Integration of Fuzzy Structural Information
in Deformable Models

Olivier Colliot; Oscar Camara, Isabelle Bloch
Ecole Nationale Supérieure des Télécommunications,
Département TSI, CNRS UMR 5141
46, rue Barrault, 75634 Paris Cedex 13, France
{Olivier.Colliot, Oscar.Camara, Isabelle.Bloch}@enst.fr

Abstract

Our purpose is to integrate struc-
tural information, such as spatial
relations, in variational image pro-
cessing techniques called deformable
models. Spatial relations are rep-
resented as fuzzy subsets of the 3D
image space. After describing rep-
resentation and fusion methods for
spatial relations, we present several
approaches to integrate them in de-
formable models, deriving new types
of external forces from fuzzy sets.
Finally, the method is illustrated on
a brain structure segmentation ap-
plication.

Keywords: Spatial relations, de-
formable models, image segmenta-
tion, brain imaging.

1 Introduction

Spatial relations constitute the basic elements
contained in linguistic descriptions of spatial
configurations. These relations express the
spatial arrangement of objects with respect to
the others. Spatial relations are usually classi-
fied into different types including topological,
distances and directional relations [16]. Their
importance has been highlighted in many do-
mains related to computer science and engi-
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neering, such as artificial intelligence, com-
putational linguistics, geographic information
systems or autonomous robotics.

The aim of this paper is to use such spa-
tial relations for segmentation and recogni-
tion of objects in images. In image process-
ing and pattern recognition, these relations
can be considered as a subtype of structural
knowledge which opposes to numerical infor-
mation such as grey level or texture. Their
ability to describe scenes make them poten-
tially useful for a wide range of imaging tasks,
as long as they concern structured scenes, i.e.
scenes in which objects share stable relations.
Such scenes can be found for example in aerial
imaging [9, 10], face recognition [4] or medi-
cal imaging. The human brain is a typical
case of structured scene in which brain struc-
tures share stable relations [7]. Segmentation
of brain structures will be considered as the
underlying example in this paper.

The fuzzy set theory is well suited to the rep-
resentation of spatial relations because it pro-
vides a common representation framework for
heterogeneous information and it has the abil-
ity to represent the imprecision induced by
image processing operations as well as by the
relations themselves.

Spatial relations have been used in a rela-
tively small number of imaging applications
(e.g. [3, 4, 9, 10, 14]). Moreover, in all these
applications, the relations are used for high-
level tasks (i.e. recognition), the low-level
processing (i.e. segmentation) being done
with classical techniques based only on nu-
merical information. On the contrary, we be-



lieve that spatial relations could be of great
help to find the object contours and that
they should be directly integrated in segmen-
tation techniques. We chose to integrate them
in deformable models [8] which are effective
when dealing with noisy images and objects
with imperfect boundaries and which consti-
tute an appropriate framework to merge het-
erogeneous information.

The paper is organized as follows. In Sec-
tion 2, we explain how structural information
can be modeled using fuzzy sets. Afterwards,
in Section 3, the integration of spatial rela-
tions and deformable models is detailed. Fi-
nally, in Section 4, we apply the proposed
technique to the segmentation of brain struc-
tures in Magnetic Resonance Images (MRI).

2 Representation of structural
information using fuzzy sets

Fuzzy sets constitute an appealing framework
to represent spatial relations. First, some im-
precision can be introduced by the imperfec-
tions of the image processing. Then, some
relations, corresponding to linguistic expres-
sions, can be intrinsically imprecise. The sat-
isfaction of a given relation will thus be de-
fined as a matter of degree rather than in
an “all-or-nothing” manner. Given a relation
with respect to a reference fuzzy object A, two
types of questions can be addressed:

e compute to which degree a target object
B fulfills this relation;

e find the points of the space where this
relation is satisfied.

The first one has been addressed for a wide
range of relations including adjacency [2], dis-
tances [2], directions [11, 12] and symme-
tries [6]. In this work, we will consider the
second approach as our aim is to make the
deformable model evolve towards the points
where the relation is satisfied. We recall here
how, using this approach, distance and direc-
tional relations can be represented by a fuzzy
set in the 3D space and how these relations
can be combined using fusion operations.

2.1 Distances

The approach proposed in [2] considers the
case of distance relations such “at a distance
equal to n”, “near” or “far from” a reference
object. Its principle is to define a fuzzy subset
of the 3D space S representing in each point
the degree of satisfaction of the relation.

