator defined by:
F(V) = E(?"o + ’YV(Sl)‘SO = S),

for any function V : S — R.
Considering the sup norm, we get:

I[F(V) = F(U)|ls = 75D [E(V(s1) = U(s1)|s0 = s)|,
= ysup| > p(s1=5'ls0 = 8)(V(s') = U(s))],
<sup [V(s') = U(s)],
s'eS

= ’YHV_ UHOO

Thus the operator is contracting for the sup norm, and the convergence is a consequence of Banach fixed-point
theorem.

	Markov Decision Process
	Policy
	Value function
	Bellman's equation
	Proof of Bellman's equation
	Proof of the fixed-point iteration

