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Abstract

We are interested in finding and
characterizing the symmetry planes
of fuzzy objects in 3D space. We in-
troduce first a fuzzy symmetry mea-
sure which defines an object symme-
try degree with respect to a given
plane. It is computed by measuring
the similarity between the original
object and its reflection. The choice
of an appropriate measure of com-
parison is based on the desired prop-
erties. In a second part, a method
for finding the best symmetry planes
of fuzzy objects is proposed. We
then apply these results to the rep-
resentation of directional relation-
ships.

Keywords: fuzzy object, plane
symmetry, symmetry measure, mea-
sure of comparison

Notations :
S is the set containing objects (usually a sub-
set of R3 or Z3). |S| is the cardinality of S if
S is finite (typically a bounded subset of Z3).
For any finite set X, |X| denotes the cardi-
nality of X.
F is the set of fuzzy subsets of S.
Capital letters A, B, . . . denote fuzzy subsets.
µA is the membership function of A.
supp(A) is the support of A.
>, ⊥ denote a t-norm and t-conorm, respec-
tively.

1 Introduction

Symmetry is an important property of objects
and also a useful feature for their recognition.
However, exact symmetry does not exist in
real objects and one has to deal with approxi-
mate symmetries. There is a vast literature in
mathematics, image processing and computer
vision domains dealing with different kinds of
symmetry (central, reflection, rotation, skew)
of shapes and images. Many works on inex-
act symmetries quantify the degree of sym-
metry, using a symmetry measure or distance
(see, for example, [9, 10, 15, 18]). Most results
on symmetry degree evaluation are obtained
for precisely defined objects. Zabrodsky et
al. [18] consider shapes with uncertainty, i.e.
shapes for which the location of each point is
given as a probability distribution.

In this paper we are interested in characteriz-
ing approximate symmetries of fuzzy 3D ob-
jects. To our knowledge, this problem has not
been addressed before. Following a classical
approach used for crisp shapes and images,
we first introduce a fuzzy symmetry measure
which characterizes an object symmetry de-
gree with respect to a given plane (Section
2). For this we use a measure of comparison1

between the object and its reflection. Various
measures of comparison have been proposed
in the literature for fuzzy sets. The choice of
a measure that is appropriate to our problem
is based on its properties (Section 3). In Sec-

1We prefer to use the expression ”measure of com-
parison” as in [4] instead of ”similarity measure”, since
different authors assume different properties for the
notion of similarity measure.



tion 4, we present an algorithm for finding the
best symmetry plane of an object. In Section
5, the results of this paper are applied to the
representation of directional spatial relation-
ships.

2 Symmetry measure

2.1 Reflection of a fuzzy object

Let Π be a plane in the 3D space R3. Given a
point x, we denote by eΠ(x) its image under
the reflection with respect to Π. eΠ is a bijec-
tive transformation in R3. Therefore, one can
define the reflection of a fuzzy set as follows.

Definition 2.1 The reflection of a fuzzy set
A is a fuzzy set eΠ(A) defined as:

µeΠ(A)(eΠ(x)) = µA(x) for every x ∈ S.

We denote by eu,d the reflection with respect
to a plane Πu,d which is orthogonal to u and
passing at the signed distance d from the ori-
gin. In spherical coordinates a unit vector
u is defined by two angles β ∈] − π, π] and
α ∈ [−π/2, π/2] (see Fig. 1). As vectors u and
−u define the same plane, we use β ∈ [0, π[,
α ∈]− π/2, π/2] and d ∈ R.
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Figure 1: Angles α and β define a unit vector
u

We also use notation eα,β,d instead of eu,d in
3D, and eβ,d = e0,β,d in 2D.

2.2 Symmetry measure

We want to define a symmetry degree of a
fuzzy object with respect to a given plane Π.
One option is to compare A and eΠ(A). A
symmetry measure σA can be defined as a
measure of comparison between the original

object and its reflection:

σA(Π) = S(A, eΠ(A)),

where S is a measure of comparison between
fuzzy objects. As before, we use notations
σA(u, d) = σA(α, β, d) = σA(Πu,d).

Various measures of comparison have been
proposed in the literature. They possess dif-
ferent properties and the choice of a measure
depends on the application and of the concept
one wants to describe. Below we discuss the
measures that can be used to define a symme-
try measure.

