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Locally sensitive hashing (LSH) is an approach to searching approximate nearest neighbors in high
dimension. The reader can consult the chapter 3 of the textbook1 of Stanford course on Mining of Massive
Datasets [2] for more details on LSH.

1 Principle

Let H = {h : Rd → {1, . . . ,m}} be a set of hash functions.

The hash scheme H is said to be locally sensitive if there exist distances d1 < d2 and probabilities
p1 > p2 such that for all x, y ∈ Rd:

d(x, y) ≤ d1 =⇒ P(h(x) = h(y)) ≥ p1

d(x, y) ≥ d2 =⇒ P(h(x) = h(y)) ≤ p2

where h is chosen uniformly at random in H.

The idea is that close samples have likely the same hash value (or signature). Note that this property is
satisfied whenever P(h(x) = h(y)) decreases with d(x, y).

The concatenation of locally sensitive hash functions provide locally sensitive hash functions.

If H is a locally sensitive hash scheme, then for any N < card(H), the hash scheme
H′ = {(h1, . . . , hN ) ∈ HN} is locally sensitive.

To prove this result, consider x, y ∈ Rd and (h1, . . . , hN ) ∈ H′:

P((h1, . . . , hN )(x) = (h1, . . . , hN )(y)) = P(h1(x) = h1(y)) . . .P(hN (x) = hN (y)) = P(h(x) = h(y))N .

2 Hash tables

For any hash function h : Rd → {1, . . . ,m}, a hash table can be built to index a dataset x1, . . . , xn ∈ Rd.

The hash table associated with the dataset x1, . . . , xn ∈ Rd is indexed by j ∈ {1, . . . ,m}.
The bucket j contains all data xi (or corresponding indices i) such that h(xi) = j.

1The book is available online at http://www.mmds.org.
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For searching the nearest neighbors of a target x, one looks at all data samples in bucket j = h(x). If
several hash tables are built (for different hash functions), the corresponding buckets can be considered in
increasing order of size (the smaller buckets, the more specific the corresponding data samples).

3 Hash functions

Finally, we present some usual locally sensitive hash functions.

Bit sampling. For binary features, the simplest LSH scheme consists in looking at a single (random) bit.

The Bit sampling scheme is H = {h(1), . . . , h(d)} with h(j)(x) = xj ∈ {0, 1} for all j = 1, . . . , d.

This hash scheme is locally sensitive for the Hamming distance, because for any x, y ∈ {0, 1}d and any
hash function h chosen uniformly at random in H,

P(h(x) = h(y)) =
1

d

d∑
j=1

1{xj=yj} = 1− d(x, y)

d
,

where d(x, y) is the Hamming distance between x and y (number of distinct bits). Thus P(h(x) = h(y))
decreases with d(x, y). By concatenation, we get a rich family of locally sensitive hash schemes.

MinHash. A popular LSH scheme is MinHash. For any permutation σ of the d features, we define:

hσ(x) = min
j:xj=1

σ(j).

This is the rank of the first bit equal to 1 when the components of x are read in the order σ. Let Sd be the
set of all permutations of {1, . . . , d}.

The MinHash scheme is H = {hσ, σ ∈ Sd}.

The MinHash scheme is locally sensitive for the Jaccard distance, because for any x, y ∈ {0, 1}d,

P(hσ(x) = hσ(y)) = P( min
j:xj=1

σ(j) = min
j:yj=1

σ(j)) =

∑d
j=1 1{xj=1 and yj=1}∑d
j=1 1{xj=1 or yj=1}

= s(x, y),

where s(x, y) is the Jaccard similarity between x and y (fraction of equal features among expressed features).

A variant of MinHash is 1-bit MinHash, defined by the hash functions hσ mod 2. This hash scheme is
also locally sensitive for the Jaccard distance, since:

P(hσ(x) = hσ(y) mod 2) = P(hσ(x) = hσ(y)) +
1

2
P(hσ(x) ̸= hσ(y)) =

1 + s(x, y)

2
.

Like bit sampling, these hash functions must be concatenated to form interesting hash schemes.
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Sign random projection. For any vector z ∈ Rd, let:

hz(x) = 1{zT x>0}.

If z is a standard Gaussian vector, we get a LSH scheme.

The Sign Random Projection scheme is H = {hz with z ∼ N (0, Id)}.

The Sign Random Projection scheme is locally sensitive for the cosine similarity, because for any
x, y ∈ Rd,

P(hz(x) = hz(y)) = 1− x̂y

π
,

where x̂y ∈ [0, π] is the angle between x and y. In particular, P(hz(x) = hz(y)) increases with the cosine
similarity.

Concatenating N such hash functions gives efficient LSH schemes. This can be considered as the 2N

discretization of the vector space spanned by the N random vectors z1, . . . , zN . The fact that this random
projection preserves the relative Euclidean distances between data samples for sufficiently large N (of order
log n for n data samples) is known as the Johnson–Lindenstrauss lemma (see the Appendix).

Appendix

The Johnson–Lindenstrauss lemma

Let z ∼ N (0, Id) be some standard Gaussian vector. The projection over z tends to preserve Euclidean
distances, in the sense that for any x, y ∈ Rd,

(zTx− zT y)2 = (x− y)T zzT (x− y).

Taking the expectation, we get:

E((zTx− zT y)2) = (x− y)TE(zzT )(x− y) = ||x− y||2,

showing that (zTx− zT y)2 is an unbiased estimator of the square Euclidean distance between x and y.
Now consider N i.i.d. random vectors z1, . . . , zN ∼ N (0, Id). Then the projection over the vector space

spanned by z1, . . . , zN also preserves the relative Euclidean distances. Denoting by Z = (z1, . . . , zN ) the
matrix formed by these vectors, we get:

||ZTx− ZT y||2 = (x− y)TZZT (x− y) = (x− y)T

(
N∑
i=1

ziz
T
i

)
(x− y),

so that

E(||ZTx− ZT y||2) = (x− y)T

(
N∑
i=1

E(ziz
T
i )

)
(x− y) = N ||x− y||2.

The square Euclidean distances are preserved in expectation, up to the multiplicative constant N . The
Johnson–Lindenstrauss lemma consist in bounding the deviation with respect to this expected value by
concentration inequalities [3, 1]. In particular, it is shown that the relative Euclidean distances between n

data samples x1, . . . , xn are preserved up to some relative error ϵ provided N is of order O
(

logn
ϵ2

)
.
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