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A First Step Toward Automatic Interpretation
of SAR Images Using Evidential
Fusion of Several Structure Detectors

Florence Tupin, Isabelle Bloch, and Henri Nta"

Abstract—We propose a method aiming to characterize the ICARE [9] for multisensor images, are instances of such
spatial organization of the main cartographic elements of a systems where declarative statements are made, first so as to
synthetic aperture radar (SAR) image and thus giving an almost  yg ;e conclusions from observed features, second to propose

automatic interpretation of the scene. Our approach is divided trategies to link togeth . tat ts. But rul
into three main steps which build the whole image interpretation strategies fo link logether successive stalements. but rule-

gradually. The first step consists of applying low-level detectors based systems may be rather difficult to develop and in order
taking the speckle statistics into account and extracting some raw to be efficient, require a large basis of rules that is hardly
information from the scene. The detector responses are then fused gyajlable in the case of SAR image processing. Indeed, in
in a second step using Dempster—Shafer theory, thus allowing the o 456 of SAR satellite images with a resolution of 22.5 m
modeling of the knowledge that we have about operators, includ- . . .
ing possible ignorance and their limits. A third step gives the like ERS-1 images, only a few cartographic elements can be
final image interpretation using contextual knowledge between detected: main hydrological or road networks, industrial areas,
the different classes. Results of the whole method applied to and a few kinds of vegetation. This is not exactly the case
different SAR images and to various landscapes are presented. for polarimetric radars or aerial images for which rule-based
Index Terms—Dempster—Shafer evidence theory, image inter- Systems may be better adapted.
pretation, Markov random fields, SAR images. Another family of methods is made of graph-based tech-
niques which aim at labeling the regions of the image (nodes
of the graph) and their relationships (arcs). These approaches
HE increasing number of synthetic aperture radar (SAR)ay be used either in matching the image with a model of
sensors, and as a consequence, of SAR data, calls fortte scene when available [13], [12], [20], [5], [14], or, when
development of automatic or semiautomatic tools to help th® model is available, to give a global consistency to the
human interpreter. The aim of the method we propose heregigiph interpretation by some kind of relaxation on the graph
to give an elementary but almost automatic interpretation fif], [23], [22]. In our case, the second track is followed to
a SAR image. By interpretation, we mean giving the spatigitroduce contextual relationships between the different classes
organization of the main cartographic elements in a SARe., between the different geographical structures).
image: road and hydrological networks, urban areas, forestin any interpretation system, pieces of information extracted
or sea areas, relief, etc. This tool must be able to work @&om different detectors or sources have to be combined to
many different geographical areas, with different possible s@ifovide the elements of interpretation. This combination may
occupations, and with images originating from different rad@e performed by numerical or symbolic methods, depending on
sensors. In order to adapt the detection to the signal propertigs degree of decision provided by the detector. Radar images
(resolution, noise level,..), we allow a supervised learningare coarse and noisy. Reliable detections are very difficult
stage. After this stage, we expect the program to work blindly obtain, and we expect to benefit from the combination of
on many different scenes of the same sensor. Such a tgeleral detectors to improve the decision. Many theoretical
is useful for many applications. It can be used as an initigameworks have been proposed in this case: the oldest and
analysis of the image to select some particular areas of intergfst popular one is the probability theory, but other frame-
(urban areas, for instance). The obtained interpretation can ajgrks can be used like fuzzy set theory [36], [10], possibility
be a starting point to automatically register data coming frofReory [37], [11], and evidence theory [29]. In our case,
different sources (radar or SPOT images, but also symboligmerical fusion of results obtained from low-level operators
information like that present in a map). designed for specific structure detection is done in the evidence
Many works have been dedicated to the problem of inheory framework. This theory is particularly adapted for
age interpretation in aerial or satellite imaging. Those Witgperators which are imprecise and unable to distinguish all
the closest objectives to ours are mostly using rule-basgg classes (which is often the case in SAR imagery).
systems. SPAM [26] for aerial images of airports, SIGMA \any interpretation systems exist to deal with optical satel-
[25] for aerial urban images, MESSIE [6] for satellite imagesite images, but not in the case of SAR data, for which very few
Manuscript received June 2, 1998; revised November 17, 1998. works aim at developing global interpretation methods using
The authors are witkcole Nationale Sugrieure des @I{ecommunications, all the available information. The rule-based system MESSIE,
Department TSI, CNRS URA 820, 75013 Paris, France (e-maiy jnance combines radar and optical-range images to
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Fig. 1. Diagram of the proposed approach.

to the authors themselves, the radar data is essentially udegmethod are summed up here. They explain how confidence
as complementary data. Recent works on radar images areasures are defined. The method is divided into two main
dedicated to the detection of particular features (road networdteps.

