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ABSTRACT

In this paper we propose a fast method to detect spiculated le-
sions and architectural distortions in Digital Breast Tomosynthesis
datasets. This approach relies on an a contrario modeling of the
problem. First, an indicator corresponding to the convergence of
structures is defined, then the a contrario framework is used to set a
threshold on it in order to detect zones where its value is unlikely.
We propose, as a main contribution of this paper, a fast algorithm
to implement this method, which significantly reduces its computa-
tional cost.

The method was evaluated on 38 breasts (10 containing a le-
sion), and a sensitivity of 0.8 at 1.68 false positive per breast was
obtained.

Index Terms— Breast, Digital Breast Tomosynthesis CAD,
spiculated masses, a contrario detection

1. INTRODUCTION

Mammography is the most favorable modality for the early detection
of breast cancer. Because mammograms are projection images, they
suffer from the superimposition of tissues, which may produce false
alarms or hide lesions. Digital Breast Tomosynthesis (DBT), which
is a new 3D imaging technique, has the potential to overcome these
limitations. Unfortunately, the amount of data is greatly increased
in comparison to regular mammograms. In this context it makes
sense to provide the radiologist with a CAD system in order to help
him to detect cancers, and thus to increase his sensitivity. Stellate
patterns are common signs of presence of cancer [1]. Such shapes
are usually detected using a convergence criterion. In [1] and [2],
two similar measures based on two nested circles are proposed to
process 2D mammograms and DBT slices, respectively.

The a contrario framework, which was originally designed to
detect alignments of points [3], is a suitable approach to detect ge-
ometrical shapes in an image. This generic concept relies on the
statistical definition of a naive model, which corresponds to the reg-
ular content of an image, and on the introduction of an event that is
unlikely to appear in this modeling. This event is usually defined as
a discriminant measure with respect to the structure we are looking
for, and a threshold on this measure such that the number of occur-
rences of this event in the naive model is low. The approach was
also applied to the modeling of the human detection task in com-
plex background images [4] as well as the detection of convergence
areas [2].

In this paper we propose to use an a contrario modeling for the
detection of convergence areas. First, we describe the method in-
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troduced in [2], then we propose, as an original contribution, a fast
implementation of this approach and discuss its complexity. Finally,
we conclude on the performance of the detection scheme.

2. A CONTRARIO DETECTION OF CONVERGENCE
AREAS

In order to detect convergence areas in DBT datasets, we proposed
in [2] an a contrario modeling of the problem.

First, each slice of the volume is considered as a map of ori-
entations defined on the image domain Ω and corresponding to the
orientations of structures represented by the different pixels. In the
naive model, which corresponds to a normal breast without lesion,
these orientations are considered as independently and uniformly
distributed angles. For real data, they are computed from vectors
orthogonal to non correlated gradients in order to comply with the
independence assumption [2]. Then, two random variables are de-
fined on these orientation maps. These variables are defined for all
the pixels of the maps, and rely on the definition of two nested circles
as illustrated in Figure 1.
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Fig. 1. (a) Nested circles used for the computation of Kc,r,q which
is here equal to 0. (b) Computation of Zc,r: the arrows on the dark
dashed lines (passing through q1, q2 and q4) converge while others
do not.

These circles define the region of convergence for a spiculated
lesion. The hole in the ring corresponds to the center of convergence,
while the ring is the location where spicules should be found. Such
a configuration can be expressed using three parameters: the center
c of the circles, the radius r of the largest circle and a constant α ∈
]0, 1[ such that αr is the radius of the smaller circle. The first random
variable allows deciding whether a structure passing through a given
pixel q ∈ Ω is converging according to the configuration of the two
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circles:

Kc,q,r =

j
1 if (αr < ||−→cq || < r) ∧ (tan(θ)||−→cq || ≤ αr)
0 otherwise.

where θ corresponds to the angle between −→cq and the orientation at
point q.

The second random variable enables to count the number of
points converging towards the center of the circles for the same con-
figuration (c, r, α) and is defined as:

Zc,r =
X
q∈Ω

Kc,q,r (1)

Using the statistics of the orientation map given by the naive
model, we can derive the probability for Kc,q,r to be equal to one,
and thus the probability for Zc,r to be equal to a given integer [2].
This last probability is useful in order to detect convergence areas in
real DBT slices. This is done using the definition of an ε-meaningful
event [3]:

Definition 2.1. An event is ε-meaningful if the expectation of the
number of its occurrences in the image is less than ε.

