
CLASSIFICATION OF MRI DATA USING DEEP LEARNING AND GAUSSIAN
PROCESS-BASED MODEL SELECTION

Hadrien Bertrand?† Matthieu Perrot† Roberto Ardon† Isabelle Bloch?
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ABSTRACT
The classification of MRI images according to the anatomical

field of view is a necessary task to solve when faced with the in-
creasing quantity of medical images. In parallel, advances in deep
learning makes it a suitable tool for computer vision problems. Us-
ing a common architecture (such as AlexNet) provides quite good
results, but not sufficient for clinical use. Improving the model is
not an easy task, due to the large number of hyper-parameters gov-
erning both the architecture and the training of the network, and to
the limited understanding of their relevance. Since an exhaustive
search is not tractable, we propose to optimize the network first by
random search, and then by an adaptive search based on Gaussian
Processes and Probability of Improvement. Applying this method
on a large and varied MRI dataset, we show a substantial improve-
ment between the baseline network and the final one (up to 20% for
the most difficult classes).

Index Terms— Deep Learning, Convolutional Neural Net-
works, MRI, Classification, Model Selection, Gaussian Process

1. INTRODUCTION

In daily clinical practice, automatic analysis of medical images so as
to determine the observed anatomy would produce significant ben-
efits in terms of time and cost, given the large number of images
acquired each day. This anatomical knowledge can 1) produce re-
liable search tools on ever increasing datasets (currently based on
manually defined tags), supporting follow up of a specific patient’s
anatomy or finding similar anatomies or pathologies; 2) automate the
production of reports on findings (e.g. transcribing tumors location);
3) automatically enrich exams to render an augmented visualization
to ease communication between clinicians and patients.

While the imaging modality (CT, MR, US, etc.) is reliably pro-
vided by the acquisition systems, the information on the imaged
anatomical region (chest, abdomen, spine, etc.) is given by man-
ual annotations. Under the pressure of maximizing equipment ex-
ploitation, this information is very prone to errors. Yet, for any other
further anatomical analysis, the reliability of this information is cru-
cial. Thus, in the present work, we aim to automatically determine
the imaged anatomical region from the image content. Solving this
problem within the whole variability of medical imaging (modalities,
protocols, patient anatomy, pathologies, etc.) would require a dataset
currently inaccessible. Thus, we choose to restrict our study to MRI
modality which already encompasses many aspects of the variabil-
ity of the initial problem (high variability of protocols, anatomies,
etc.). Moreover, our target space is limited to four anatomical re-
gions: spine, head, abdomen and pelvis.

The recent surge of popularity and successes of deep learning for
computer vision tasks has led to a wealth of applications, including

in medical imaging [1]. The commonly adopted approach for clas-
sification tasks is to retrain a popular network model (AlexNet [2],
VGG [3], etc.) on a specific dataset (sometimes just retraining the
last few layers). While this strategy provides often correct results on
small and controlled datasets, it reveals insufficient when confronted
to the high variability of actual clinical data. This is the case of our
dataset, which is only built from such day to day clinical images.
Given the high number of degrees of freedom and their correlated
impact on network model performances, handcrafting better models
often proves very time consuming and inefficient.

In this paper, starting from a baseline network (Section 2.1), we
present an automatic strategy to find better architectures given our
clinical context. We constrain our search to a space of networks
represented by a specific parametrization (Section 2.2) that includes
enough diversity and, at the same time, promising models (including
AlexNet-like, VGG-like). Inspired by the work in [4], we devise an
automatic optimization process (Section 2.3) to produce an ensemble
of successful models (Section 2.4). The interest and efficiency of this
strategy are demonstrated on our application in Section 3.

2. METHOD

Under the condition that each MRI volume can be classified as one
of our targeted anatomies (separating a volume into several ones if
it covers several parts of the anatomy), and since MRI data are ac-
quired in a slice by slice approach, we reduce the anatomical re-
gion prediction problem to a two dimension classification task (into
abdomen, pelvis, head and spine). Assuming that information con-
tained in a slice is rich enough, we effectively augment our dataset
size. At the cost of loosing 3D information, we tend to a standard
2D-image classification problem, a good candidate for Deep Learn-
ing standard techniques.