3 Deriving symmetry measures

from measures of comparison

First we present properties that can be used
to distinguish measures of comparison and
discuss which of them should be satisfied by
a symmetry measure. Then we summarize
which of these properties hold for different
measures of comparison proposed in the liter-
ature and select some of them to define sym-
metry measures.

3.1 Desired properties of symmetry
measures

Measures of similitude
Bouchon-Meunier et al. [4] have proposed a
classification of measures of comparison be-
tween fuzzy sets, in particular M-measures of
comparison which are derived from a fuzzy
measure M .

Definition 3.1 [4] An M-measure of com-
parison is a mapping S : F × F → [0, 1]

such that S(A,B) = FS

(

M(A ∩ B),M(B −

A),M(A − B)
)

for a given mapping FS :

R+ × R+ × R+ → [0, 1].

A particular class of measures of comparison
is composed of measures of similitude.

Definition 3.2 [4] An M-measure of simili-
tude is an M-measure of comparison S such
that FS(u, v, w) is non-decreasing in u, non-
increasing in v and w.



M-measures of similitude are well suited for
describing symmetries: symmetry is stronger
if the measure of intersection between the
original object and its reflection increases, and
it is weaker if the difference between them in-
creases. Measures of similitude include mea-
sures of satisfiability and measures of resem-
blance.

Definition 3.3 [4]

1. An M-mesure of satisfiability is an M-
measure of similitude such that

• FS(u, v, w) is independent of w;

• FS(0, v, w) = 0,
for all v, w (exclusivity);

• FS(u, 0, w) = 1,
for all u 6= 0 (inclusion).

2. An M-measure of resemblance is an M-
measure of similitude such that

• S is reflexive, i.e. S(A,A) = 1.

• S is symmetrical,
i.e. S(A,B) = S(B,A).

In our case M(A− eΠ(A)) = M(eΠ(A)− A),
therefore measures of satisfiability are also
measures of resemblance [4]. Moreover, the
exclusivity property entails that the symme-
try measure is equal to zero when the plane
passes outside the support of the object. The
inclusion property, as well as reflexivity, en-
tails that the symmetry degree is equal to 1
when the object coincides with its reflection,
i.e. when there is an exact symmetry. The
symmetry property implies that the symme-
try measure for an object A with respect to
a given plane Π is equal to the measure com-
puted for its reflection eΠ(A)

2. Therefore, M-
measures of satisfiability seem to be suitable
for the definition of measures of symmetry.

Additionnal properties
Pappis [11] proposes the following additional
properties which are in fact the reverse impli-
cations of reflexivity and exclusivity:

S(A,B) = 1 ⇐⇒ A = B,

2Proofs are omitted here for the sake of conciseness

S(A,B) = 0 ⇐⇒ supp(A) ∩ supp(B) = ∅.

The first property, also called separability for
distances, expresses that the symmetry mea-
sure is equal to 1 if and only if there is an
exact symmetry. The second one expresses
that the symmetry measure equals zero if and
only if the plane passes outside the support of
the object.

Geometrical properties
Intuitively speaking a symmetry measure
should be invariant with respect to transla-
tion, rotation and scaling. If S is invariant
w.r.t. translation (resp. rotation) then so is
σ. This is also true for scaling but as the scal-
ing of a fuzzy set in the discrete case is not
clearly defined, we will not consider it later
on.

Definition 3.4 The symmetry measure of A
with respect to Π is defined as:

σA(Π) = S(A, eΠ(A)),

where S is a measure of comparison with the
following properties:

(P1) Symmetry: S(A,B) = S(B,A);

(P2) Reflexivity: S(A,B) = 1 ⇐⇒ A = B;

(P3) S(A,B) = 0 if and only if the supports
of A and B are disjoint;

(P4) S is invariant w.r.t. translation;

(P5) S is invariant w.r.t. rotation.

Other properties of measures of comparison
considered for instance in [4, 8, 11] are either
equivalent to these ones or not interesting for
deriving symmetry measures.

3.2 Existing measures

We use here a classification of measures of
comparison that is very similar to those used
in [19] and [3].