[27], [18], urban areas [19]). Other works take place in the « |n a local step, a line detector adapted to the speckle
classification framework, working at the pixel level, particu-  statistics of SAR images is applied (thresholding and
larly with polarimetric and multifrequency radar images [28],  linking provide segments that are candidates to belong
[24], [7]. As opposed to these approaches, the aim of this o the network).
paper is to present a global scheme dealing simultaneously |n a global step, a closure method based on a Markovian
with all the available information in order to provide a global approach defined on a graph of segments is performed,;
interpretation of the scene. A complete method is presented this step is a labeling of the segment graph with labels
from the low-level stage to the final interpretation result, which  “road” and “not-road” (or “river” and “not-river”) min-
allows us to provide a new kind of result on SAR images. imizing an energy function; this function, derived from
The proposed approach is divided into three main steps. probabilities and from a Markovian hypothesis made on
In the first step, some low- or intermediary-level tools have the label field, takes both original data armd priori

been developed. Each of them aims at giving information on  knowledge about the road shape (probability of crossings
a particular scene structure: linear features like roads, rivers, and bending limitations) into account.

or the bright lines appearing in areas with high variations e reader may refer to [32] to have a detailed description of
elevation, or larger objects like urban areas, forests, or WaRE method.

areas. These operators are presented briefly in Section Il. Morg « .4 operator:” the two steps mentioned above are

details can be found in [17] and [32]. Then in the secondyjied to obtain a “map” of the roads which are defined as
step, which constitutes the core of this paper, each tool (Qf5ins of connected segments. The enéfgy. of a chain can
operator) is considered as a source of knowledge which giv&s, pe computed using the defined Markovian field as well

its confidence on the possible presence of the object it 4 {he energyoi-roaa Of the chain with the segments labeled
able to detect, and all these sources are combined in “ﬁ%t-road." The energy vanatiolhl/ = Unoi-rond — Usond IS

evidence theory framework (Section Ill). Instead of working,sitive on a road,and the larger this variation, the stronger

at the pixel level, which would not be justified because Gfe confidence we have in the detected road. So we associate
the low operator accuracy, a set of regions is considergg,qach detected chaina confidence measurkl; taking its
simplifying the problem and speeding up the fusion processyj e inR+ = [0, +oc[. The result of this operator applied
The decision step, which actually classifies each region of t§g 5 ERS-1 image [Fig. 2(a)] is shown in Fig. 2(b).

image, is eventually achieved using contextual relationships

s , : . > “river operator:” the method is very similar to the
between the regions in a Markovian framework (Section IV),5q detection method, but since a river may have different

The classes we consider in this application are the followingihs along its course, we used the detection algorithm in a

urban industrial, homogeneous- {forestor sed, relief, road, 1 ,iscale way [33]. The same confidence measure as before
river and bright.field As will be seen further, theright.field 5 yefined. also taking its value R™.

class is only introduced to avoid false alarms of the urban class,, « g|ief operator:” bright lines due to signal fold-over are

The diagram of the method is presented in Fig. 1. Results gpyica| of radar images in relief areas. They appear when the
real radar images are then analyzed in Section V. slope of the terrain facing the radar exceeds a limit related
Il. OPERATOR DESCRIPTION to the beam incidence angle. In order to detect these lines,
. . . only the low-level line detection algorithm is applied with a
Al _the operators used In our interpretation scheme afgqjification to select only the bright lines of the image (on
described in the two following subsections. the contrary, rivers and most of the roads appear as datie).

A. Operators for Linear Structures
lindeed, the final labeling must correspond to the global energy minimum.

This p_art is based on ou_r previous work on th_e road andzRoads can also appear bright on radar images in some very particular
hydrological network detection [32], [17]. The main steps afases of orientation.
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Fig. 2. Operators on a SAR ERS-1 image of Aix-en-Provence (France); (a) ERS-1 original imn&g®@A, (b) “road operator,” (c) “relief operator,”
(d) “omanr operator.”

define the confidence measure associated with each detethedradar image. Our objective is to distinguish very homo-
line by combining the length of the line and the mean ajeneous areas, like forests or sea areas with fully developed
the line detector responses along the line. The combinatispeckle, and very heterogeneous areas like industrial ones with
operator is an associative symmetrical sum [2] reinforcing tleehigh density of bright points due to reflections on buildings.
response of each parameter. This measure is defined in Sikece we also want to detect urban areas and since very dense
interval [0, 1]. The result of this operator is shown in Fig. 2(c)urban areas are very bright but rather homogeneous regions
(differing on this point from “industrial” ones [17]), we also
detect regions with very high radiometry. Therefore, the three
B. Operators for Large Areas following operators are used in our interpretation scheme.
The aim of the following operators is to measure the degrees “oyar Operator:” is a textural operator derived from
of heterogeneity or homogeneity of the regions appearing anmodeling of SAR images by a log-normal multiplicative
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autoregressive model (MAR) proposed by Frankot and Cheésponses on the pixels belonging to the region. From now on
lappa [15]. From this model, the standard deviatioyiar this value is called the confidence value of the operator about
of the white Gaussian noise is a good indicator for regiadhe region.

