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Information Combination Operators for Data
Fusion: A Comparative Review with Classification

Isabelle Bloch

Abstract— In most data fusion systems, the information ex-
tracted from each sensor (either numerical or symbolic) is repre-
sented as a degree of belief in an event with real values, taking in
this way into account the imprecise, uncertain, and incomplete
nature of the information. The combination of such degrees
of belief is performed through numerical fusion operators. A
very large variety of such operators has been proposed in the
literature. We propose in this paper a classification of these
operators issued from the different data fusion theories w.r.t. to
their behavior. Three classes are thus defined. This classification
provides a guide for choosing an operator in a given problem.
This cheice can then be refined from the desired properties of
the operators, from their decisiveness, and by examining how
they deal with conflictual situations.

I. INTRODUCTION

N most data fusion systems, the information extracted from

images or sensors is represented as measures of belief in
an event. This information can be either of numerical or of
symbolic nature. Its representation as numerical degrees leads
to a quantification of its characteristics (uncertain, imprecise,
incomplete), which have to be taken into account in a fusion
process. These characteristics are of particular importance for
data fusion problems in image processing since they are often
intrinsic to the images themselves (due to observed phenom-
ena, acquisition device, numerical reconstruction algorithms,
post-processing, etc.). Indeed, one of the main tasks of data
fusion is to combine information issued from several sources to
take a better decision than from one source only, by reducing
imprecision and uncertainty and increasing completeness [3].

The events to which degrees of belief are assigned are
related to the decision problem at hand. For instance, they
may be the presence or absence of a given structure (say a
road in a satellite image, a tumor in a medical image), the
membership of a point or a set to a class, the detection of an
object, etc.

The degrees of belief take generally their values in a
real closed interval ([0, 1], [—1, 1]---) and are modelized
in different ways, depending on the chosen mathematical
framework. They are probabilities in data fusion methods
based on probability and Bayesian theory, membership degrees
to a fuzzy set in fuzzy set theory, possibility distributions,
possibility or necessity functions in possibility theory, certainty
factors in MYCIN-like systems, mass, belief, or plausibility
functions in Dempster-Shafer evidence theory.
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When pieces of information issued from several sources
have to be combined, each of them represented as a degree
of belief in a given event, these degrees are combined in the
form F(z1,%2,...,2Zn), Where z; denotes the representation
of information issued from sensor 4. Then the question is:
what information combination operator I should be chosen?
A first restriction on F' is the closure constraint imposed
by the chosen mathematical framework; for instance, when
combining probabilities it is desirable (for further combination
and comparison purpose) to obtain another probability, i.e., to
remain in the same framework. However, this constraint is
not very restrictive when working with fuzzy sets. Thus other
guidelines are needed.

In this paper, we propose a classification of data fusion
operators with respect to their behavior in terms of severity
or indulgence, and to the dependence of this behavior w.r.t.
to the information to be combined. Section II is dedicated to
the description of this classification. In Section III, a review
of the commonly used operators (in different data fusion
theories) is proposed w.r.t. this classification. In Section IV, the
operators are revisited under the light of their properties and
their interpretation in terms of data fusion, of their behavior -
when conflictual situations occur, and of their decisiveness.

II. CLASSIFICATION OF OPERATORS
DEPENDING ON THEIR BEHAVIOR

This section aims at describing the possible behaviors that
a fusion operator may have. Using the common sense qualifi-
cations of “severe”, “indulgent”, or “cautious”, we propose a
classification of the operators in three classes. "

We will focus on operators combining two pieces of infor-
mation. Extension to the combination of three or more will be
addressed in Section IV-C.

Let z and y denote two real variables representing the
degrees of belief to be combined; they take values into the
interval I, which for the sake of simplicity is chosen as [0,
174

Let us consider a function F acting on z and y, defining
a combination or fusion operator. Under closure property
assumption, F'(z,y) also has values in I.

According to the definitions given in [5], [19] for fuzzy
operators, we say, for any fusion operator F, that:

e [is conjunctive if F'(z,y) < min(z, y) (this corresponds

to a severe behavior),

!In the case of MYCIN, this interval is [—1, 1].
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« F is disjunctive if F(z,y) > max(z,y) (indulgent
behavior),
o F behaves like a compromise if z < F(z,y) < y if
z <y, and y < F(z,y) < z else (cautious behavior).
We propose now a classification to describe the operators
not only as conjunctive or disjunctive ones but also in terms
of their behavior with respect to the particular values of the
information to be combined.

A. Context Independent Constant Behavior (CICB) Operators

The first class, that we call context independent constant
behavior operators (CICB), is composed of operators which
have the same behavior whatever the values of the information
to combine, and which are computed without any contextual
or external information (i.e., only from the values of the
information to combine). More formally, a CICB operator
F satisfies one of the three following properties, which are
exclusive

V(z,y) € I?, F(z,y) < min(,y), (1)
V(z,y) € I?, F(z,y) > max(z,y), @
Y(z,y) € I?, min(z,y) < F(z,y) < max(z,y). @)

B. Context Independent Variable Behavior (CIVB) Operators

The second class is composed of operators which are context
independent like in the first class but whose behavior depends
on the values of z and y. We call the operators of this class
context independent variable behavior (CIVB) operators. For
instance, an operator in this class may be severe if both pieces
of information are high and indulgent if they are both low
(imagine for example the problem of student notation - - -).

C. Context Dependent (CD) Operators

The third class is composed of operators which are context
dependent, i.e., which are computed not only from z and y but
also depend on a global knowledge or measure on the sources
to be fused (like conflict between sources, or reliability of
sources). For instance, it is possible to build operators which
behave in a conjunctive way if the sources are consonant, in a
disjunctive way if they are dissonant, and like a compromise
if they are partly conflicting.

Such operators are particularly interesting for classification
problems, since their adaptive feature makes them able to
combine information related to one class in one way, and
information related to another class in another way.

III. A REVIEW OF COMMONLY USED FUSION
OPERATORS W.R.T. THE PROPOSED CLASSIFICATION

In this section, we will briefly recall the definitions of the
main fusion operators used in the different numerical data
fusion theories (probability and Bayesian inference, fuzzy sets,
possibility theory, MYCIN-like systems, Dempster-Shafer ev-
idence theory), and show that they all fit in the proposed
classification.
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A. CICB Operators

Examples of operators belonging to this class can be found
in several mathematical frameworks (probability and Bayesian
fusion, fuzzy sets and possibility theory, Dempster-Shafer
evidence theory).

1) Probabilistic and Bayesian Fusion: Let us first consider
probabilistic and Bayesian fusion. The degrees of belief are
represented by probabilities (a priori, conditional and a posteri-
ori probabilities). Decisions are usually taken from a posteriori
probability. Let E be the event to be evaluated, and 1,2
the pieces of information provided by the two sensors. From
Bayes theorem, we have
p(E | $1,.’172) — p(l’z | Eiml)p(E l (111)

p(z2 | 71)
_ p(z2 | B, 31)p(z1 | E)p(E)
p(z2 | z1)p(z1)

=p(z2 | E,@1)p(21 | E)

_pE)
p(z1,72)
p(E)

p(z1 | E,z2)p(z2 | E)p(ml,flh)'
From this equation, it is clear that the operator involved in the
combination is a product of probabilities, which is conjunctive.
The term p(21,z2) is a normalization term which is constant
for all events (it does not depend on a contextual information)
and does not have any influence on the behavior of the
operator. Thus Bayesian fusion involves a CICB operator.
Note that the above expression reduces to

p(z2 | E)p(z1 | E)p(E)
p(z1)p(z2)

in case of independence between sources.

2) Fuzzy Sets and Possibility Theory: Let us now consider
fuzzy sets and possibility theory. Three families of operators
used in these theories are CICB: triangular norms (T-norms),
triangular conorms (T-conorms) and mean operators.