The semantics of a relation of this type can be
represented by a fuzzy interval u,, of the set of
distances RT. Omne can choose a trapezoidal
shape for u, and then values 0 < n; < ng <
n3 < ng in RT are points such that the kernel
of py, is [n2, 3] and its support is [n1, n4] (see
Figure 1(a)). The following fuzzy structuring
elements are then defined:
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where dg is the Euclidean distance in S, P a
point in S, and dg(P,0) is the Euclidean dis-
tance between P and the center of the struc-
turing element.
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Figure 1: Representation of distance rela-
tions. (a) Fuzzy intervals representing rela-
tions “near”, “at a distance equal to D” and
“far from” (from top to bottom). (b) Spa-
tial fuzzy set representing the relation “near”.
Bright areas correspond to high values.

The fuzzy set representing the distance rela-
tion with respect to A is then defined as :

Hd = t[Dl/z (114),1 = Dy, (/I’A)]’ (3)



where Dy, (114),% € {1,2} is the fuzzy dilation
of p4 by the structuring element v;. The pa-
rameters ni,ng,ns3,ns will be chosen accord-
ing to the relation under consideration. Fig-
ure 1 presents some examples of fuzzy inter-
vals and a corresponding fuzzy set.

However, fuzzy dilations may be computa-
tionally expensive and in the case of a crisp
reference object one can use yu, as a look-up
table, composed with a distance map to ob-
ject A.

2.2 Directions

We consider the case of 6 relations corre-
sponding to the 3 main directions of the 3D
space: “left”, “right”, “above”, “below”, “in
front of”, “behind”. Again, each relation is
represented by a fuzzy set in the 3D space S,
called a “fuzzy landscape”, following the ap-
proach proposed in [2].

Let ug, a0, (1 €]—7/2,7/2] and a2 € [0, 27])
be a unit vector corresponding to the relation
under consideration a = (a1, a2), P a point
in S, @ a point of the reference object A and
B(P,Q) the angle between vectors QP and
Uq,; 0y, computed in [0, 7]:

B(P,Q) = arccos [M] and B(P,P) =0

QP
(4)
Then, for each point P, we compute:
Bmin(P) = min S(P, Q) (5)

QcA

The “fuzzy landscape” is then defined as:

pa(P) = f(Bmin(P)) (6)

where f is a decreasing function from [0, 7] in
[0,1], e.g. f(0) = max[0,1 — (2/m)f]. If A is
a fuzzy object, it can be defined as:

pa(P) = maXA)t[uA(Q),f(ﬁ(P,Q))] (7)

QEsupp(

where ¢ is a t-norm and supp(A) is the support
of A. Finally, one can show that p,(P) cor-
responds to a fuzzy dilation of the reference
object by the following structuring element:

VP € S,v(P) = f(B(0, P)) (8)

(a) (b)

Figure 2: Representation of directional re-
lations. Fuzzy landscapes corresponding to:
(a) “to the right of 7, (b) “below”.

where O is the center of the structuring ele-
ment.

Figure 2 presents two examples of fuzzy land-
scapes for directional relations.

2.3 Fusion of relations

An additional advantage of representing a re-
lation with a spatial fuzzy set is that relations
can be combined using fusion operations. Ex-
amples of combinations include: “to the right
or below”, “to the left and near” ... From two
fuzzy sets representing two relations R; and
Rs, one can compute a set R corresponding
to their combination using a fusion operator
F: pp(P) = F(pr,(P), pr,(P)). A review
of fusion operators can be found in [1]. In
the following, we will use t-norms operators
for conjunctive fusion and t-conorms for dis-
junctive combination. Figure 3 presents an
example of a fusioned relation.

3 Integration in a deformable
model

3.1 The deformable model paradigm

Deformable models are contours or surfaces
evolving within an image from a starting point
to a final state that should correspond to the
targeted object (e.g. the object we want to
segment). Two types of information usually
drive the evolution: a data term that attracts



Figure 3: Fusion of the two relations from Fig-
ure 2 with the t-norm “product”.

the model towards the edges of the image and
a regularization term that forces the model
to stay smooth and regular. One can distin-
guish two families of deformable models [17]:
parametric and geometric ones. Here, we will
consider the first case, in which the evolution
can be described for example by the following
dynamic force equation:

oxX

Yot T

where X is the deformable contour or surface,

Fn: is the internal force that specifies the reg-

ularity of the surface and F;; is the external

force that drives the surface towards image
edges.