In our case, the considered event is Zc,r ≥ λr, with λr a thresh-
old depending on r, ε and the total number M of couples (c, r) to
consider:

λr = min
n

λ ∈ N/P [Zc,r ≥ λ] ≤ ε

M

o

In order to catch lesions of different sizes, we consider this event
for each center c of the orientation map, and for radii ranging be-
tween Rmin and Rmax corresponding to possible lesion sizes. The
thresholds λr are set such that the event is ε-meaningful according
to Definition 2.1 [2]. These thresholds, which are deduced from the
statistical definition of the content of an image, are used on the mea-
sures Zc,r computed on orientation maps extracted from real DBT
slices. As mentioned earlier, these maps are deduced from non-
correlated gradient. This point really matters since introducing new
correlation would invalidate the thresholds λr, leading to an over-
detection of convergence patterns. Let us also mention that if the
naive model holds perfectly for real DBT slices, which means statis-
tics about orientations are correct, the parameter ε used to compute
the λr corresponds to the number of false alarms of the approach.
Unfortunately, as it will be shown in Section 5, it is not the case, and
a false positive reduction step is required.

3. FAST IMPLEMENTATION

A straightforward implementation of Equation 1 for a given range
of radii may be rather inefficient and practically unusable when we
may want to consider large structures. Nonetheless, we can remark
that for a given center point c, if we consider two successive radii
r − 1 and r, some points q in Ω have the same convergence or non
convergence property. Conversely, there exists a set of points that
are converging for r while not for r−1. We consider the cardinality,
denoted as |.|, of this set:

δc,r = | {q ∈ Ω/(Kc,q,r = 1) ∧ (Kc,q,r−1 = 0)} | (2)

Similarly, we can define the set of points that are converging for
r − 1, while not converging for r, and its cardinality:

ψc,r = | {q ∈ Ω/(Kc,q,r = 0) ∧ (Kc,q,r−1 = 1)} | (3)

For the sake of clarity, let us introduce the following notation:
∀b ∈ {0, 1} Cb

r = {q ∈ Ω/Kc,q,r = b}, which enables to rewrite
Equations 2 and 3 as follows:

δc,r = |C1
r ∩ C0

r−1| (4)

and

ψc,r = |C0
r ∩ C1

r−1| (5)

These two quantities enable to decompose Zc,r as follows:

Theorem 3.1. Zc,r =
rP

k=0

δc,k −
rP

k=0

ψc,k

Proof. Let us prove the theorem by induction:
Initialization: Obviously, we have Zc,0 = 0−0 = δc,0 −ψc,0 since
for any (c, q) ∈ Ω2 and r ≤ 0, we haveKc,q,r = 0.
Induction: Let us assume that Theorem 3.1 holds for a given r. We
can write:

Zc,r+1 =
P

q∈Ω

Kc,q,r+1

= |C1
r+1|

= |C1
r+1 ∩ C1

r | + |C1
r+1 ∩ C0

r |
= |C1

r+1 ∩ C1
r | + δc,r+1 (c.f. Equation 4)

= |C1
r | − |C0

r+1 ∩ C1
r | + δc,r+1

= Zc,r − ψc,r+1 + δc,r+1 (c.f. Equation 5)

Using the induction hypothesis, we have:

Zc,r+1 =

„
rP

k=0

δc,k + δc,r+1

«
−

„
rP

k=0

ψc,k + ψc,r+1

«

=
r+1P
k=0

δc,k −
r+1P
k=0

ψc,k

Thus the relation holds for r + 1.
Conclusion: Since Theorem 3.1 is verified for a null radius, and
since assuming that it holds for a radius r allows deducing it also
holds for r + 1, we get that Theorem 3.1 is verified for any radius
r ∈ Z

+.

This theorem is very useful in order to speed up the computation
time of the detection, since it only requires to compute the two quan-
tities δc,r and ψc,r for all points c ∈ Ω and radiiRmin < r < Rmax.
Actually, these quantities can easily be computed in a forward pro-
cessing of the orientation map. If we consider a given orientation γ,
we can build two structuring elements:

Bγ =
˘
(d, r) ∈ Z

2 × Z
+/(Kd,0̃γ ,r = 1) ∧ (Kd,0̃γ ,r−1 = 0)

¯
and:

Bγ =
˘
(d, r) ∈ Z

2 × Z
+/(Kd,0̃γ ,r = 0) ∧ (Kd,0̃γ ,r−1 = 1)

¯

with 0̃γ the point of Ω equal to (0, 0) whose orientation is γ.
These structuring elements allow us, for various points q of ori-

entation γ, to list the corresponding centers c and the radii r that
have to be considered during the computation of δc,r and ψc,r , re-
spectively. Thus, if we pre-compute these structuring elements for
various quantized orientations, we can choose for each pixel q the
structuring elements whose orientation is the closer from the one of
q and then, for each couple (d, r) update the values of δq+d,r, and
ψq+d,r, respectively, by increasing their value by 1. Doing this is
just a way to propagate the impact of q to all centers that consider q
as pointing toward them according to its orientation.
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(a) (b)

Fig. 2. Example of Bγ (a) and Bγ (b) for a vertical orientation,
Rmax = 130 and α = 0.25. Gray levels represent the radius associ-
ated to each pixel offset. Offsets with a null radius do not belong to
the structuring element.

Theorem 3.2. ∀d ∈ Z
2, ∀γ ∈ [0, 2π[, there exists at most one

r ∈ Z
+ such that (d, r) ∈ Bγ and at most one r′ ∈ Z

+ such that
(d, r′) ∈ Bγ .