In the context of stochastic geometry ([10], [11]), a T-
norm i is defined as a function of two variables from [0, 1]
x [0,1] to [0, 1] satisfying several properties: commutativity,
associativity, 1 is unit element, increasingness with respect to
the two variables. From these properties, limit conditions can
be derived: 5(0,1) = #(0,0) = %(1,0) = 0 and i(1,1) = 1, and
it is easily shown that 0 is null element (Vz € [0,1],i(«,0) =
0). A continuity property is often added to these properties.

T-norms generalize intersection to fuzzy sets ([5], [6], [19]).
Examples of T-norms are min(z,y), ¢y, max(0,z +y — 1).

It is easy to prove the following result: for any T-norm ¢,
the following inequality holds

Y(z,y) € [0,1]%,i(x,y) < min(z,y). ©)

“

(&)

This shows that the “min” is the greatest T-norm and that any
T-norm has a conjunctive behavior, whatever the values of z
and y. Therefore, T-norms are CICB operators.

In this framework, a T-conorm is defined as an operation
w from [0,1] x [0,1] to [0,1] such that w is commutative,
associative, monotonic, admits O as unit element. It verifies
limit conditions (u(0,1) = wu(1,1) = u(1,0) = 1 and
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%(0,0) = 0), and admits 1 as null element. T-conorms
generalize union to fuzzy sets. Examples of T-conorms are
max(z,y), £ + y — ¢y, min(l, z + y). For any T-conorm u,
the following inequality holds

Y(z,y) € 0,1, u(z,y) > max(z,y). @)
This shows that the “max” is the smallest T-conorm and that
any T-conorm has a disjunctive behavior, whatever the values
of  and y. Therefore, T-conorms are CICB operators.

A mean operator m is defined as a function from [0,1] x
[0,1] in [0,1] such that ([5], [19]) min(z,y) < m(z,y) <
max(z,y), m # min, m # max, m(z,y) = m(y,z), m is
increasing w.r.t. both arguments.

Examples of mean operators are:

o the median operators mq (z,y) = medq(z,y, a)?,

e the bisymmetrical® continuous strictly monotonous means
which have the general form m(z,y) = kfl[w],
with k£ continuous strictly monotonous (examples in this
family are the harmonic mean ?TZ’ the geometrical mean
/2y, the arithmetical mean “”Tﬂ’, the quadratic mean

z?+y? )
2 ?
* the ordered weighted averaging operators [18],

 the fuzzy integrals ([8], [15]).

The behavior of these operators is directly issued from
the definition, which shows that they behave always like a
compromise. Therefore, mean operators are CICB.

3) Dempster-Shafer Evidence Theory: Let us now consider
the Dempster-Shafer evidence theory. In this framework, the
information from sensor i is represented by a mass function m;
assigning values in [0, 1] to each subset of the discernment set
D (the set of considered events). From the set of mass values
for all subsets of D, other functions can be derived (belief,
plausibility, communality, doubt). The key point is that the set
of values taken by one of these functions can be derived from
the set of values given by any other one ([9], [12]).

The combination is performed by the orthogonal sum of
Dempster, expressed for n sources as

Biz1 mi(4)
1
=77 2. mu(B)ma(Ba)-- ma(Ba) @)
BiNBsy---NB,=A
where A,‘ By,..., By, are subsets of D, and
k= Z my(B1)ma(Bs) - mn(Brn).  (9)

B1NBy--NB,=0

From this expression, the behavior of the orthogonal sum is not
very clear. However, let us consider the communality function
defined as: Com;(A) = 37, - mi(B). It can be shown ([9],
[12]) that the communality functions are combined using the

2Median operators are the only associative means and are defined by:
med(z,y,a) = zify < 2 < aora <z <y, med(z,y,a) = y if
z<y<aora<y<z med(z,y, o) =« else.

3 A bisymmetrical operator m(z,y) is such that m{m(z,y), m(z,t)] =
mlm(z, z), m(y,t)].

rule

@7 Com;(A4) = Com; (A)Comy(4) - - - Com, (A).
(10)
Thus, the result on subset A depends only on the communality
values given by all sensors for subset A, and the operators is
a product, i.e., a conjunctive operator. Here again, like for
Bayesian fusion, 1 — & is a normalization factor (assuring that
the result of the combination is a mass function, respectively
a communality function) which is constant for all subsets and
thus does not influence the behavior of the operator. Therefore,
the orthogonal sum of Dempster-Shafer is a CICB operator.
The normalization factor is often interpreted as the conflict
since % represents the weight of evidence which would be
assigned to the empty set in the absence of normalization.
It is interesting to note that k& can be computed only from
the conflict between two sensors. Let us note ki, the conflict
between sources 1 and 2, k(12)3 the conflict between 3 and
the result of the combination of 1 and 2, etc. Then it is easy
to show that

1=k=(1~ka)1-kays)d = kan-1n). (1D

This equation is much more than an efficient way to compute
the normalization factor. It shows additionally that 1—k is also
combined in a conjunctive way (and therefore the conflict has a
disjunctive behavior: it increases when the number of sources
increases).

1
1-k

B. CIVB Operators

Examples of operators belonging to this class can be found
in fuzzy sets and possibility theory, and in MYCIN-like
systems.

1) Fuzzy Sets and Possibility Theory: Symmetrical — sums
are defined as operators o from [0, 1] x [0, 1] in [0, 1] such that
([51, [19]): (0, 0) = 0, o is commutative, ¢ is increasing w.r.t.
both arguments, ¢ is continuous, ¢ is auto-dual®*. Moreover,
o(1,1) = L.

The general form of symmetrical sums is given by

9(z,y)
9(z,y) +9(l —2,1-y)
with g increasing, positive, continuous, and such that g(0,0) =
0. The only symmetrical sum o which is associative and

a mean operator is med(z,y,1/2). The associative strictly
increasing symmetrical sums take the form

o(z,y) = 7 () +9p(y)]

with ¢ strictly monotonous, %(0) and (1) nonbounded,
(L —z) +¢P(z) = 0.

Examples of symmetrical sums are:

o(z,y) = (12)

13)

e oo(z,y) = Tos—aTzsy- Obtained for g(z,y) = zy (it is

associative),

c op(zy) = ﬂ%, obtained for g(z,y) = z+y—iy

(it is not associative),

“An operator is auto-dual with respect to the complementation to 1 iff
1—o(z,y) = o(1 — x,1 — y). This definition is easily extended to any
complementation.
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conjunction

compromise

disjunction

X1

Fig. 1. Behavior of o4 (nonassociative symmetrical sum) w.r.t. the relative
values of x and y in the [0,1] x [0, 1] square.

* Omin(T,y) = gn_flry—_"%)[

(it is a mean), o)
- maxi(z,y
* omax(%,) = TR
(it is a mean).

, obtained for g(z,y) = min(z,y)
obtained for g(z,y) = max(z,y)

Symmetrical sums represent “hybrid” aggregation operators.
Let us take the example of med(z,y,1/2): it is an indulgent
operator (with disjunctive behavior) if = and y are low (less
than 1/2) resulting in max(z,y), it is severe (conjunctive
behavior) if = and y are high (greater than 1/2) resulting in
min(z,y), and its return value is 1/2 if either z or y is less
than 1/2, the other being greater, and in this case it has a
compromise behavior. In fact, median operators appear as a
limit between CICB and CIVB operators.

More generally, any associative symmetrical sum (but me-

dian) has the following behavior [6]:

« conjunctive if max(z,y) < 1/2: o(z,y) < min(z,y),

« disjunctive if min(z,y) > 1/2: o(z,y) > max(z,y),

o compromise if z < 1/2 < y:z < o(z,y) < y and the

reverse in+equality holds if y < 1/2 < «.

This illustrates the variable behavior of o, depending on the
values to be combined. Thus such operators are CIVB.

For nonassociative symmetrical sums®, the three kinds of
behavior also occur, but the rules may be more complex.
Fig. 1 illustrates the domains where o, is a disjunction, a
conjunction or a compromise.

2) MYCIN-Like Systems: Let us now consider systems
which use the rules proposed in MYCIN for combining
certainty factors [13]. Here, the degrees of belief take their
values in I = [—1, 1]. They do not represent absolute degrees
of belief, like in other theories, but rather the amount of belief
or disbelief provided by an information to update the belief
in an event. These so called “certainty factors” are positive

5The case of nonassociative symmetrical sums which are also mean
operators has been treated in Section III-A, since they are CICB.