3.2.1 Set-theoretic approach

Most of the measures discussed in this sec-
tion have been derived from a general mea-
sure proposed by Tversky [16] and are based



on combinations of µA and µB using t-norms
and t-conorms. They satisfy (P1) as t-norms
and t-conorms are commutative. The follow-
ing measure has been used by several authors
[4, 5, 11, 19] 3:

S1(A,B) =

∑

x∈S >(µA(x), µB(x))
∑

x∈S ⊥(µA(x), µB(x))

Property (P2) holds if and only if > = min
and ⊥ = max. Property (P3) is fulfilled
for t-norms ”minimum” and ”product” but is
not for ”drastic” and ”Lukasiewicz” ones [5].
Properties (P4) and (P5) are fulfilled.

Wang [17] proposed the following measure of
comparison:

S2(A,B) =
1

|S|
×
∑

x∈S

>(µA(x), µB(x))

⊥(µA(x), µB(x))

with 0
0 = 1. S2 satisfies (P2) if and only if

> = min and ⊥ = max but does not satisfy
(P3).

However, it is easy to check that a modified
version of S2 defined as follows:

S3(A,B) =
1

|supp(A) ∪ supp(B)|

×
∑

x∈supp(A)∪supp(B)

>(µA(x), µB(x))

⊥(µA(x), µB(x))

satisfies property (P3) for t-norms ”mini-
mum” and ”product”. Properties (P4) and
(P5) are also fulfilled.

Hyung et al. [7] proposed to use a measure of
comparison defined as

S4(A,B) = max
x∈S

>(µA(x), µB(x)).

S4 satisfies property (P3) for ”minimum” and
”product” t-norms but does not satisfy (P2).

3.2.2 Lp distance approach

In this section we use the Lp distance between
fuzzy sets A and B:

‖A−B‖p =

(

∑

x∈S

|µA(x)− µB(x)|
p

) 1
p

3Here we deal with the finite discrete case. In the
continuous case, the sum is replaced by an integral if
it converges.

‖A−B‖∞ = max
x∈S

(|µA(x)− µB(x)|).

Measures of comparison based on the Lp dis-
tance have the following general form:

S(A,B) = 1−
‖A−B‖p

K
,

where K is a normalization coefficient. It is
easy to see that properties (P1), (P2), (P4)
and (P5) are fulfilled for measures of this
type.

For example, Wang [17] and Bouchon-
Meunier et al. [4] proposed the following mea-
sure

S5(A,B) = 1−
‖A−B‖1

|S|
.

This measure does not satisfy property (P3).

The following measure of comparison pro-
posed by Pappis [11]

S(A,B) = 1−

∑

x∈S |µA(x)− µB(x)|
∑

x∈S [µA(x) + µB(x)]

can be generalized as

S6(A,B) = 1−
‖A−B‖p

(
∑

x∈S µA(x)
p + µB(x)p

) 1
p

Measure S6 satisfies property (P3).

Pappis [11] also proposed to use the L∞ dis-
tance

S7(A,B) = 1− ‖A−B‖∞

S7 does not satisfy property (P3). However,
when A and B are normalized fuzzy sets and
their supports are disjoint S7(A,B) = 0. But
the converse implication is still false.

It is easy to verify that the measure of com-
parison (β > 0)

S8(A,B) = e−β‖A−B‖p

proposed in [4] does not satisfy property (P3)
either.

3.2.3 Correlation coefficient

Gerstenkorn [6] introduced a correlation coef-
ficient between fuzzy sets:

S9(A,B) =
C(A,B)

√

T (A)T (B)
,



where

C(A,B) =
∑

x∈S

[µA(x)µB(x) + (1− µA(x))(1− µB(x))]

and

T (A) =
∑

x∈S

[

µA(x)
2 + (1− µA(x))

2
]

.

Measure S9(A,B) satisfies properties (P1)
and (P2) but does not satisfy (P3).

3.3 Chosen symmetry measures

The measures of comparison S1, S3 (for t-
norm ”minimum”) and S6 satisfy properties
(P1)-(P5). Therefore we define three sym-
metry measures:

σ1,A(Π) =

∑

x∈S min(µA(x), µeΠ(A)(x))
∑

x∈S max(µA(x), µeΠ(A)(x))

σ2,A(Π) =
1

|supp(A) ∪ supp(eΠ(A))|

×
∑

x∈supp(A)∪supp(eΠ(A))

min(µA(x), µeΠ(A)(x))

max(µA(x), µeΠ(A)(x))

σ3,A(Π) = 1−
‖A− eΠ(A)‖p

(
∑

x∈S µA(x)
p + µeΠ(A)(x)

p
) 1
p

.