homogeneity: heterogeneity increases with this value. Fig. 2(d)

presentsry ag Values on a SAR image. The top right corner of

the image, corresponding to forest areas, is darker than other Ill. NUMERICAL FUSION STEP IN

regions (low values ofryag). This parameter is computed THE EVIDENCE THEORY FRAMEWORK

on a A,'X 4 avgraged Image f"md using a.naly5|s WlndOWS of ,9 This section presents the combination of the different detec-
x 9 pixels. Th|s value is by itself a confl.dence value since jt . responses by mean of Dempster—Shafer theory to interpret
INCreases with heterogeneity a’r,1d t.akes its vaIugRTn the SAR images. First, we briefly recall the evidence theory
o “bright reflector operator:” this operator aims at de- ,ncinles Then we describe how we define the mass functions
tecting regions with a high density of bright points. First Ogssociated with the operators which are presented in Section I,
all, a Markovian segmentation method is applied on the radgg, ing from the operator confidence measure. The unnormal-
image [21] to provide radiometrically hom_ogen_eou_s redioNGed Dempster rule of combination is then applied, the empty
The brightest areas are then selected if their size is 168§ yepresenting a rejection class. A justification of the choice

than a fixed value (ten pixels); these areas are considefg(he eyidence theory is eventually given with an illustration
in the following as strong reflectors (for instance, a speculg 4 simplified case.

reflection due to a building). In order to select the areas where
these points are very dense, the Voronoi diagram of the set of o
points is computed [Fig. 3(a)]. Selecting small Voronoi regiorf8- Evidence Theory Principles

corresponding to areas with many bright reflectors (with a sizeOne of the main advantages of the evidence theory as
less than 500 pixels) and grouping them with a morphologicgtoposed in [8] and [29] is its capability of taking both
closing gives us industrial zone candidates. At last, the larggprecision and uncertainty into account. L@t be the set
enough candidates are selected (size of more than 1000 pixelsiscernment (for us it is the set of all the classes mentioned
The confidence measure of a candidate is proportional to #isove), and2® be the power set o®, which contains all
number of bright points in a region and takes its values the possible unions of classes. The evidence theory is based
[0, 1]. on three functions defined frogf onto [0, 1]: mass function

¢ “ffmax operator.” as said before, in really dense urbam;, belief functionBel and plausibility functionPls [29]. The
areas, the previous detector will fail since these areas gfigantity m(A) corresponds to the measure of belief that is
rather homogeneous. Therefore, we make use of a radiomeggactly committed toA, BelA) the measure of the total
detector due to Gouinaud [17]. It analyzes the histograbelief committed toA, and PIs(A) the extent to whichA is
gueues and detects very bright areas in an image. This methtglisible. In the case of many sources of information defined
is based on a local histogram splitting defined in such a way a same frame of discernment by their mass functions, the
that the population of the upper part equals the mode of thesulting mass function of the information fusion is obtained
histogram. The output of the “ffmax operator” is this valudy the orthogonal rule of Dempster [29]. As we will see in
where the histogram is split. It is expressed as a multiple tife following section, in the case of a nonexhaustive frame
the signal standard deviation and may be quantized on ieh discernment, the orthogonal rule can be used without
levels. normalization [30], thus allowing a natural definition of a

The three operators which are defined above do not preject class.
cisely locate the detected areas since they use large window$he orthogonal rule is commutative and associative which
to compute local statistics, or Voronoi cells. Therefore, oyermits combining information sources in any order without
interpretation scheme does not work at the pixel level, buhanging the result (it will be a useful property for the
on a set of regions. These regions are defined using awplication we deal with).
over-segmentation based on the Markovian segmentation wé he last step of the fusion process is to take a decision. Since
mentioned above [21] [see Fig. 3(c)]. The Markovian modébr each hypothesis, both belief and plausibility can be used,
used for the label field is a Potts model, thus linear featurége choice is closely related to the application at hand. The
(roads, rivers) are not very well detected. Therefore, the lineaaximum of belief or plausibility on the simple hypotheses is
objects, detected using the linear operators of Section II-A asiten chosen. Since we will use a Markovian framework within
added to the Markovian segmentation and superimposed the probability theory, we propose here to use the “pignistic
the set of regions to define the primitives of our interpretatiqurobability” BetP defined by Smets [31]:
scheme [Fig. 3(d)].

The image structure is now ready for information fusion. m(A)
The image is represented as a graph of regions with an BetP({hi}) = Z card(A) @
adjacency relationship between regions. For each and every A/{hicA

region, each and every operator provides a numerical value

which reflects the confidence the operator has in the regionvtbere {#;} is a simple hypothesis, andard stands for
belong to the object class that the operator is qualified to detemdrdinality. This transformation shares out the mass of a
The value for a region is taken as the average of the deteatompound hypothesis on its singletons.
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Fig. 3. Operators and region definition on a SAR ERS-1 image of Aix-en-Provence (France); (a) Voronoi diagram, (b) “ffmax operator,” (c) oveatsegment
(d) set of regions.

B. Mass Function Definition The choice of the mass functions is the crucial step of
Qyr fusion scheme. In fact, all the imprecision of the data

. o . ) ) ust be introduced in this step since the fusion operator
ously (Section Il) give information on linear structures (“roa : : : ;
. o " Dempster rule) is always conjunctive. It is a general feature
operator,” “river operator,” “relief operator”) and on large

i of Dempster—Shafer fusion that most of the flexibility lies at
areas (“ffmax operator,” “bright reflector operator,&yiar  the modeling level [3].

operator”). Each of them gives a measure of confidence in theye have chosen to define the mass functions in a supervised
detection of the objects it is dedicated to. Therefore, we nqmay using our know|edge of the operator behaviors. This
have to define the mass functions starting from the operatabdeling step has to be done only once and the same mass
confidence measures. functions have proved to be well adapted to many radar sensors