1.0
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if the information confirms the event, and negative if the
information disconfirms the event (the value 0 means that the
information says nothing about this event). The rules defined
in [13] for combining two pieces of information z and y
supporting the same event are:

erx+y—zyifz > 0and y > 0 (ie., both pieces of
information confirm the event),

ez+y+ayifz <0 and y < 0 (i.e., both disconfirm
the event),

e z+yifz<0andy >0,0orz >0and y <0 (ie., one
information confirms the event and the other disconfirms
it).

It can be easily shown that, ¥(z,y) € [-1,1]?

z>0and y > 0= z+y— zy > max(z,y),
z<0and y <0= z+y+ zy < min(z,y),
zy < 0= min(z,y) < z +y < max(z,y).

This proves that the MYCIN operator is CIVB and behaves
as follows:

¢ in a disjunctive mode if both z and y are positive,
providing a result which confirms the event more than
each individual information,

* in a conjunctive mode if both z and y are negative, re-
sulting in a stronger disconfirmation than each individual
information,

* like a compromise if one of z and y is negative, the other
one being positive; the sign of the result depends on the
strength of disconfirmation (respectively, confirmation) of
each individual information.

C. CD Operators

This section presents some context dependent operators
taking into account some contextual information about the
sources. Two examples have been chosen to illustrate the
behavior of a CD operator: conflict between the sources and
reliability of the sources. This is of course not exhaustive. In
particular, as it is well known in image processing, information
about spatial context can also be considered and included in
the operators®.

Some operators have been proposed in possibility theory to
take into account contextual information [7] and can also be
used in fuzzy set theory for combining membership degrees.
They allow to take into account several situations.

e The sources may be conflicting when they give infor-
mation about one event (a class) and consonant when
considering another class.

« The sources may have different global reliability.

e A source may be reliable when giving an opinion about
one class and not reliable for another class.

1) Dependence on Conflict: Let us first consider operators

depending on a measure of conflict. In [7], operators are

61t should be noted that some methods in image processing which take into
account spatial contextual information, like Markov random fields, include
this information mainly in the initial probability assignment, and not directly
in the fusion operators. Such methods are thus beyond the scope of this paper.
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proposed which assume that one source is reliable but we do
not know which one. Thus, operators are designed in order that

» they are conjunctive if the sources are consonant (i.e.,
low conflict): in this case, the sources are necessarily both
reliable, and thus the operator can be severe;

¢ they are disjunctive if the sources are dissonant (i.e.,
high conflict): a disjunction will automatically favor the
reliable source as the one which gives the higher degree
of confidence;

« they behave like a compromise in case of partial conflict:
this case being the most problematic, the operators are
“cautious”.

In the following equations, expressing these operators, m
and 7y represent two distributions of possibility to be com-
bined in a global distribution 7/, 1 — (w1, 7y) represents a
global measure of conflict between these two distributions,
and ¢ denotes a T-norm

() = [ 0000

14
h(7r1,7rg) ( )

,1 — h(ﬂ’l,ﬂ‘z)] ,
[ imem)

T (8) - |:17 h(’lﬁ,ﬂ'z) +1 h( 1, 2)?’) (15)
7' (8) = i[m1(s), m2(s)] + 1 — h(mwy, 7a),

7'(s) = max {M

(16)
,min[max (w1, 7s), 1 — h]]
an

From these equations we conclude that these operators are
CD.
In [7], the proposed measure of conflict is defined as 1 — h
with
h = supifmi(s), m2(s)]- (18)
s
This measure, which assures that the resulting distribution 7’
is normalized, is well adapted for trapeze-shaped possibility
distributions.

If we want to apply these operators with membership
functions to fuzzy sets, for instance for multi-image classifi-
cation problems, other measures of conflict may be used, like
distances between fuzzy sets p} and u? representing the same
class 7 in two different images 1 and 2. This allows to combine
the information related to each class in a way which is adapted
to.the conflict between the sources concerning this class, as

VM € Image, u; (M) = Flu; (M), 7 (M), conflict(s, 157)].

(19
Such a form allows one to design CD operators well adapted
for classification problems in data fusion, where the sources
behave differently w.r.t. each class and differently from each
others.

2) Dependence on Source Reliability: Let us now consider
operators depending on the reliability of the sources. In
possibility and fuzzy set theories, several operators can be
built, depending on the reliability of the sources. Different
situations can be considered [7].

¢ It is possible to assign a numerical degree of reliability

to each source.

TABLE I
COMPARISON OF DATA FUSION OPERATORS

Operator claszifica- | Mathematical Sec. | Specific mathe- | Behaviour of specific operator
tion based upon be- | com- ‘matical
haviour w.rt. data | bination theory operators
to be combined {fremework)
CICB (Context In- | Bayesian III-A.1 | Product of | conjunctive
dependent  Con- probabilities
stant ¥
Fussy sets, | OI-A.2 | T-norm conjunctive
possibility
‘T-conorm, disjunctive
mean i
Dempster TI-A3 | orthogonal sum | conjunchive
Shafer
CIVB (Context In- | Fumsy sets, | III-B.1 | symmetric sums | all threc behaviours possible, depending
dependent Variable | posaibility upon values to be combined
Behaviour)
MYCIN-Bke TITB.2 | certainty factors | disjunctive (i @ and g are posthive)
systems combination
conjunciive (if z and y are negative)
compromise (else)
CD {(Context | Fassy sets, | 11I-C.1 | operators conjunctive if sources are consonant
Dependent) possibility depending  on
conflict
disjunctive if sources are dissonant
ise if partial conflict
Fuasy sets, | 1I-C.2 | operators
possibility depending  on
source reliability

» A subset of sources is reliable, but we do not know which
one.

* Only an order is known on the reliabilities of the sources,
but no precise values, such that priorities are defined on
the sources.

As with conflict-dependent operators, these operators are
CD and are adaptive. For the classification problem mentioned
above, operators can be designed in the same way, taking
into account possibly different reliabilities of the sources
w.r.t. different classes (sources may report careless for some
classes but not for other ones). For instance, when combining
membership degrees, such an operator can take the form

wi(M) = F[u%(M),u?(M),reliability(source 1 | class i),
reliability(source 2 | class i),
global-reliability(source 1),

global-reliability (source 2)]. (20)

D. Summary

Table I summarizes the results presented in Sections III-A,
II-B, and II-C.

IV. FURTHER PROPERTIES

This section aims at giving criteria for refining the choice of
an operator in each of the three classes described above. Since
most of the properties of the operators are well known, we
will mainly stress on the way they are related to data fusion
and decision problem.

A. Ordering Operators

A first way for differentiating the operators consists in
examining how they are sorted with respect to a partial
ordering. Two operators F' and F’ are said ordered indepen-
dently of the values of = and y if we have either V(z,y) €
I?,F(z,y) < F'(z,y), or V(z,y) € I?, F(z,y) > F'(z,y).
Ordered operators can be represented on the [0, 1] axis. Fig. 2
presents examples of operators of the three classes with their
respective positions.
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consonant sources ' partial conflict 1 dissonant sources
i i

(¢ 1]

Fig. 2. Ordering operators.

Let us consider the examples of fuzzy CICB operators
described in Section III-A. They are ordered in the following
way:

* T-norms: V(z,y) € [0,1]%, max(0,z +y — 1) < zy <

min(z,y);

* mean operators (in relation to “min” and “max”):

V(z,y) € [0,1* min(z,y) < BL < /5y < ¥ <
gf_-;_ﬁ < max(z,y);

* T-conorms: ¥(z,y) € [0,1]?, max(z,y) <z +y — 2y <

min(l,z + y).