2.1. Handcrafted Baseline Architecture

Several successful deep learning experiments in medical imaging are
observed using architectures inspired by AlexNet [2] or VGG [3] (re-
fer in particular to this special issue of TMI: [1]). Following these
steps, after tedious parameter tuning, we converged to a model pre-
senting a quite satisfactory behavior on our problem, but, at the same
time, very difficult to further improve. Using the standard terms used
by the deep learning community [5], this baseline model consists of 5
blocks, each comprising a convolution layer of 64 filters of size 3×3,
followed by a rectified linear unit (ReLu) activation function and a
max-pooling layer. The network ends with 2 fully-connected layers
(resp. 4096 and 1024 units) interleaved with ReLU activations and
terminated with a softmax decision layer. This network was trained
by minimizing the categorical cross-entropy loss weighted by class
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Name Range Baseline
# blocks b ∈ [1; 5] 5
# conv. layers per block c ∈ [1; 7] 1
# filters per conv. layer 2r, r ∈ [2, 7] 64
Size of the filters s ∈ {3; 5} 3
Learning Rate 10l, l ∈ [−7; 0] 0.001
Batch Size 2a, a ∈ [2; 8] 8
# epochs 10e, e ∈ [1; 10] 70
Data augmentation g ∈ {Yes,No} Yes

Table 1. Hyper-parameters list. See Section 2.2 for details.

frequency (denoted L in the rest of this paper), using stochastic gra-
dient descent (SGD) with Nesterov momentum (m = 0.9) and decay
(d = 10−6) .

2.2. Parametric Architecture and Hyper-parameters

Fig. 1. Explored architectures

By relaxing some structural parts of our baseline architecture we
define a wide and rich family of models. This parametric family has
the following structure (see Figure 1): (1) a convolution block com-
prising b sections, each including c convolution layers of 2r filters
of size s× s interleaved with ReLU activations and terminated by a
max-pooling layer, (2) the fully-connected layers as in our baseline
architecture, and (3) a final softmax decision layer. Changes within
this parametric space of models may drastically transform the opti-
mization landscape, requiring to adjust training setting accordingly
(in our case: learning rate, batch size and number of epochs, all
other settings remaining identical). Moreover, using or not data aug-
mentation is also considered, since more complex models require an
increased amount of information. These architecture parameters and
training settings form a collection of model hyper-parameters. Their
respective ranges, detailed in Table 1, were defined so as to fulfill
memory (less than 12GB) and time constraints (training should last
less than one day). To fix ideas, each set of hyper-parameters Θ
defines a classification problem that we aim to solve by training a
classifier network f with weights W , in order to predict anatomical
regions yi from image slice content xi: yi = f(xi;W,Θ).

2.3. Hyper-parameters Optimization

At this point, architecture and training parameters (a.k.a. model
hyper-parameters) could be optimized with any suitable method.
Given that the considered model family is exceedingly huge (more
than 400K models) and that training of one network can take up to
one day, any exhaustive coverage (like grid search) is intractable.
Moreover, a priori discarding hyper-parameters with relative small

impact remains difficult since it strongly depends on the specificity
of the considered dataset [6]. Inspired by the work in [4] and [7], we
developed an optimization strategy that consists of a random search
warm-up stage followed by a Gaussian Process-guided search.

2.3.1. Random Search

Given the extent of the search space, some hyper-parameters or their
combinations are expected to present only a moderate impact on our
objective (minimizing slice-wise classification errors). Moreover,
interesting hyper-parameter values are often consistent marginally
(when integrating over a subset of other hyper-parameters). In this
respect, uniform random exploration (Random Search [8]) is by far
more efficient than any grid search.