The operators or sources of knowledge we presented pr

" ow
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(if the same operators are used), as will be seen with the reshiés’e to associate to each operator response and to each focal
on real radar images (Section V). element the mass function value. To do so, a learning step on
Let us note that unlike most of the image applicationselected areas is used.
of Dempster—Shafer, the focal elements and mass functionsSince our operators are especially dedicated to the detection
are not defined by the data properties [22], [24], but by thaf a class of interest, the task is essentially reduced to the
properties of the low-level operators we defined in the firsiefinition of the good thresholds between “weak” and “high”
stage. responses and the transition area we allow between these two
1) Focal Element Definition:First of all, we have to define extreme values. We select regions of interest to perform the
the focal elements for each operator. For an operator dedicaleaning step and deduce these thresholds. Mass functions of
to the detection of the class;, the simplest idea is to taketrapezoidal shape are used and give good results. Since no
as focal elementg); and its complementarg;. In practice, difficulties are related to this point, we do not describe it
unfortunately, the operators are often not precise enoughifiodetail, but only relate the process for the example of the
use only these two focal elements, and other classes havéffigax operator.”
be taken into account. Many situations occur: for instance, For this operator, samples of bright and homogeneous areas
the operator is defined in such a way that many classes Bave been selected by the user and the normalized responses
confused and indistinguishable; besides, many operators @fethese samples and on the rest of the image are shown
not able to precisely localize the classes and can also detectithéig. 4(a) and (b), respectively. The corresponding mass
surrounding classes. Let us justify for each previous operafdpctions are simply and experimentally deduced from the

the choice of the focal elements. histograms by fitting trapezoidal functions.
. “Road operator,” “relief operator,” and “river operator” The parameter values we used for the other mass functions

are quite precise for the detection of the structure they a{FEthe case of ERS-1 images are given in Table Il using the

dedicated to; besides, all that can be said about regi(ﬂ%tations of Table | with the definitions ?fl: g1(z) = 0 for
(x) = 1for & > b, g1(x) = 7= for z € [a,0]

with low responses is that they belong to “not road” (of j @ g13%) = . it N two focal
“not relief,” “not river”) without distinction among the :Ir;mgér’]t?f(gr) each ; %rggr tlr?eci ee(r; t?:ee n?gsys fWr?ct%Cnaan g
classes composing “not road” (“not relief,” “ § P ' yp unctl

not river, jts parameters andb are given only for one focal element; the
respectively); thus, the focal elements are, respective| P 9 y '
road androad, relief andrelief, andriver andriver (where

(ydmplementary function is chosen for the other focal element
1 denotes the complement of). with the same parameters (for instanceyifis used for the
« “Bright reflector operator” is not accurate to Iocalize%

focal elementRe of the “relief operator,”g, is the mass
, ; : nction of Rg. The result shown in Section V is obtained
the classes since it groups large regions around specular
using these values.

reflectors to characterize industrial areas. Therefore, th|sThe parameters we used are rather robust. Indeed, they

oo oo, e been eamed on & feduce set ofsamples providd by
) L LI only two ERS-1 images (on the whole four forest samples,
these regions. Thus, it is not able to distinguish théa’lght industrial samples, 11 dense urban samples, and the
classesindustrial, urban androad. On the other hand, “complementary” samples provided by the rest of the image
fg’r each focal element). They have then been tested on all our
. : ) . . ERS-1 data base and have given satisfying results. As for the
Morm_a‘uon on idustrial U urban U road) and other sensors, the set of learned parameters has been modified
!‘ndustnal which f‘re thug the fpcal elemgnts. using oura priori knowledge about the considered sensor
' ffmax oper'ator has imprecisely Iocallzeq response articularly its resolution). The main modification concerns
since th_e hlst_ogram_s are computed on windows of e “omar Operator” for forest detection. The robustness of
x 40 pixel size. With the same argument as beforg, parameters is due both to the operator behavior (each

it is unable to distinguisturban, industrial and road  gnerator detecting few classes) and to the transition areas of
classes. Besides, by definition, this operator detects veRs trapezoidal functions.

bright regions, which means urban areas but also very3) piscussion on the Mass Function Choicghe  choice
bright fields. Therefore the focal elements arelgstrial)  of the focal elements and the mass functions has been done in
urbanu road U bright.field and @rbanu bright.field). a supervised way using our knowledge about the information
* "owmar Operator” is not very accurate since its responsesgoyided by each operator. We argue that for the application
are computed on a S 9 pixel window, and it is at hand, i.e., the automatic interpretation of SAR images,
applied on a radar image of reduced size (obtained Byese modeling and learning steps are justified. It is done only
block averaging). Thus, fine roads going through foresghce and then any radar image can be treated. Of course, this
or homogeneous areas are not detected. On the oth@{soning approach is only possible because we are interested
hand, regions of high response for this operator ajg few classes, and we deal with relatively few operators.
surely inhomogeneous. Focal elements are thiesidU  Automatic methods have been proposed for the choice of the
homogeneoysand homogeneous focal elements, or the mass function definition. For instance, a
2) Mass Function Definition:The choice of the focal ele- method based on the comparison of two classification results
ments is the first part of the mass function definition. We noig used in [24] to automatically define the focal elements. But

industrial and are in theindustrial class. This operator
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Fig. 4. Learning step for the “ffmax operator.” Histogram of the normalized responses of “ffmax operator” on samples corresponding to its fotsl eleme
(a) (industrial U urban U road U bright.field) (three samples) and (kurbanu bright.field) (one sample). (c) Histograms of the normalized responses for
(industrial U urbanU road U bright.field) and (urbanu bright.field) samples (the three samples for the learning of the first focal element of (a) are merged).
The mass functions of trapezoidal shape are derived from the histograms. (industrialU urbanu roadU bright.field) and m gy, (urbanu bright.field).