There exists a lot of parameterized families of operators
which range continuously from one operator to another’. For
instance, such families of T-norms (respectively, T-conorms)
are summarized in [5], [6], [17], [19]. They are ordered w.r.t.
the parameter they depend on. Some examples are as follows:

. mﬁ’m&j [11] which ranges from product zy for o = 1

to min(z,y) for @ = 0 (this family is decreasing w.r.t.

the parameter «);
« max[0,(zP 4+ y? — 1)]'/? [6], which ranges from

max(0,z +y—1) for p = 1 to the product for p = 0 [6];

 1—min[l, (1—z)?+(1—y)?]*/? [19], which ranges from
max(0,z +y — 1) for p =1 to the “min” for p = +o0;
. V—Jru_—v)“”(”m (family of Hamacher);

1t should be noted that, depending on the value of the parameter, the
operators may have different behaviors. For instance on Fig. 2, the median
operator is a compromise for 0 < o« < 1, a T-norm for &« = 0 and a T-
conorm for o = 1. In the same way, they may not always belong to the same
class. For instance the operator h(z,y, ) (see formal definition in the text)
is CIVB or CICB depending on o.

57

* log,[1 + Lsr;il—(if;l)] (family of Franck), which is a
decreasing family w.r.t. the parameter s: in particular, it
is equal to the “min” for s = 0, to the product for s = 1
and to max(0,z +y — 1) for s = 4-o0.

In a similar way for mean operators, med(z,y, ) ranges
from min(z,y) for @ = 0 to max(x,y) for & = 1 (it is an
increasing family of mean operators).

The parameter involved in such an operator allows one to
define precisely where the operator is located with respect to
others (see Fig. 2). For instance, the choice of a small value
of « in the median operator makes it behave in a way closed
to the behavior of “min”. Choosing a greater value for a
leads to an operator which is always greater than the previous
one, whatever the values of the pieces of information to be
combined. If a goes to 1, the operator is to behave like the

For other parameterized operators, the class they belong to
depends on the parameter, and they are also ordered when the
parameter varies. Two examples are as follows:

« the function h(z + y — «) (with h(¢t) = 0 if t < 0,
h(t) = ¢tif 0 <t <1, and h(t) = 1 if ¢ > 1) ranges
from max(0,z +y — 1) for & = 1 to min(1,z + y) for
a = 0; for these extreme values of «, the operator is
CICB (conjunctive for a = 1, disjunctive for o = 0),
else it is generally CIVB;

¢ ¢ and u being any T-norm and T-conorm, the operator
defined as i(z,y)Yu(z,y)! =" ranges from i for v = 1 to
u for v = 0 and is in these both cases CICB, else it is
CIVB.

Let us now consider the four examples of symmetrical sums

given in Section III-B. They are ordered differently depending
on the values to be combined: if z +y < 1,

zy mil’l(zvy) max(a:,y)
l—z—y+2zy ~1—|z—y| ~ 1+|z -y
THy—xY
“1+z+y-—2zy
and if z +y > 1,
zy 5 min(z,y)  max(z,y)
l—-z-y+2xy " 1—|z—yl ~ 1+ |z -yl
z+y—zxy
T l4+z+y-—2zy

B. Interpretation of Properties in Terms of Data Fusion

Let us now try to interpret the various elements involved
in numerical data fusion operators w.r.t. the processing of
uncertain, imprecise, or ambiguous information.

At first, the elements of I are interpreted as measures
derived from data given by one or several sensors, for instance
a measure of membership to a class, a measure of evidence
of presence, a measure of satisfaction of a criterion. Their
mathematical form depends on the considered theoretical
framework. The extreme values of I (say O and 1) play
particular roles. The value 0 means that, for an event, the
sensor provides a null measure, either because it considers
the event as impossible, or because it has no information
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or a complete ignorance about the event. On the contrary,
the value 1 means that the sensor considers the information,
or the event, as sure and thus represents a total certainty.
Values which are strictly between 0 and 1 represent degrees of
uncertainty or partial knowledge on the information. They can
also be interpreted as imprecision, or as quantity of information
available about the event.

A conjunctive operator represents a consensus between
pieces of information, or its common' or redundant part. It
reduces the less certain information and has at most confidence
in the sensor which gives the smallest measure. It searches
for a simultaneous satisfaction of criteria or objectives. On the
contrary, a disjunctive operator increases the certainty we have
about an information and has at least confidence in the sensor
which gives the greatest or the most certain measure, or the
most information. It expresses redundancy between criteria. A
compromise operator provides a global measure, intermediate
between the partial measures provided by each sensor [6].
Redundancy between pieces of information can be taken into
account by compromise operators like fuzzy integrals [8]. By
introducing weights on subsets of information, they are able
to include interactions and dependencies between pieces of
information, thus avoiding combination bias.

Commutativity and associativity properties express that the
result of the combination is independent of the order in which
the information is combined. Commutativity is commonly
satisfied by information combination operators. Associativity
is generally not satisfied by mean operators nor by symmetrical
sums. For the other examples given in Section II, this property
holds. These properties are even often imposed as axioms
governing the construction of operators, as they are commonly
recognized as minimal properties the operators should satisfy,
although human reasoning not always combines information
in a commutative and associative way. We may take as a
counterexample of commutativity the task done by an aerial
image photo-interpreter. Having two or more images at his
disposal to analyse a scene, he generally works with one first,
and, after a first basic interpretation with this image alone,
upgrades his interpretation with complementary information
extracted from the others.

Unit element may exist or not. If it exists (for instance for T-
norms, T-conorms, Dempster rule, MYCIN), this means that,
if a source provides such an answer, this answer combined
with any other information will not modify a decision taken
from this information alone. For T-norms, the unit element is
1. The combination of such an information with any other one
well matches the idea of a consensus between a certainty about
an event and another measure of this event. For T-conorms,
the unit element is 0, which corresponds to a complete
ignorance of a sensor, or the absence of information, and thus
has no influence on a disjunction operator. In MYCIN, the
unit element is O, that is an information which says nothing
about the event and thus does not influence the combination.
In Dempster rule, the unit element is defined as the mass
function

me(D) = 1,YA # D, me(4) = 0. @1

me has only one focal element which is the whole frame
of discernment D, and thus represents a total absence of
information. ‘

Increasingness corresponds to a constraint generally im-
posed on the operators: if two sensors provide pieces of -
information or measures ' and y’' greater than = and y,
respectively, we expect from the combination of z’ and 7/
a result that is also greater than the result obtained from z and
y (representing more information, or more certainty).

Limit conditions, which appear in most theories, govern the
behavior of the combination of measures in {0, 1} (or more
generally extreme values of I), and impose it to be compatible
with the binary case. Thus, their interpretation is the same as
for classical logic, where the reasoning deals only with values
“true” and “false”.

Continuity property, satisfied for most operators, assures the
robustness of the information combination. If a sensor provides
an information or measure z’ slightly different from z, the
combination of z’ with any other value should not be very
different from the one obtained with z. This property is not
always imposed. It is for example possible to impose that some
values completely determine the result and that small changes
in these values drastically change the result and the derived
decision. Let us take the example of catching a train or not,
depending on the moment you leave home and on the speed
you walk. If you start later and run faster, the response will be
yes (you catch the train, more or less easily), until a precise
moment. If you go later than this moment, you will not catch
the train, whatever your speed. .

Existence of a null element for an operator means that this
value completely determines the result of the combination. It
is enough that a sensor provides this value for the resuit of any
combination being this value. For T-norms, the null element
is 0, which is consistent with the idea that a consensus cannot
provide any information from a set of measures among them
one is 0. For T-conorms, the null element is 1: if a sensor
provides a total certainty about an event, its combination by
disjunction with any other information will also be a total
certainty. For evidence theory, the null element is defined as
the mass function

ma({di}) = 1,VYA # {d;}, ma(A) = 0, 22)

where d; is an element of D. Then combining any mass
function m with m, provides

LT B
1% e m(B)ma(O)
ZA:Bﬁ{di} m(B)
m(B)’

-

The B’s which contribute to the riumerator are those which
contain d; if A = {d;}, or those which do not contain d;
if A = { (in this case, the combination rule provides 0 by
definition), else no B contributes to the sum. Thus, we have

VA# {di}, (m @ ma)(4) =0 @4

(m @ mq)({d;}) =

Vm, VA, (m ® mg)(A4)

(23)

B
BN{d;}=0

zdieB m(B)

T=>ugpm(B)

(25)
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Therefore, m, is null element for the Dempster rule of
combination. It represents a total certainty about one event
(singleton).