4 Finding symmetry planes of a

fuzzy object

It is of interest to locate automatically sym-
metry planes of a given object. In this section
we show how a symmetry measure can be used
for this purpose.

4.1 Modes of the function σA

One has σA(Π) = 1 for an exact symmetry
plane Π of a fuzzy set A. Let us say that a
set A has a local symmetry plane Πα,β,d if a
symmetry measure σA has a local maximum
in (α, β, d). Thus, to find the local symmetry
planes of A one has to find the local maxima
of σA. Figure 2 shows the shape of σ1,A for a
synthetic 2D fuzzy object. This function has

four modes which correspond to four axes of
local symmetry: one axis of exact symmetry
(β = 0 degrees, d = 0), two axes of strong but
not exact symmetry (β = 45 or 135 degrees,
d = 0) and one axis of a weak symmetry (β =
90 degrees, d = 0).
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Figure 2: (a) A 2D fuzzy set A. (b) σ1,A.
(c) σ1,A for d = 0. (d) σ1,A for β = 0.

Figure 3 shows another 2D fuzzy object. In
the direction defined by β = 0, the maximum
of σ1,A is obtained for d = 10 which is the po-
sition of the symmetry plane of the alpha-cut
of level 0.5. This result fits well with intuition.
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Figure 3: (a) A 2D fuzzy set A. (b) σ1,A.
(c) σ1,A for d = 0. (d) σ1,A for β = 0.

It can be useful to perform some prelimi-
nary smoothing on σA to exclude some non-
significant local maxima. They can appear
due to the object itself or due to artefacts gen-
erated by discretization. These artefacts can



appear, for example, when steps on α or β
become small. We do not study in this paper
the influence of discretization on the symme-
try measure.

4.2 Efficient search of symmetry
planes

Whereas the computation of σA for a suffi-
ciently small step is feasible in the 2D case, it
is a far too expensive operation for 3D objects.
In many cases, one only wants to locate the
best symmetry plane of an object correspond-
ing to the largest symmetry measure value.
We propose a method that expresses the prob-
lem of finding the best symmetry plane as an
optimization problem in the parametric space
]− π/2, π/2]× [0, π[×R.

The optimization procedure needs a starting
point. We suggest to use the ellipsoid of iner-
tia to define candidates for this starting point.
The ellipsoid of inertia has already been used
in [10] to define the symmetry plane of an
object. Here it is only taken as an initializa-
tion. The directions of axes are defined as the
eigenvectors of the covariation matrix:





m200 m110 m101

m110 m020 m011

m101 m011 m002





Here mpqr defines a central moment of order
p+ q + r

mpqr(A) =
∑

S

µA(x, y, z)(x− xc)
p(y − yc)

q(z − zc)
r,

where c = (xc, yc, zc) is the object center
of mass. If a 3D object possesses an exact
plane of symmetry it passes through its cen-
ter of mass and is orthogonal to one of the
ellipsoid axes. Let us denote by u1, u2 and
u3 the eigenvectors of the covariation matrix.
We consider then three planes orthogonal to
these vectors and passing through the cen-
ter of mass: Π1 = Πu1,u1·c, Π2 = Πu2,u2·c

and Π3 = Πu3,u3·c. Our initial symmetry
plane Πi maximizes the symmetry measure,
i.e. σA(Πi) = max{σA(Π1), σA(Π2), σA(Π3)}.
This is only possible when the eigenvectors
are different. Otherwise, one gets an ellipsoid
of revolution.

Then, the best symmetry plane is found using
an optimization technique in the parametric
space ] − π/2, π/2] × [0, π[×R. We use the
Nelder-Mead downhill simplex method [13]
which was also used in [1] but with a differ-
ent initialization. This method is often used
when one does not know the function deriva-
tives. It is accurate and robust under a good
starting point. However, it is a local opti-
mization method and, in general, one has no
guaranty to find the global maximum.

Figure 4 shows the symmetry plane found by
this method. The image is a fuzzy segmen-
tation of the lateral ventricles in an MR im-
age. The symmetry measure σ1,A of the ob-
ject with respect to this plane is 0.73. We also
applied this method on gray-level images (but
with a different symmetry measure) to com-
pute the brain symmetry plane in MR images
[14]. It has shown very good results.

Figure 4: Left, one slice of a 3D object with
its symmetry plane. Right, 3D renderings of
the alpha-cut of level 0.5 of this object (with
and without the symmetry plane).