F'mt(X) + Femt(X) (9)

Many different choices can be made concern-
ing either the parametric or discrete represen-
tation of the contour or surface, the regular-
ization term or the external force. We will
not present these aspects here, concentrating
only on the integration of spatial relations in
the deformable model. Details can be found
in reviews on deformable models [17, 13].

3.2 Proposed approach

Deformable models provide a convenient
framework to merge different types of infor-
mation, by combining terms in the evolu-
tion scheme. A considerable amount of re-
search has been carried out to introduce shape
constraints in deformable models. However,
to our knowledge, structural knowledge has
nearly never been introduced in this context.

We propose to introduce spatial relations in

the evolution scheme, replacing the external
force F¢y; in Equation 9 with a force describ-
ing both edge information and structural con-
straints:

Fept = AFc + vF g (10)

where F¢ is a classical data term that will
drive the model towards the edges, Fr is a
force associated to spatial relations and A and
v are weighting coefficients.

Let R be a fuzzy set representing a spatial re-
lation and pg its membership function. The
force F g should constrain the model to stay in
regions where the relation is fulfilled and then
be directed towards high values of ug. When
the relation is completely satisfied, the model
should be only driven by edge information, i.e.
F i should be zero in the kernel of R. The less
the relation is satisfied the higher the modu-
lus of the force should be, thus we impose it
to be proportional to (1 — ug). Finally, the
computation time for the force should be rea-
sonable. The following describes construction
methods for external forces that fulfill these
properties.

Using the fuzzy set as a potential At
first sight, one could think that an energy
potential could be derived directly from the
fuzzy set, e.g. Pr = 1 — g, leading to a po-
tential force Fp = —V Pg. However, such a
force would obviously have zero values outside
the support of R, which is highly undesirable
as the relation is completely unsatisfied in this
region. This can be solved by adding to the
potential the distance from the support, then
defining:

P}E(P) =1- NR(P) + dsupp(R)(P) (11)

where dgpp(g) is the distance from the sup-
port of R. With the following normalization,
we obtain a force satisfying the required prop-
erties:

VPH(P)

Fp(P)=—(1— NR(P))W

(12)

An example of external force computed using
this approach is shown in Figure 4(a).
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Figure 4: External force corresponding to the spatial relation presented in Figure 3: (a) com-
puted using the first method F}Q (for visualization purposes a 1/3 under-sampling has been
performed), (b) with the second method F%, (c) with the third method F%,.

Using a distance potential force Dis-
tance potential forces [5], defining a poten-
tial as a function of a distance map to a bi-
nary edge detector, provide a large attraction
range, which is of interest in our case as we
want a non-zero force everywhere outside the
kernel of R. Nevertheless, if we want to re-
place the edge map with the fuzzy set, we
need to use a fuzzy distance instead of a clas-
sical one. For example, good properties would
be obtained with the fuzzy morphological dis-
tance defined as: d, = 1 — D, (ugr) where v
is a structuring element with radial symme-
try: v(z,y,z) =1 — 7W and k is the
size of this element. A potential would then
be defined as Pg(P) = g(d,(P))where g is a
non-decreasing function, e.g. g(z) = —1/z.
However, the morphological distance is com-
putationally expensive. For 3D applications,
we recommend to replace it with a classical
distance such as the distance to the kernel of
R:

PI?E(P) = g(dKer(R) (P)) (13)

where dgc.r(g)(P) is a distance map to the ker-
nel of R. The corresponding force, denoted by
F%z, is computed using the same formula as
in Equation 12. Figure 4(b) presents a force
constructed using this equation.

Using a gradient diffusion technique
Using a gradient vector diffusion technique
also allows to have a wide attraction range.

The Gradient Vector Flow (GVF), introduced
by Xu et al. [17], computes a smooth vector
field while being close to the original in the
regions where it has high values. Here, we re-
place the edge map with our fuzzy set g in
the original GVF formulation:

% =cVi — ||VIU’R||2(U - V,U’R) (14)
v(P,0) = Vur(P)
The first equation is a combination of a diffu-
sion term that will produce a smooth vector
field and a data term that encourages v to stay
close to Vupg. In regions where ||Vug|| is low,
the diffusion term will prevail. In particular,
inside the kernel and outside the support of
R, only diffusion will occur, giving a non-zero
force. However, as we want the force to be
zero in the support, we will use the following
normalization:
3 u

Fgp=(1—-pr) Tl (15)
where u is the GVF. An example is shown in
Figure 4(c).