Idempotence means that measuring again an already known
information will not change the already derived deduction.
This property is not necessarily imposed for data fusion. For
instance the Dempster rule of combination is not idempotent,
in opposition to rmean-operators;-the only idempotent T-norms
and T-conorms are min and max. We may want on the
contrary that the combination of two (uncertain) identical data
reinforces or weakens the global confidence in the considered
event. This is formalized as the Archimedian property. For T-
norms, it expresses that the confidence decreases if we have
twice the same uncertain information. This behavior is the
same as for probabilistic fusion where, when multiplying prob-
abilities, probability decreases. On the contrary for T-conorms,
the Archimedian property expresses that the confidence in an
information is reinforced if this information occurs twice. The
kind of stability expressed by compromise operators and their
idempotence is incompatible with the Archimedian property.
Let us take an example of concurrent testimony combination,
issued from two witnesses who report the same fact. If the
two witnesses are in connivance and I know this fact, then I
will combine their reports in an idempotent way, since it is not
surprising that they tell the same, and thus the report of one
of them will not change the confidence I have in the report of
the other one. On the contrary, if they are independent I will
reinforce the confidence in the fact they report if I trust them,
and weaken this confidence if I do not trust them, and thus
the Archimedian property will be used.

Nilpotence means that the accumulation of n pieces of
information leads to the null element. For instance for T-
conorms, a total certainty about an event is gained if we obtain
a-sufficient number of non null measures supporting that event,
even uncertain. The operators i(z,y) = max(0,z+y—1) and
u(z,y) = min(l,z + y) are examples of nilpotent T-norm
and T-conorm. In evidence theory, m, is clearly a nilpotent
element. Let us consider a simple support mass function m,
defined, for given A and s € [0, 1], by ([9], [12])

ms(A) = s,my(D) =1-5,YB € 2P — {A, D}, ms(B) = 0.
(26)
It can be recursively shown that

Bnme(A) =1 — (1= 8)",@pm,(D) = (1= s)" (27)
VB € 2P — {A, D}, ®,m,(B) = 0. (28)

For s € [0, 1], we obtain lim,_, ®rm, = my, which corre-
sponds to a certainty on A. This means that the accumulation
of m, provides an information more and more certain on A,
and this behavior is very close to nilpotence, although not
mathematically equivalent. The combination of m, with. any
mass function m provides a null result but for the B’s such
that B C A: the focal elements of m & m, are those which
are included in A. This means that all information given by
m which does not contain A is eliminated.

As an example, let us consider successive reports from
several cascaded witnesses (i.e., each witness reports what
the previous one told him), none of them being completely
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reliable. In this case, the combination of their reports decreases
when the number of witnesses increases, and thus, a nilpotent
operator may be used.

The rules of excluded middle and noncontradiction, which
are satisfied for some operators but not for all, have an
interpretation in terms of reasoning, in particular in the domain
of artificial intelligence and approximate reasoning. They
concern the combination of contrary pieces of information and
are respectively expressed as

Flz,c(z)] =0,
Flz,c(z)] =1,

(29
(30)

(noncontradiction)
(excluded-middie)

where ¢ denotes a complementation (i.e., a negation of the
information). These rules are not necessarily imposed and
may or may not be in conflict with other properties. For
instance, the satisfaction of these principles and the idem-
potence property are mutually exclusive. For T-norms and
T-conorms, it could be expected that the noncontradiction
rule is satisfied by T-norms (as intersection operators) and
the excluded middle rule by T-conorms (as union operators).
This is however not always true: for instance, the “min” and
“max” do not satisfy these rules, nor the product and the
algebraic sum. On the contrary, nilpotent operators satisfy
these two principles. In probability theory, the additivity
relation P(A) + P(AC) = 1 expresses the excluded middle
rule. This is no more satisfied in Dempster-Shafer theory,
where belief functions (resp. plausibility functions) are sub-
additive (resp. supra-additive).

Examples where excluded middle is not desirable occur in
problems where we want to introduce ignorance about an
event and its complementary (this is by the way one of the
key features of Dempster-Shafer theory), and where we thus
need to relax the exhaustivity assumption made for instance
in probability theory.

- C. Fusion of More Than Two Images

In this section, we consider more than two pieces of
information to be combined, denoted by (z1,...,2,) € I",
with n > 2, and combined in the form F(z1,...,2,) € 1.
The following considerations describe how far the previous
results obtained for n = 2 can be extended to n > 2.

1) Generalizing Definitions: Let us take first the Bayesian
combination rule. It can be expressed as

o(E | z1,...,Zn)
— p(m‘n | E9x17'-- 7xn—l) p(.T]_ l E)p(E)
p(T1,. .. Tn) '

3D

and this expression does not depend on the order in which the
pieces of information are provided. It reduces to

p(E) [Ty p(z: | E)
H?=1 p(@i)

in case of independence between sources.

In an analogous way, the orthogonal combination rule of
evidence theory is directly generalized (see Section III-A), as
well as the computation of conflict.

(32)
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In a more general way, defining an operator acting on n
variables from one acting on two variables is straightforward
as long as the operator is associative (all operators consid-
ered in this paper being commutative). This is the case for
Bayesian combination and Dempster-Shafer theory as seen
before, but also for MYCIN combination rules, for T-norms,
T-conorms, median operators and some symmetrical sums
(0o for instance) used in fuzzy set and possibility theories.
The combination is simply performed by successively adding
pieces of information

F(z1,...,2,) = F[F[ - F[F(z1,22),23] - |, za], (33)

and the result does not depend on the order in which the z;’s
are combined.

For nonassociative operators (most of mean operators, sym-
metrical sums, and CD operators) two ways may lead to the
combination.

¢ The first way consists in applying the above formula for
a given order on the z;’s, chosen in an adequate way
w.r.t. the problem at hand (for instance, the ordering may
represent priorities on the ‘pieces of information to be
combined).

The second way consists in deriving a combination rule
for a given number n of variables, by mimicing the rule
for two variables. For instance, the arithmetical mean can
be generalized as

.

x1+xz+---+xn’ (34)
n
instead of
(o (@ +22)/24z3)/24+ - +z2)/2  (35)

obtained with the first approach. In the same way, the
function g involved in the general form for symmetrical
sums can be generalized to a function of n variables,
leading to.

o(z1,...,Zn)

_ g(z1,. .., Tn) . (36)
9@, z0) +9(1 —21,...,1 —z,)

It should be noted that this approach may provide results
which do not involve all variables, like for o.;, and
Omax. For CD operators, this second approach can be
more complicated, especially for operators involving a
measure of conflict between sources. Let us take the
example of the normalized possibility measures given
in Section III-C. All terms can be easily generalized,
as they are based on T-norms and T-conorms, but the
conflict term h. A formulation of a “global” conflict
between n sources could be for instance A(1,2,...,n) =
sup, #[m1(s), m2(s), ..., mn(s)], for which the following
relationship holds w.r.t. conflicts computed by pairs

h(1,2, ...

,n) < minfh(3,7),1 <i<n,i<j<nl. (37)

If the conflict is derived from a distance between two
fuzzy sets or two possibility distributions, it is much more
difficult to derive a global measure from the conflicts by
pairs.

As far as source reliability is concerned, the generalization
by the second approach is easier than for conflict since
either reliability is available for each source separately, or the
different sources reliability are ordered, even if precise values
are unknown. Thus, they do necessitate computation involving
several sources as for conflict.