such a reasoning is not adapted to our problem since too maauld be done in an automatic way [4] and some preliminary
classes would be introduced (for instance, the clasad in tests have shown good results.

urban are@” “road in forest’ etc.) and many of them would
not have a cartographical meaning. As for the choice of the
mass functions, this coarse model with functions of trapezoioccli
shape was found to be sufficient and is robust since it allowsThe fusion of the operator responses is done using the
some variations for the parameters of the functions. This stBempster rule of combination. Let; be the mass function of

The Use of the Orthogonal Rule for Combination
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TABLE 1l
OPERATOR COMBINATION

fe relief class Step L.relicf@road
o road class ‘ 0% 0, | Jre e ~‘
Ri river class I 7 o
H homogeneous = : o e TonTe
Jorest U sca class -
b . urban‘ class Step 2. (relieftroad)Sriver
I 7,7{,dusl‘r{nl class 0.\ On | Ro Tie AT ‘
Bl brzg/’z,:‘,.fl(zl_zt@f“i T i 0 T
0, "relief operator” = Bo Re TonTnE
0, “road operator”
Oy "’brlg]wlt‘-rvﬂe(:t‘or op(:‘r"ator' Step 3. (relief#road@river)(hright reflector
O  fver operator 0,8\ Oz | Ro Iie I Ron Renln
Os ffmax operator” RoUL Ul Re 6 0 U7
Os "o operator” 7 Ro Re Ri HUUUBFE
O % operator resulting of —
the combination of k operators Step 4. (veliclroad&rivertibright.reflector)2flmax
Os \ Orz31 Ro Re Ri UUl HUUUBE
L RoUUUIUBF [t § 0 UUl /UBF
TABLE I UnNBE Ro Re ! 1

OPERATORS AND MASS FUNCTION PARAMETER (g1 :
gi(z) =0FORz < a, g1(z) =1 FORx > b,

Step 5.(relielEroadriverdgbright. reflector(blfmax)boy ar

gi(z) = 7= FORT € [a,b], AND g2, g2(z) =1 — g1 (%) ’ O\ Orasas | Bo Be Ri 11 Uul LUl
Operalor Focal mass a b HOB 1 fo 0 @. 0" ,® : 0 .
clement function H o Re Ri I O UUl UubBrk
Q e g 0102 ‘
O; o ;i 0 los qul‘ring focal clements H Ro ' Re ] R l ! [ H ‘ Fur l U B
O3 RouV Ul 9 0 1
Oy 11 g1 0104
Oy RoUVUTUC! ¢ 3 7
Og RoU H 92 50 | 100

function. This is performed using the pignistic transformation
using the Smets formula given in Section III-A [(1)].

sourcej and A an element o9, the resulting mass function
my_p for n distinct sources is then

mlgn(A)

D. Advantages of Dempster—Shafer Theory

This section aims at justifying the choice of Demp-
ster—Shafer theory to fuse the operators in the case of
SAR image interpretation. One of the main advantages of
the evidence theory is its capability to take into account

Since our hypotheses do not entirely describe a radg@mpound hypotheses, i.e., union of classes here [3]. In the
image (many pixels do not belong to the considered classéd§yesian framework, the degree of belief we have on a
normalization is not adapted to our case and could lead Y8ion of classes (without being able to discriminate between
incoherent situations as described by many authors [34], [38]ém) should be shared by all the simple hypotheses, thus
[11], [30]. Besides, we can define a rejection class in a veRgnalizing the good one. This point is particularly important
natural way, using the conflict value as the mass of the empfyimage interpretation, since the operators are usually unable
set. to distinguish all the different classes in a precise way. Let us

Table 11l shows the focal elements resulting from the confésent an example to illustrate the different behaviors of the
bination of the operators. Since the Dempster rule is commiysion step in these two frameworks.
tative and associative, the resulting elements do not depend ohk€t US consider the operato3, and O, and the classes
the order of the combination. We performed a combination f I, BF, Ko, and & (R stands for the rest, i.e., all the other
five steps following the given indications. We use the notatio§8Sses). Let us suppose that is able to discriminate the
indicated in Table I. union(UUBF) against the other classes, adgl (RoUTUU)

Thus, many classes appear during the combination proceét@inst(BF U R). o _
although they are never detected directly by the operatorsVVe can express these properties in the evidence framework
Besides, the operators allow us to distinguish between all R
classes we consider (except betweghan and bright.field),

2.

Bi1,B;3...,B,/BiNByN---NB, =4

ml(Bl)mg(Bg) . mn(Bn)

sinc% the_se classes are focal elements at the end of the mi(UUBF) =z, mi(IURURo)=1—z and

combination. .