2.3.2. Adaptive Search using a Gaussian Process

At some point, the coverage is sufficient to exploit the regularities of
our hyper-parameters space with more advanced optimization tech-
niques so as to accelerate the search. With such assumptions, we can
consider to guide the exploration by estimating the performance of
any unknown combination of hyper-parameters given performances
related to all previously explored hyper-parameters values.

To this purpose, we use a Gaussian Process [9] to regress per-
formances from hyper-parameters values. Smoothness is easily en-
forced thanks to a Gaussian Kernel whose scale is optimized by max-
imizing log-marginal-likelihood for each hyper-parameter. Estima-
tion is very efficient; thus, the whole hyper-parameters space can be
entirely covered to get, at any point Θ, an estimated loss following a
Gaussian model: N (L̂ (Θ) , σ̂2 (Θ)).

Many optimization strategies can be considered atop of such
probabilistic estimations. Practically, the next hyper-parameters pro-
posal is the one that maximizes the probability PI of overcoming a
given target L∗ [4]:

PI(Θ) = Φ

(
L∗ − L̂(Θ)

σ(Θ)

)
(1)

where Φ denotes the normal cumulative distribution function. To
foster a good balance between optimizing locally already identified
good proposals and exploring farther regions with potential improve-
ments, the optimization is driven by two targets in parallel: the best
loss seen so far and an improvement of 25% from it.

2.4. Ensemble Model

At the end, our optimization process yields a collection of models
ranked by their performance. The quality of this assessment is nat-
urally limited since the size of the validation set used in this respect
cannot encompass the diversity of clinical reality. Cross-validation
could be used to get a better estimator of the performance, but we
cannot practically afford its costs. Nevertheless, best models present
very similar error rates and, at the same time, a good diversity of
architectures (see Figure 2) that can be leveraged. In this paper, we
select the top-ten models and build a robust classifier by averaging
their predictions (other combinations could be used as well).

3. RESULTS

3.1. Dataset

The dataset consists of MRI images coming from a variety of hospi-
tals and machines across the world (such as the Centre Hospitalier
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Fig. 2. Architecture of the 5 best models. Height represents the number of filters per layer, depth the size of the filters.

Fig. 3. A selection of axial and coronal abdomen slices showing the
diversity and the complexity of our dataset.

Body Part # Volumes # Slices
Abdomen 282 11532
Head 301 9032
Pelvis 225 8854
Spine 386 7732

Table 2. Content of the dataset.

Lyon-Sud, France or Johns Hopkins University, USA). As a conse-
quence our images display a large variety of protocols (see Figure 3)
as well as resolution and number of slices per volume. In this paper,
the considered regions are limited to: abdomen, head, pelvis and
spine (table 2 sums up the content of our dataset).

Our dataset is splitted in a training set for the optimization of the
weights W , a validation set for model selection (optimization w.r.t
hyper-parameters) and a test set for model evaluation (resp. 50%,
25%, 25%). The separation is done volume-wise to take into ac-
count intra-subject slices correlations. Volumes containing multiple
classes are split by anatomical regions and can end up in different
sets. This raises the difficulty of the task since, in case of overfit-
ting, predictions will be wrong at validation or testing phases. We
also stratified classes across sets, giving us a proportion of slices per
class close to the proportion of volumes per class.

Finally, each slice is subject to a unique step of preprocessing: it
is resized to 64×64 pixels, a good trade-off between time constraints
and quality of information.

Data augmentation consists in generating 80 000 images per
epoch, which is 4 times as many images as the training set. The aug-
mentation is done by applying translations, shearing and rotations,
zooming, and adding noise.

3.2. Hyper-parameters Optimization

The hyper-parameters were optimized in two steps, 47 iterations of
random search followed by an adaptive search (as described in Sec-
tion 2.3.2). The entire process is depicted in Figure 4. Adaptive

Fig. 4. Loss (left) and error rates (right) on validation dataset in
function of the number of models considered so far by the optimiza-
tion process. In green: running median, in solid red: running min,
in dashed red: baseline performance, in dashed black: iteration from
which random search is stopped in favor of adaptive search.

search presents quickly an important increase of the proportion of
models with good performance (supported by the decreasing run-
ning median of the loss). Thus, selected combinations are on average
better than random search.