3.3 Discussion

The three proposed external forces have good
properties but, although they share a simi-
lar behavior, they are not equivalent. In the
particular case of a fuzzy set with local max-
ima outside its kernel, F}Q and F% would be



Figure 5: Basic example of deformable model driven by structural information. (a) Classical
data term. (b) Force F3, representing the spatial relation “to the right of the ventricle (in black
on the image)”. (c¢) Combination of the 2 previous forces using Equation 10. (d) Evolution:
using only the data term and starting from the white rectangle on the left image, the deformable
model is attracted by the first strong edges that it encounters. (e) Using the combination of
both the data term and the spatial relation, it is able to converge to the caudate nucleus (in

grey).

directed towards these maxima, whereas F%z
always points towards the kernel and should
probably not be used in that case. F}z is al-
ways directed orthogonally to the isolevels of
R, while F% nearly fulfills this property but
introduces an additional regularization. The
computational cost of F}% and F2R is very low
(5 seconds for a 128x128x124 image on a PC
Pentium IIT 1Ghz). The computation time is
higher for F%, (3 minutes), while staying rea-
sonable, this being the price for regulariza-
tion. It is quite difficult to recommend a par-
ticular force and in our experiments they have
led to similar results. An additional comment
concerns the combination scheme proposed in
Equation 10. It could also be possible to use
the fuzzy set as a weighting function for the
data term, thus not taking it into account
where the relation is completely unfulfilled:

Fert = AurFco + VFR (16)

To conclude this section, let us give a brief
comparison with other approaches. Pitiot et
al. [15] proposed a deformable model driven
by knowledge-based constraints which include
shape but also distance information. Distance
constraints are represented with a new force
introduced in the evolution scheme. The main
difference with our approach, proposed inde-
pendently, is that we consider different types
of spatial relations, represented in the com-
mon framework of fuzzy sets.

Xu et al. [18] introduced constraints repre-
sented by fuzzy sets in a deformable model.
However, these fuzzy sets convey numerical
information, namely grey-level classes (of grey
and white matter in a brain reconstruction ap-
plication) derived from a fuzzy classification,
instead of structural knowledge. The authors
used a balloon force the direction of which
is orthogonal to the deformable contour, its



Figure 6: Results obtained for the lateral ventricles, the third ventricle, the caudate nuclei and
the thalami. (a) 3D rendering superimposed on an axial slice. (b) Segmentation of the caudate
nucleus: without a spatial relation, the model progresses beyond the boundary of the object.
(c) This problem is solved by forcing the model to stay “near and to the right to the lateral
ventricle”. 3D images have been visualized using the Anatomist software (www.anatomist.info).

magnitude being computed from the member-
ship functions of the fuzzy sets. In our case,
we did not consider the use of a pressure force
because we would have no way to determine
the direction of evolution based on the value
of membership function.

4 Application to brain structures
segmentation in MRI

4.1 A basic example

The example presented in Figure 5 is a
synthetic 2D image representing a portion
of the brain (extracted from the BrainWeb
database!) and the objective is to segment the
caudate nucleus (in grey). When only a data
term and a regularization term are considered
(Figure 5(a)), the model will be attracted by
the first strong edges that it encounters. On
the contrary, when adding a spatial relation
term (Figure 5(b)), the deformable contour
avoids objects that do not fulfill the relation
to converge towards the targeted one. This
illustrates that spatial relation terms allow us
to initialize the model far from the targeted
objects.

Yhttp://www.bic.mni.mcgill.ca/brainweb/

4.2 Subcortical brain structures
segmentation

We applied our methodology to the seg-
mentation of subcortical brain structures in
Magnetic Resonance Images (MRI), which is
known to be a challenging problem due in par-
ticular to the low-constrast and the lack of
strong edges between some structures. A de-
scription of the brain anatomy is introduced
using spatial relations between brain struc-
tures. These relations are extensively used,
in particular to constrain a 3D deformable
model. As illustrated in Figure 6, good seg-
mentation results are obtained and spatial
relations have proved useful to prevent the
model to go beyond the limit of structures
with weak boundaries. All implementation
details can be found in [7].

5 Conclusion

We proposed an approach to integrate fuzzy
structural knowledge in a deformable model.
This knowledge is made of spatial relations
such as distances and directions but our ap-
proach can potentially handle any type of in-
formation that can be represented by a spa-
tial fuzzy set. Its principle is to derive,
from the fuzzy set, a new external force that



will be introduced in the evolution scheme of
the model. As illustrated by examples, this
method can substantially improve the seg-
mentation of objects with weak boundaries.
Main perspectives of this work are the combi-
nation of this structural knowledge with shape
constraints in a deformable model and the si-
multaneous evolution of several models.
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