The final decision is made using contextual information. my(A4) =0 if A¢ {UUBFIURU Ro}

Since this is done in a Markovian framework (see Section IV),m2(RoUITUU) =y, my(BFUR)=1-y, and
2(4)

we need to reduce the final mass functions to a probability m2(A)=0 if A¢ {RoUuIUUBFUR}
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TABLE IV nodes corresponds to the adjacency of the two corresponding
PIGNISTIC AND BAYESIAN PROBABILITIES regions. The interpretation step can be considered as the
17 BF 7 o I labeling of the graph. We associate a random variabje

=2y | (1 —2)(i — to each node (i.e., each region of the image) which takes
z)y )l —y) . . . .
) - its values inCl set of all the previously defined classes
=y | 5@ =00 -9} (with the reject class). Knowing some informatidron each
region (the values of the operators), we look for the best
configuratior! of the label fieldZ in the sense of the maximum
a posteriorj i.e., which maximizes the conditional probability
of L givend, p(L = 1| D = d). Under some independence
assumptions and supposidgis a Markovian field, it can be
shown [16] thatp(L | D) is a Gibbs distribution of energy
U(l) =3 cceu Ve(l). Cliis the set of cliques, and the clique
system is defined from the graph neighborhood structure. The
energy is divided in two terms.

* The first one is the data driven term and is derived from
the previous fusion step and the pignistic probability using
Vii3(C:) = —In(BetP(C;)).

@) (®) * The second term is the contextual term and is defined

Fig. 5. Classes maximizing the probability using the pignistic probability using Somm prion mfo,rmatlon on the l,abel f_leld' In our

after (a) fusion in the evidence theory framework and (b) using the Bayesian Case, a simple Potts-like model [16] is defined to favor

probability. adjacency between “compatible” regions and penalize
adjacency between “incompatible” regions as described
below and usin@ priori knowledge about the landscape
organization. We only take into account two site-cliques
with nonzero potentials defined by

1
BetP || 2wy | 21 —y) ;(1 — )y

|
1
| o] —

1 I
Loy x gy Z:):(], —y) | (1 =)y

rest

bright urban
field

On the other hand, in the Bayesian framework, and sup-
posing the same probability for the simple hypotheses that an
operator is unable to distinguish :

pi(U) = p1(BF) = g and Ve (1.3 (Ci, C)) = Ko
i) =p1(R) =p1(Ro) = 1-2 wheree indexes the relationship between the two classes.
Y 3 We distinguish three situations.
U) =p2(I) =p2(RoO = and : : o
pa( 3 1) Adjacency is favored between two classes; this re-
cl — _1l—y lationship is denoted by4, and corresponds to a
p2Cl) = p2(H) = —5— negative parametek 4.

The following Bayesian and pignistic probabilities are then ~ 2) This adjacency is neutral (denoted bf), accepted
obtained after the fusion step (considering that the sources of but not favored, with the parametéfy = 0.
knowledge are independent) and given in Table IV. 3) The adjacency is disfavored, denoted By Ky is

The classes having the maximum probability in the two positive.
frameworks are shown on Fig. 5 dependingraindy values. Let us detail the cases corresponding to these three different
Results are different and as claimed before, the evidence thesityations. Since the neutral adjacency is the most common
favors the classes belonging to compound hypothestmii case between two classes, only situations with either favored
and res) on which the degree of belief can be displacedr disfavored adjacencies are reported.

This property is not straightforward obtained in the standard. Favored adjacencyFirst of all, this is the case for any

Bayesian framework. class with itself, since the different objects of the scene
are either compact or thin, long structures. Adjacency
IV. CONTEXTUAL STEP IN A MARKOVIAN FRAMEWORK betweenurban and industrial classes is also concerned,

since these areas are often neighbors in the landscape
structure® Since roads or rivers often go throughban

or industrial or even bright.field regions, these class
adjacencies are favored. Besides, since roads and rivers
are very thin, these classes are necessarily disfavored with
a Potts-like model. To avoid their suppression, a favored
adjacency has also been introduced with the rejection
class.

The fusion of the operators in the evidence theory provides
a resulting mass function which has been converted into a
probability function by the pignistic transformation. Many
schemes can then be adopted to take the final decision. In our
case of radar image interpretation, we propose the introduction
of some contextual information (which has not been used
before in our fusion step) to attribute a class to each primitive.
The Markovian framework through the choice of theriori

probability is well adapted for this purpose [16]. 3 . o .
This step is based on a graph representation of the scen é&s said before, the distinction between these two classes relies mostly on
IS step | grap p I &hei appearance in the SAR image (high density of bright pointmfhrstrial

node is associated to each region, and an edge between dwas, and very high radiometry and possibly dense areastian class).
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TABLE V
ADJACENCY RELATIONSHIPS BETWEEN CLASSES

Classes | #c [Ro [Ri [ [ U] 1 [BF]D
I A[NININ]ITT] I |V
Ro [N][A|N|[NJATA]T A A
i NINTATNA|A| ATA
Ji] N[N[N]|ANIN] NN
i TA|A[N]AJA| N [N

T I[AJAIN[A[A| T [N
B T TATAN|TTA] AN
[ NTAJAN|NIN] N A
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A. Analysis of Two ERS-1 Images

1) ERS-1 Image of Mantes-La-Joli&his is an image of a
flat area in the suburb of Paris with the small town of Mantes-
La-Jolie, and the Seine river (Fig. 6). There are many forests
and small urban areas as can be seen on the map (Fig. 7).