2) Generalizing Properties and Behaviors: The concepts
of conjunction, disjunction and compromise for an operator of
n variables take the following forms

Fz1,...,2,) < min(zy,...,2,), (conjunction) (38)
F(z1,...,2,) > max(zy,...,2,), (disjunction) (39)
min(z1,...,%,) < F(z1,...,20)
< max(zi,...,Z,). (compromise).
(40)

Let us consider a conjunctive CICB operator of two
variables. Its generalization to three variables satisfies [2]:
F[F(z1,%2), %3] < min(z1, 22, z3), and similar relationships
hold whatever the order of combination. Thus, we have:
F(z1,22,23) < min(z1,%2,23). This expression is easily
extended to any number n of -variables. Therefore, the
generalization of a conjunctive CICB operator is a conjunctive
CICB operator.

In a similar way, it can be proved that the generalization of
a disjunctive (resp. compromise) CICB operator is a disjunc-
tive (resp. compromise) CICB operator. This holds even for
nonassociative operators: although the precise values of the
combination depends on the order in which the variables are
taken, the behavior of the operator does not. Also the ordering
of operators, shown on Fig. 2, is still valid.

For CIVB operators, they also remain CIVB, but may
follow more complicated rules than their equivalent with
two variables. Let us take the example of associative CIVB
operators, like associative symmetrical sums (but medians),
for which the behavior has been described in Section ITI-B.
For such an operator £, we have

z<0.5and y <05 = F(z,y) < min(z,y) (<0.5) (41)
FlF(z,y),2) < min(z,y,2z) for z < 0.5, @2)
F(z,y) < F[F(z,y),2)] <z else.

Thus, if all three values are less than 0.5, then F is a
conjunction, and if two are less than 0.5, and one greater,
then F' is a compromise or a conjunction, depending on the
precise values. In the same way, if all three values are greater
than 0.5, then F' is a disjunction, and if two are greater and
one is less than 0.5, then F' is a compromise or a disjunction,
depending on the values. The precise rules differentiating the
cases where F' is a compromise depend on the operator. For
instance, for og, we have
Tyz
l-z—y—2z+4+ay+yz+zs

ao(x,y,z) = (43)
Assuming, without loss of generahty, z < y < 2, the rules
of behavior are:
* conjunction iff z <1 — y (and thus y < 0.5): this means
that two values have to be low (less than 0.5) and the
third one is limited;
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« disjunction iff 1 — z < y < z: this means that either two
values have to be high and the third one low (if z < 0.5)
or the three values have to be high;

e compromise in all remaining cases.

All these remarks can be extended to more than three
variables.

Fig. 3 illustrates an example of behavior, where the com-
bined value is compared to z, y and z.

3) Behavior of Nonassociative Operators: 1If the first ap-
proach for combining information with a nonassociative oper-
ator is chosen, the main question is in which order the pieces
of information have to be combined. Several situations may
occur.

+ In some applications, the information is provided suc-
cessively by each sensor and each piece of information
has to be combined to the previous ones as soon as it is
available (for instance in order to be able to take partial
decisions with the information at hand); in this case, the
order is fixed by the application.

* The order may be imposed by some priority between
information, and some operators are designed for dealing
with such cases (an example of processing queries in
data bases with operators expressing “and possibly” for
instance is described in [4]).

+ In all other situations, we have generally to design criteria
to find the adequate order, in particular for conflictual
information: do we have to combine first the conflictual
values or the consensual ones?

In the sequel, we will focus on the third kind of situa-
tions, and provide some examples illustrating the behavior of
nonassociative operators w.r.t. the chosen order.

Let us take for F' the arithmetical sum (a nonassociative
CICB operator) and three variables such that z < y < z. The
comparison between the results provided by the first approach
with all possible orderings and the second approach leads to

2 < FIF(y,2),3] < 25402 < FF(2,2),9]
< F[F(z,y),2] < 2, (@4)
fory—x >2z—y, and
£ < FIF(y,2),2] < FIF(s,2),5) < T 52
< F[F(z,y),2] < 2, @5)
fory —x < z—y, with
FIF(s,2),y) - FIF(y,2),al = 225, (46)
FIF(@,y),s - FIF(z, 25 = =% @D

This shows that if all values are of the same order of magni-
tude (i.e., consensual information), all possible combinations
are also of the same order of magnitude. Therefore, the choice
of one particular combination will probably not be crucial. On
the contrary, if the information is conflictual, the variations
may be more significant. For instance, if x is very low and y
and z are both high and close to each other, then combining
the consensual values first will provide a significantly smaller
result (R;) than combining conflictual values first. Moreover,
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TABLE II
EXaMPLE OF A MATRIX OF ¥, 1 < j S C1 <k <m, FoRC =4 aNDn =3
image I I I3
class
1 0.5 0.3 0.7
2 0.4 0.3 0.2
3 0.7 0.7 0.5
4 0.1 0.8 0.6
max | p3=0.7 [ p3 =08 pui=07]

TABLE III
FUSION BY DIFFERENT T-CONORMS AND COMPARISON OF DECISIONS
operator | max(z,y) | z +y—zy min(z + y, 1)
class
1 0.7 0.895 1.0
2 0.4 0.664 0.9
3 0.7 0.955 1.0
4 0.8 0.928 1.0
I max I py=0.8 Ip3=0.955 I #1 =p,3=p,4=l,0|

the value % provided by the second approach is farther
from the nonconflictual values than R;.

A more complicated example is provided by omi, (also a
mean operator) (see Section III-B). We denote

(43)

o1 = O'min[amin(xyy)’z]a g9 = Umin[o'min(zyy)ax}-

As shown on Fig. 4 where (o) — 02) is drawn for three values
of z, if z, y and z are of the same order of magnitude, there
is no significant difference. The largest differences occur for a
large conflict between z and z. In particular, if z is high and
y and z are low, then o (obtained by combining conflictual
values first) is less than oy (where consensual values are
combined first), and the difference on this example is quite
high (=0.4, which can be very important w.r.t. decision). In
the same way, if y and z are high and x is low, then o1 > o9,
and the differences decrease when x increases.

Let us now consider a CIVB nonassociative operator, o4 for
instance (see Section III-B). Fig. 5 illustrates the differences
between 01 = o4 [0y (z,9),2] and o2 = o4[o4(2,¥),x]. In
this case, the differences depend not really on the conflict but
more on relative values. On Fig. 5, it is clear that if z < 2
then o1 > 09, the difference depending only slightly on y, and
if z > z then o1 < o9. This means that the result is smaller
if the largest value is first combined to y.

D. Behavior w.r.t. Conflict and Decision

In this section, we discuss the properties of operators. in
terms of behavior w.r.t. conflict, and decisiveness (i.e., their
ability to discriminate the situations they have to face).

This part will be illustrated by the example of multi-sensor
image classification. The following notations will be used:
p,;“(a:) denotes the information (confidence or belief) on the
membership of z to the class j (j = 1---C) provided by
image k (k = 1---n) (the mathematical form of x depends
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Fig. 3.

(a)~(c) Behavior of an associative operator combining 3 values: differences between oo(2, y, #) and z, y, and z, respectxvely, for x < y < 0.5 and

# = 0.9; oo behaves like a compromise (in this example max(z,y) < 0o(z,¥,z) < z) but for very low values of z and y (z < y < 1 — z = 0.1).

on the chosen framework: probability, possibility, membership
degrees to a fuzzy set, mass function, etc.); p;(z) denotes
the combination of the u¥(z)’s by the operator F (ic., a
global information on class j resulting from the individual
information provided by each image) p;(z) = F [,u;“(x), k=

Let us examine the following decision rules, which take a
similar form as the classical rules used in fuzzy classification
[1], but act on the result of information combination (¢ denotes
the class chosen by the decision process)

(49)
(50)

(&}
wi(w) = max p;(z),

{ pi(w) — maxz; puj(z) > 1, 1)

r @5 44> ).

max;z; j1j(x)

Condition (50) imposes that the confidence in class 1 is large
enough in order to accept the decision “z € ¢” (the parameter
d represents.a decision threshold). Condition (51) imposes that
the decision in favor of a class is not ambiguous (i.e., decisive
enough): the two largest values must be different enough.