Many proposals present both a high loss and a high error rate.
These correspond to models that put all images in the same class, in
this case: abdomen, which accounts for around 30% of the dataset
(implying 70% of error rate).

3.3. Test Accuracy

Figure 2 shows the architecture of some of the best models chosen
for our ensemble. Despite the first two differing only in the num-
ber of blocks, others display variations across all hyper-parameters
except data augmentation, which is always turned on. The learning
rate is in a small range, either 0.0001 or 0.001, and the batch size is
small (less than 16). Those networks tend to be deep (min. 8 convo-
lutional layers) and the other hyper-parameters use a wide range of
values.

In terms of accuracy, the ensemble is slightly better than the best
model alone, however the ensemble benefits from a reduced bias.

Figure 5 shows the confusion matrices on the test set of the base-
line and the ensemble of the 10 best models, demonstrating a sub-
stantial improvement on the classification of all anatomical regions.
Most of the errors come from pelvis and abdomen, which was ex-
pected since the delimitation between those regions is ill-defined. In
both cases pelvis is the class with the highest error.

For the volume classification, the choice of class is done by a
majority vote on all slices of the volume. This gives us a higher
accuracy. The ensemble misclassifies 444 slices from 71 volumes,
but only 7 volumes produce errors. The misclassified slices usually
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Fig. 5. Confusion matrices on the test set, for the baseline network
(left) and the ensemble (right), computed on slices (first row) and on
volumes (second row).

correspond to the first or last one of a volume, containing little infor-
mation or being nearly part of another anatomical region.

3.4. Slice by slice analysis of a volume

Fig. 6. Slice by slice classification on a full body volume. Top:
Class probabilities. Filled areas correspond to decision made when
the probability is higher than 0.7. Bottom: Volume and ground truth.

As an interesting example, we analyzed a full body volume by
classifying each of its slices through our ensemble model. For each
slice, the predicted class is the one with a probability higher than
0.7, and if no class meets this criterion, then we do not choose any.
As we can see in Figure 6, the network is doing well at identifying
the abdomen and the head. It also identifies correctly the pelvis,
with some uncertainty. No class is dominant for most of the legs,
however the feet are considered as spine with high probability. It
also mistakenly identifies the neck as pelvis.

Those mistakes could be corrected by using a more complex de-
cision criterion than a simple probability cutoff. We also expect that
adding more anatomical regions to our dataset will allow for a better
localization of the present regions.

4. DISCUSSION AND CONCLUSION

To the problem of finding more accurate networks than handcrafted
ones, we have answered with two viable strategies. Random search
is as easy to implement as grid search and quickly improves on
the baseline, which makes it perfect for time-constrained situations.
Without this constraint and at a higher cost in implementation, an
adaptive search based on Gaussian Processes explores a range of
highly accurate models suited for ensembling.

For the hyper-parameters where there is a “correct” answer, such
as the learning rate (0.001) and the presence of data augmentation,
the guided search quickly converges and most models inherit their
values. We should remove them on further analysis and instead ex-
plore a wider range of architectures by adding hyper-parameters con-
trolling the fully-connected layers, such as the number of units, the
number of layers, adding new types of layers such as dropout and
batch normalization placed across the network or even explore other
learning method such as RMSProp or Adadelta.

One limitation of the current system is that some hyper-
parameters depend on the value of others. For example we are
unable to choose a different number of filters per layer as the
number of layers is not fixed. We also limited the range of some
hyper-parameters such as the filter size so as to have networks that
would fit in memory and be trained in a reasonable amount of time.
Only a subset of values combinations would cause a failure. Further
work could incorporate constraints on time and memory either by
precise estimations when possible or by measures during training to
produce estimations with a GP.

Results on volume classification were very satisfactory. Since
it is done at slice level, we have obtained a decent localization tool
which shows the robustness of our ensemble. Further work will fo-
cus on adding more anatomical regions, which might require split-
ting slices in patches to identify smaller regions such as organs.
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