The interpretation result is shown in Fig. 8. The names of
the detected towns and forest areas have been manually added
to help the reader to compare the result with the corresponding
map of Fig. 7. The Fig. 9 shows the boundaries of the detected
features (except forest areas) superimposed on the SAR image.

The results are globally satisfying.

« Disfavored adjacencyThis parameter tries to solve the
case of a bad discrimination between some classes us-
ing contextual knowledge. Therefore, it is used between
bright.field and urban or industrial classes;relief and
industrial or urban classes; andright.field and relief
classes. All of these situations are unusual in a natural
scene, and they will mostly occur because of misclassifi-
cation of these classes in the SAR images.

Table V summarizes the different relationships we used
between all the classes. .
The energy minimization is done by simulated annealing,
but does not take too much time (7 min) since the set of regions

is quite small (about 10 000 regions on a 1024024 image).

The parameters of the Markovian step are the following:
K, = -1, Ky = 2, Ky = 0, the initial temperature is
5.0, and we used geometric decreasing with a multiplicative
coefficient of 0.95. The parameteks have been empirically
chosen and are fixed once and for all to process any SAR
image.

The bright.field class, which has only been used to discrim-
inate urban areas, has been suppressed and reclassified in th
reject class on the final result (this class has indeed very little®
interest on its own). Th@omogeneouslass is given with its
associated probability for each region. In fact, only reliable

Urban areas most of the urban areas are well de-
tected (14 of 17 existing in the map: Mantes-La-Jolie,
Rosny sur S., Guernes, Limay, Mantes-La-Ville, Den-
nemont, Follainville, La Roche-Guyon, Vetheuil, Fres-
neuse, Gasny, Moisson, Sandrancourt, Claudry), although
some of them (three towns: Mousseaux sur S., St-Martin-
La-Garenne, Mficourt) were missed (for instance the
town of Mousseaux-sur-Seine in the middle of the river
curve as seen on the map in Fig. 7).

Road and hydrological networks the river Seine has
been well detected, but the big highway on the bottom of
the scene has also been classified\as instead ofroad,
roads are rather incomplete, calling for an improvement
of the road operator [32].

» Forests they are well discriminated from the background

if we take into account the confidence values: there
are four areas with high confidence values which are
indicated as forest areas on the map &tate Moisson,
Bois du Chenay, the area under the Sandrancourt town,
eand Foét de Rosny at the bottom left of the map).

Relief: this class is of course not important on this flat
area, but detected lines correspond to difference of height
near the river, with some isolated false alarms.

regions correspond to forest or sea areas with the parameter2) ERS-1 Image of Aix-en-Provenc@&his is a more diffi-
we set, but we did not want to put too many regions in theult image since we are near a high hill with important relief
rejection class and we preferred to present the results with tffiég. 2(a)]. The scene is centered on Aix-en-Provence, which

degree of confidence. Let us note that bmmogeneouslass

is a large town in the South of France, with forest in the bottom

does not distinguish betwedarestor seaareas. A particular right, and many industrial areas and an important road network
class for urban class with weak probability has been addg@#g. 7). Results are shown in Fig. 8.

and calledsuburb

V. RESULTS ON REAL SAR IMAGES

The general scheme we have previously described has been

applied on about 20 radar images taken with different sensors
(ERS-1, SIR-C/X-SAR, RADARSAT) in a fully automatic
way. The set of parameters has been fixed once and for
all for each sensor. Actually, the parameters are not very*
different from one to another, but the different interpixel
spacing influences the statistical properties of the SAR images.

We present and analyze here two interpretation results on
real ERS-1 images and then make a synthesis on all the
tests we made to evaluate the performances and limits of the
proposed scheme. The evaluation of the interpretation results
is essentially made by comparing them visually with the maps
corresponding to the analyzed SAR areas.

The results obtained on this image are the following.

Urban areas the town and industrial areas are well
detected with no false alarms in the relief areas; there
are ten towns or industrial areas well detected (of a total
amount of 14), two false alarms which correspond to
bright reflectors but are not indicated on the map, as well
as two omissions.

Road network: it is rather incomplete, although the main
axes are detected (highways A-8 and A-51 are detected,
as well as some of the national roads but many of them
were missed; let us note that they often are hardly visible
on the radar image, though the results can certainly be
improved).

Forests the forest Bois de Ligoures situated at the top
right of the radar image is also well detected, as well as
the forest areas on the Mount Montaiguet slope.
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Fig. 6. Original ERS-1 image of Mantes-La-Jolieé ESA.