Let us first take for F' the “max”, used in fuzzy set and
possibility theories. According to rule (49), a point z will be
assigned to class 7 iff

) __C ] __C n k
wi(@) = max p(z) = max [r,gjgc 15 (w)]
_ D C ok
= max [I?jf{ 13 (w)] (52)
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Fig. 4. (a)—~(c) Behavior of a nonassociative operator when combining pieces of information in different order: omin [Fmin (25 ¥)s 2] — Omin[Omin (2, ¥), ]

for z equal to 0.1, 0.5, and 0.9, respectively.

Thus, the decision process (49) after a fusion with the operator
“max” is equivalent to

+ a decision taken separately (locally) on each image ac-
cording to rule (49) (for any k, uf(z) = max%_, u*(z)),
the global decision being then taken by searching for
the “est” local decision, i.c., the one for which u¥(z)
is maximum;

* a decision taken globally from all information, i.e., from
the whole matrix of u;? (z)’s, by taking its maximum term.

Let us now consider for F' any T-conorm. A point z will
be assigned to class 4 iff

C
pa(e) = mlax F(uf(@), b = 1-+-m)
C n k n C k
> ey [l )] 2 i [ @] 69

In this case, the decision is related to the maximum matrix

coefficient only through an inequality. It is not necessarily
taken in favor of the class for which this maximum is obtained.
This is shown in Table III, which gives the results provided by

the combination F(u;?, k = 1...n) for different T-conorms,

- for the example of matrix of u;?’s presented in Table II for

C = 4 and n = 3. The last row indicates the decisions taken
Jocally on each image (with the corresponding membership
value) (Table II) and on the result of the fusion (Table IIT).
The synthetic example in Table II is a very conflicting case
(between the images for a given class and between classes
in an image), where the individual decisions are different
(class 3 for image 1, 4 for I, and 1 for I3) and are high
(values greater than 0.7). The global decision taken from these
local decisions following the highest confidence value is in
favor of class 4. The same result as the one obtained for
the operator “max” is found, according to the above result.
This operator does not take the important conflict on class 4
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Fig. 5.

provides the saturation

)

i.e., for a lot of values to be

(a high T-conorm like min(1,z + y

into account, since the result is dictated only by the maximal

3

>1

value 1 as soon as = + ¥

combined).

without considering the possible deviations between

the pieces of information given by the images on this class.

s

values

Let us now examine the behavior of T-conorms w.r.t.
conditions (50) and (51). From the above derivations for the

On the contrary, the algebraic sum uses all values related to

a class, including somehow the possible conflict: for instance,

the result of the combination of images 2 and 3 for class

it appears that the critetion p;(z) > d

will be satisfied as soon as there exists one at least of the

ision rule (49),

dec

1 is less than for class 3 for which the conflict between

”, this sufficient

“max

conorms, it is not necessary and will be satisfied more easily

condition is also necessary. On the cohtrary for the other T-
if the T-conorm is greater (on the right on Fig. 2), see for

the two images is smaller (the maximum value being the ,u;?(m)’s greater than d. For the T-conorm

3, for which all images provide relatively high confidence
with low conflict. As far as the bounded sum is concerned,

same). The decision for this operator is taken in favor of class
the results show that this operator is not discriminant: it

instance the results for the bounded sum in Table III. For the

previous example, condition (50) is satisfied for the “max”

iff d < 0.8

has a low decisiveness since it does not allow to decide

< 0.955 and for the

in all cases, a large place

is left when comparing these values with the traditional value

the operators decreases when going to the right on Fig. 2 d = 0.5.

, for the algebraic sum iff d
bounded sum iff d < 1. Therefore

between classes 1, 3, and 4. These phenomena are due to

>

is the smallest T-conorm and all

max:a

.

the fact that the

other reinforce the highest information: the decisiveness of
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TABLE IV
FusioN BY DIFFERENT T-NORMS AND COMPARISON OF DECISIONS

operator | min(z,y) zy max(0,z+y— 1)
class
1 0.3 0.185 0.0
2 0.2 0.024 0.0
3 0.5 0.245 0.0
4 0.1 0.048 0.0
max p3 = 0.5 | uz = 0.245 B = Mg = U3
= puq4 = 0.0
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On the contrary, condition (51) is much more difficult
to satisfy, in particular for large T-conorms. This is almost
impossible for the bounded sum, unless we have only low
confidence for all images and all classes (but possibly one);
but in such a case, condition (50) will be difficult to satisfy.
For the example in Table III, this criterion is satisfied for the
“max” iffy < 0.1, and for algebraic sum iff n < 0.027!

Let us now revisit the previous example, under the light of
T-norms as combination operators, as shown in Table IV. For
any T-norm F, the decision rule (49) assigns z to class ¢ iff

pi(z) = gliéfF[u?(w),k =1---n]
< max [gﬁg u?(:v)]
. C n C
< min [I;.lgfcuf(w)] < miax [r?gfu?(w)]- (54)

This shows that for a T-norm, the obtained value is always
smaller than the one obtained by a decision on each image
individually and then a global decision by taking the best local
decision. Also the class for which this decision is obtained
may be different.

The decision taken as the best of the local decisions is again
always in favor of class 4 (since the fusion operator has no
influence). In Table IV, the operators “min” and product decide
in favor of class 3 and thus privilege a less conflicting sitnation
than the situation for class 4. The operator max(0,z +y — 1)
is not discriminant, since it is located far on the left on Fig. 2
(this phenomenon is analogous as the one already mentioned
for the bounded sum).

Since T-norms are always smaller than the “min”, condition
(50) is much more difficult to satisfy if d > 0.5. In the
previous example, it is satisfied for the “min” iff d < 0.5 and
for the product iff d < 0.245, which is far from the usually
chosen values (this shows that choosing a priori a decision
threshold does not make sense as long as the fusion operator
is not known). For the criterion (51), the “min” as well as the
product are discriminant as long as 7 is not too high (typically,
n < 0.1). The operator max(0, z + y — 1) is not discriminant.

For probabilistic and Bayesian data fusion, a similar be-
havior is observed, as the involved operator is mainly the
product.

For fusion performed with a mean operator, the resulting
decision depends on the chosen operator but also on the order
in which the pieces of informations are combined, as such an
operator is generally not associative. If F’ is a mean operator,

TABLE V
FusION BY DIFFERENT MEAN OPERATORS AND COMPARISON OF DECISIONS
operator -z-z_—i”y- V=Y '—;—"1
class
1 0.488 0.521 0.550
2 0.253 0.263 0.275
3 0.583 0.592 0.600
4 0.274 0.412 0.525
I max I p3 = 0.583 I p3 = 0.592 I p3 = 0.6 ]
operator | med(z,y,.5) | med(z,y,.7) | med(z,y,.2)
class
1 0.5 0.7 0.3
2 0.4 0.4 0.2
3 0.5 0.7 0.5
4 0.5 0.7 0.2
max B =p3 = M1 =p3 = p3 =05
pg = 0.5 ps =07
we have

n n
min uf (z) < F[uf(2),k =1---n] < maxp;(z). (55
Therefore, the decision value according to (49) satisfies

r}l%;c [glzigl u?(x)] < pifz) < I}.l%;c [Ig}f M?(ﬂf)]

& max [mT;n uk(a:)] < pi(z) < max [mcz;x uk(az)] (56)

G=1 Lk=1'"7 =P = emt Ly=1 )

Here again, the decision will generally not be the same as
the best of the local decisions, as illustrated in Table V. The
behavior as compromise operators and the ordering between
the operators is clearly apparent on this example. The decision
taken by the three first operators is always in favor of class
3: these operators favor the class with the highest confidence
values as far as the conflict is not too high (i.e., class 3 is
chosen rather than class 4). For the median operators, it should
be noted that the parameter « is obtained as a result as soon
as there are values straddling «. Thus, low values of « lead
to operators with a higher decisiveness and will select the
class for which all pieces of information are greater than o
(class 3 in our example for o = 0.2). When o increases, the
operator becomes less decisive (see Table V for o = 0.5 and
o = 0.7). Typically, the decision threshold in condition (50)
has to depend on the value of . The median operators are not
sensitive to the amplitude of possible conflict, as soon as the
conflictual values are on both sides of «, which is generally
the case for medium values of the parameter.