5 Application to the

representation of directional

spatial relationships

Spatial relationships can be very useful for
scene recognition and interpretation. Here we
deal with directional relationships such as to
the left of, above etc. There are basically two
ways to define directional relationships: with
respect either to an extrinsic frame or to an
instrinsic frame which is defined by the refer-
ence object. The latter case often occurs when
the reference object presents an approximate
reflectional symmetry. The frame can then
be partially defined by the symmetry plane of
the reference object. For example, in the com-
mon cases of a human body or a car, relation-



ships left and right refer to directions which
are orthogonal to the symmetry plane of this
object. A typical example can be found in
neuroanatomy: the brain is an approximately
symmetrical scene in which directions are de-
fined with respect to an intrinsic frame. This
frame is partially defined by the mid-saggital
plane which approximately corresponds to the
brain symmetry plane.

The results of this paper can be easily inte-
grated in the representation proposed in [2].
Let us recall the principle of this method (the
relationship is defined between a reference ob-
ject R and a target object A):

1. Definition of a fuzzy landscape around
the reference object. This landscape is
a fuzzy subset of S such that the mem-
bership value of each point corresponds
to the degree of satisfaction of the spa-
tial relation.

2. Comparison of the object A to the fuzzy
landscape. This is done using a fuzzy
pattern matching approach.

It is shown that the fuzzy landscape associ-
ated to the direction defined by the unit vec-
tor uα,β (α ∈] − π/2, π/2] and β ∈ [0, 2π[)
corresponds to the fuzzy dilation of R by the
following structuring element Bα,β :

µBα,β (x) = f(arccos
vx · uα,β
‖vx‖

)

for all x ∈ S, and µBα,β (o) = 1,

where f is a decreasing function on [0, π] e.g.
f(θ) = max[0, 1−(2/π)θ], o is the center of the
structuring element and vx is a vector from o
to x.

The algorithm presented in Section 4 can be
used directly to define directional relation-
ships. The plane orientation is defined by a
normal vector u which can be used directly
for the computation of the fuzzy landscape.

When not only the reference object but the
whole scene is approximately reflection sym-
metrical, the scene is often better described by
relationships outside and inside than left and
right. Indeed, left and right would have to

be duplicated to describe properly both halfs
of the scene. In this context, A is outside R
means that the right (resp. left) part of A is to
the right (resp. left) of the right (resp. left)
part of R (it has a directional meaning and
not a topological one as it could have in other
situations). Similarly, A is inside R means
that the right (resp. left) part of A is to the
left (resp. right) of the right (resp. left) part
of R. Again, typical examples of such descrip-
tions can be found in neuroanatomy e.g. the
caudate nuclei are outside the lateral ventri-
cles. Fuzzy landscapes corresponding to these
relationships can be derived as follows. We
denote by Rr (resp. Rl) the right (resp. left)
part of R, by Πr (resp. Πl) the half-space to
the right (resp. left) of the symmetry plane
Π of R and by Lr(R) (resp. Ll(R)) the fuzzy
landscape representing the relationship to the
right (resp. left) of R. Then the fuzzy land-
scapes Lo(R) and Li(R) representing respec-
tively the relationships outside and inside R
can be defined as follows4:

Lo(R) = Lr(Rr) ∪ Ll(Rl)

Li(R) = (Ll(Rr) ∩Πr) ∪ (Lr(Rl) ∩Πl)

Figure 5 shows an example of such fuzzy land-
scapes.

(a) (b)

Figure 5: Fuzzy landscapes for the relation-
ships (a) outside the lateral ventricles and
(b) inside the putamen.

6 Conclusion

In this paper, we studied approximate plane
symmetries of fuzzy objects. Three symme-
try measures were derived from measures of

4Unions and intersections are fuzzy



comparison. They show good properties. Us-
ing these measures, we also proposed an al-
gorithm for finding the best symmetry plane
of a 3D fuzzy object. This method was ap-
plied to the definition of spatial relationships
in symmetrical scenes.

We are now working on the use of symme-
try measures to represent imprecisely located
symmetry planes as fuzzy subsets of the para-
metric space representing orientations and di-
rections. It would also be interesting to
use symmetry measures as features for scene
recognition. They could be used, for exam-
ple, to define symmetry attributes in a fuzzy
attributed graph [12].
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