* Relief: the detected crests in the right part of the image « scene of Provence (South of France) with the very

indicate the presence of the Mount Montaiguet. large conurbation of Marseille and the town of Aix-
en-Provence in a rural and mountainous landscape;
B. Global Analysis of the Results « scene of Brittany in France (Saint-Brieuc, Lorient) with

This section describes the general results we obtained with small urban areas in a hilly and agricultural landscape
the proposed method on a large set (about 20) of radar images with many forests and fields;

and comparing them with the maps or with the radar image. scene of The Netherlands, with a typical landscape of

when no maps were available. polder (Wieringermeer, Lelystad) with small towns, sea-
_Several SAR images of size 10241024 to 2048x 2048 sides, many geometrical fields, and a complex network
pixels have been tested, from ERS-1, RADARSAT, and SIR- of channels:

C/X-SAR radars. Four ERS-1 scenes were used in which we
extracted about 13 images: *
« scene of Paris which corresponds to a very large conur-
bation in a rather flat landscape; many urban areas (Ver-
sailles, Mantes-La-Jolie, Roissy, etc.) have been extractds for RADARSAT images, we had at our disposal the scene
and tested; of The Netherlands with polder landscape. Concerning SIR-

scene of Kourou in French Guyane, which is a tropical
landscape on the seashore with many kinds of vegetation
and forests.
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Fig. 7. Maps of the SAR images. The areas corresponding to forest areas are darker than the background but without black boundaries. (a) Map
corresponding to the Mantes-La-Jolie image Michelin.

C/X-SAR, we only had a scene near Strasbourg correspondiag powerful way to avoid detectingbanclass on very bright
to small urban areas in a rather flat landscape. fields in most of the case (although it was not sufficient for the
All the interpretation results have been analyzed by a visuatlystad image analysis). A better discriminatioriradustrial,
comparison with the SAR image and with a map of therban and very dense urban areas should be possible with
corresponding area when available. For a smaller set (six ER8nple radiometric criteria starting with this coarse detection.
1 images of different landscapes), a registration step has b&éere are still some omissions and, depending on the sensor
performed and an exhaustive comparison with the map acalibration, detection is more or less difficult. Table VI gives
the SAR image has been made. All the results given belmeme quantitative results on a sample of ERS-1 images for
have been deduced from this analysis. which the maps were available and a precise comparison with
e Urban areas: Urban and industrial areas are generallyegistration has been made.
well detected with very few false alarms due to relief areas or Since an oversegmentation is used to define the regions of
bright fields thanks to the general scheme of interpretation. Tthe interpretation scheme, boundaries of the urban areas are
introduction of thebright.fieldclass and contextual informationnot precisely located.
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(b)

Fig. 7. (Continued) Maps of the SAR images. The areas corresponding to forest areas are darker than the background but without black boundaries.
(b) Map corresponding to the Aix-en-Provence imageMichelin.

e Road and hydrological networks: Road network de-  Moreover, there are very few works which aim at detecting
tection is still disappointing because the network is oftethe global shape of the network on SAR satellite images, and
incomplete, although much computation time is dedicated to ttsus the comparison with concurrent methods is not easy.
extraction. Besides, it is difficult to give quantitative results on As for the river detection, they are usually more easily
the road network detection. Indeed, unlike the industrial aressen on the SAR images and their detection is also easier;
which are always visible, the roads are sometimes not visiblethé main problem is then to distinguish between the road and
all due to particular orientation and surrounding. Therefore, thgdrological networks. It is rather difficult without any new
results should be compared to the detection of a human exprtirce of knowledge since they may have the same appearance
without the help of a map since our interpretation scheme didh the radar image (for instance, channels on polder scenes).
not use it. e Relief areas: Relief areas are well detected and a new

Further work could be the use of the whole interpretatiostage should permit the discrimination of isolated false alarms.
result to improve the network detection using information lik&€he neighborhood we used in the Markovian field is, in
“there should be a road connecting two towns” or using sonfigct, too “local” to introduce information of higher level, but
high-level information provided by a map (the interpretation neighborhood based on a distance and not on adjacency,
result could then be used to register the image and the mapd relationships like parallelism should greatly improve the
but relief distortions should be taken into account). results. Of course, the aim of this class is to localize where the
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@)

(b)

Fig. 8. Interpretation results. Caption: blue: rivers, red: roads, yellow: town (dense urban areas), orange: industrial areas, brown: sutelief, qriedts,
green: forests. Interpretation result for (a) Mantes-La-Jolie and (b) Aix-en-Provence.
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Fig. 9. Edges of the detected features (in white) superimposed on the SAR image.

TABLE VI e Forests: Results for thdorestclass are usually satisfying,
REsuLTs OF THEURBAN CLAss DETECTION but they sometimes vary from one image to another, and the
Image good falsc | omissions set of parameters we used for this class is not as stable as
detections | alarms ; the other ones. Other textural operators should be introduced

Alx-en-Provence 10 2

to improve the forest detection and localization. Furthermore,

Lovient ' 0 0
e : a more complete scheme should take other land-cover types
Roissy 13 0 3 :

Mantes-Ia-Jolic 14 0 3 into account.

Lelystad l 3 0 To conclude about the provided results, let us make a
INourou 3 : 1 0

remark here. Our aim is to automatically give a coarse map
from the satellite SAR image (once the parameters have been
defined for a sensor). Therefore, we are interested in the global
radar indicates the presence of relief, but an exhaustive deterganization and consistency of the detected features, and the
tion of all the relief areas is impossible since the informatiomethod has been mostly evaluated by a visual comparison
we used depends on the incidence angle and relief orientatiotith the available maps and with the SAR images. The
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accurate localization of the detected areas (urban boundarregjstration step with other sources of knowledge. Further
forest limits) is beyond the scope of this paper and showkbrk includes both these two approaches, possibly merging
require further improvements since coarse areas provided thgm.

a segmentation are used in the interpretation scheme.
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