Table VI shows, again on the same example (Table II),
the results obtained with several symmetrical sums. In all
presented cases, the decision is taken in favor of class 3, i.e.,
the class which shows the highest values for a low conflict
is chosen. Condition (50) is satisfied for the standard value
d = 0.5. Considering condition (51), it can be observed that
oo has a high decisiveness (>0.3), and the other ones are
much less decisive.

For the nonassociative operators of Tables V and VI, the
results of Section IV-C apply. For the example of Table II,
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TABLE VI
FUSION BY DIFFERENT SYMMETRICAL SUMS AND COMPARISON OF DECISIONS
operator 0o A% Omin | Omax
class
1 0.500 | 0.544 | 0.556 | 0.545
2 0.067 | 0.360 | 0.231 | 0.313
3 0.845 | 0.54T7 | 0.625 | 0.583
4 0.400 | 0.524 | 0.455 | 0.531
max 3= | pa= | i3 = [ p3 =
0.845 | 0.547 | 0.625 | 0.583
TABLE VI

FusioN BY DEMPSTER-SHAFER COMBINATION RULE

[ class | Dempster-Shafer |

1 0.249

2 0.057

3 0.580

4 0.114
Cmax | m(3) = 0.580 |

TABLE VIII
Fusion By THE MYCIN RULES
[ class | MYCIN 1
1 0.000
2 -0.808
3 0.640
4 0.000

[(max [ CF(3) = 0.640 |

the behavior w.r.t. decisiveness depends only slightly on the
order of combination.

Table VII presents the results obtained by Dempster-Shafer
orthogonal rule of combination, for the example in Table II
(after normalization of the confidence values). The conflict
between 1 and 2 is 0.765, and between 3 and the combination
of 1 and 2 is 0.749. Thus the global conflict between the
3 images, according to the formula given in section 2.1.3
is 0.941. The decision is taken in favor of class 3, with a
good decisiveness. The global conflict is quite high, and the
Dempster-Shafer rule, like several other operators described
above, prefers the class with quite high confidence values and
low local conflict (between the images for this class).

Table VIII presents the results obtained by the MYCIN rules
(after a linear normalization of the confidence values into [—1,
1]. On this example, it appears that the rules have a high
decisiveness: only the results for class 3 are positive, with
quite high certainty factors. Thus the global set of images
confirms only this class and disconfirms the other classes (or
says nothing about them). Again, the class with the highest
certainty factors for a low conflict is preferred.

A last remark about the examples presented above (Tables
II-VII) concerns the interest of CD operators. Clearly, an
information about reliability of the sources could drastically
change the decision taken from these confidence values. For

instance, if the sensor which provides image 2 has a very
high reliability in comparison with the two other ones, it is
very likely that we would prefer a decision in favor of class
4 (instead of class 3), even in case of strong conflict between
the sensors about this class.

V. CONCLUSION: A GUIDE FOR CHOICE

A classification of data fusion operators has been proposed,
according to the constance or nonconstance of their behavior
and to the information they depend on (global information
about the problem context or not). This classification provides
a useful guide of choice of an operator among their great
variety. We have shown that all commonly used operators in
fusion theories like probability, Bayesian decision, fuzzy sets,
possibility, Dempster-Shafer, or MYCIN fit in the proposed
classification. In each class, the interpretation of the analytical
and algebraic properties in terms of data fusion leads to a
refinement of the choice. Simple examples were provided
to show how a given problem may impose properties on
the operators. At last, we discussed the properties of the
operators according to their behavior in conflictual situations
and in terms of decisiveness. Synthetical examples illustrate
this aspect.

Therefore, these guides, which provide a better knowledge
of the operators and of what can be expected from them,
allow the user to address the problem of choosing an operator
adapted to a given problem.

However, a difficulty remains concerning the choice of
an adequate order when combining more than two sources
with a nonassociative operator. Although some rules can be
derived, as shown in the text, to describe the behavior of such
operators when conflictual or consensual pieces of information
are combined first, it remains difficult to derive a general
strategy of processing.

ACKNOWLEDGMENT

The author would like to thank the reviewers for their useful
comments, and for suggesting Table I and some additional
references. . )

REFERENCES

[11 J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algo-
rithms. New York: Plenum, 1981.

[2] I Bloch, “Information combination operators for data fusion: A review
with classification,” Télécom Paris 94D013, Tech. Rep., Apr. 1994.

[3] I Bloch and H. Maitre, “Fusion de données en traitement des images,”
Traitement Du Signal, pp. 435-446, Dec. 1994.

[4] G. Bordogna and G. Pasi, “A fuzzy query language with a linguistic
hierarchical aggregator,” in ACM Symp. Appl. Computing, Phoenix, AZ,
Mar. 1994, pp. 184-187.

[5] D. Dubois and H. Prade, “A review of fuzzy set aggregation connec-
tives,” Inform. Sci., vol. 36, pp. 85-121, 1985.

, Théorie des Possibilités, Applications & la Représentation des

Connaissances en Informatique, Masson, Paris, 1988.

, “Combination of information in the framework of possibility
theory,” in Data Fusion in Robotics and Machine Intelligence, M. Al
Abidi et al. Eds. New York: Academic, 1992.

[8] M. Grabisch, “On the use of fuzzy integrals as a fuzzy connective,” in
2nd IEEE Int. Conf. Fuzzy Systems, San Francisco, CA, Mar. 28-Apr.
1, 1993, pp. 213-218.

[91 J. Guan and D. A. Bell, Evidence Theory and its Applications.
terdam: North-Holland, 1991."

{7

Ams-



BLOCH: INFORMATION COMBINATION OPERATORS FOR DATA FUSION 67

[10] K. Menger, “Statistical metrics,” in Proc. Nat. Acad. Sci., USA, 1942,  [19] , “Connectives and quantifiers in fuzzy sets,” Fuzzy Sets Syst.,
vol. 28, pp. 535-537. vol. 40, pp. 39-75, 1991.

[11] B. Schweizer and A. Sklar, Probabilistic Metric Spaces. Amsterdam:  [20] L. A. Zadeh, “Fuzzy sets,” Inform. Conir., vol. 8, pp. 338-353, 1965.
North Holland, 1983.

[12] G. Shafer, A Mathematical Theory of Evidence. Princeton, NJ: Prince-
ton Univ. Press, 1976.

{13] E. H. Shortliffe and B. G. Buchanan, “A model of inexact reasoning in
medicine,” Math. Biosci., vol. 23, pp. 351-379, 1975.

[14] F. M. Song and P. Liang, “Inference with possibilistic evidence,”
Uncertainty in Artificial Intelligence, vol. 9, pp. 506-514, 1993.

[15] M. Sugeno, “Theory of fuzzy integrals and its applications,” Ph.D.
Dissertation, Tokyo Institute of Technology, 1974.

[16] P.Z.Wang and H. M. Zhang et al., “Fuzzy set-operations represented by
falling shadow theory,” in Proc. Int. Fuzzy Eng. Symp. *91, Yokohama,
Japan, 1991.

[17] R. R. Yager, “On a general class of fuzzy connectives,” Fuzzy Sets
Syst., vol. 4, pp. 235-242, 1980. computational and discrete geometry, 3D and fuzzy

, “On ordered weighted averaging aggregation operators in multi mathematical morphology, decision theory, data fu-
criteria decision making,” IEEE Trans. Syst., Man, Cybern., vol. 18, no.  sion in image processing, fuzzy set theory, evidence theory, and medical
1, pp. 183-190, 1988. imaging.

Isabelle Bloch graduated from Ecole des Mines
de Paris, France, in 1986, and received the Ph.D.
degree from Télécom Paris (now Ecole Nationale
Supérieure des Télécommunications, Paris, France,
in 1990.

Currently, Dr. Bloch is an Associate Professor,
Département Images, Ecole Nationale Supérieure
des Télécommunications, Paris. Her research in-
terests include 3D image and object processing,

[18]