Proof. Due to the definition of Kc,q,r , for a given (c, q), either
Kc,q,r = 0 for any r, or when r increases, Kc,q,r goes from 0 to
1 and from 1 to 0 only one time.

Figures 2(a) and 2(b) illustrate Bγ and Bγ , respectively, for a
vertical orientation. Because of Theorem 3.2, they can be both rep-
resented using a grayscale image where gray levels represent the ra-
dius associated the corresponding offset.

Additionally, let us mention that the detection of large lesions
can be addressed using a multiscale approach allowing reducing
Rmax and the size of the structuring elements.

4. COMPLEXITY

We now focus on the complexity of the proposed approach in order
to compare it to the straightforward implementation of Equation 1.

First for each pixel q of a slice, we need to process the points in
Bγ and Bγ in order to compute δc,r and ψc,r, respectively. Using
Theorem 3.2 and because Bγ is symmetric as shown in Figure 3(a),
the number of elements in Bγ is given by:

|Bγ | = 4

0
BB@

αRmax√
α2+1R
0

√
R2

max − x2dx −
αRmax cos( π

4 )R
0

xdx

−

αRmax√
α2+1R

αRmax cos( π
4 )

q
x4

(αRmax)2−x2 dx

1
CCA


 O(R2)

(6)

where the first term corresponds to the selection of points c that can
reach the center of the structuring element in the worst case, which
is the largest possible lesion (see non white areas in Figure 3(a)).
The second and third terms aim at discarding points c that the center
q of the structuring element cannot reach either because q would be
in the hole of the ring centered at c or because a too large radius

would be required in order to verify the convergence relation. They
are represented by the two darkest zones in Figure 3(a).

The number of elements in Bγ is given by:

|Bγ | = 4

0
@

αRmax√
2R

0

√
αRmax − x2dx −

αRmax√
2R

0

xdx

1
A

=
πα2R2

max
2


 O(R2)

The two terms are illustrated in Figure 3(b).
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Fig. 3. (a) Computation of |Bγ | for a vertical orientation: the light
gray area corresponds to |Bγ |

4
while the darkest areas correspond to

second and third terms of Equation 6. (b) Same representation for
|Bγ |.

This results in a complexity of O(NR2
max), with N the num-

ber of pixels in the image. In the case of a straightforward imple-
mentation of Equation 1, for each pixel we need to consider Rmax

ring-shaped neighborhoods resulting in the following amount of op-
erations:

N

RmaxX
r=Rmin

πr2 − π(αr)2

leading to a complexity of O(NR3
max).

Finally, we can discuss the impact of the constant α. In the case
of the basic implementation, when it is close to 0, the surface of
the ring to use becomes larger, while in the case of the proposed
approach, the opposite behavior is observed: both |Bγ | and |Bγ |
decrease.

5. RESULTS

The approach was evaluated on a database containing 38 breasts re-
constructed using the SART algorithm [5]. Ten of them were con-
taining a biopsy-proven spiculated lesion or an architectural distor-
tion. The remaining cases were used to evaluate the false positive
fraction.

Because spiculated lesions and architectural distortions are not
the only structures that respond to a convergence pattern (e.g. cross-
ing or fibers), a last stage aiming at keeping only structures of inter-
est was used. This step relies on the analyze of structure orientations
found in the neighborhood of areas marked by the a contrario detec-
tor [2]. This time, orientations are not extracted from non correlated
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gradient maps, but rather from Gaussian second derivatives of the
slices along three directions. This is motivated by two reasons. First
such an approach is more robust to noise, and second, combining
these three filtered images allows us to obtain the exact orientation
of structures under each pixel [1, 6]. The neighborhoods used in this
step are deduced from the pairs (c, r) retrieved from the a contrario
detection stage. The disks of radius r and centered at c associated
to these pairs are aggregated leading to a binary set. The connected
components of this binary set represent the neighborhoods to be used
for the analysis of orientations. The key idea behind this analysis is
that in the neighborhood of crossing of fibers, there are usually two
or three fibers. This leads to one orientation per fiber resulting in
two or three privileged orientations. In such a case, the histogram of
orientations will have two or three peaks. Conversely, lesions usu-
ally radiate in all directions leading to an almost flat histogram. In
order to distinguish between the two cases, the entropy of the his-
togram is used. Thus high values of this entropy will characterize
spiculated lesions or architectural distortions, while low entropy val-
ues will correspond to false alarms. This step enables to decrease
the number of false positives per case, which is a major concern for
clinical use.

(a) (b)

Fig. 4. (a) A slice of a DBT volume containing a lesion. (b) Result
after false positives reduction. A successfully removed false positive
is marked in dotted lines.

Using the 38 breasts database, a sensitivity of 0.8 for 1.68 false
positive per case was obtained, which is comparable to existing CAD
systems for Digital Breast Tomosynthesis [7, 8, 9, 10]. This sen-
sitivity was evaluated using the leave-one-out approach on the ten
malignant cases: the detection for each lesion was evaluated using
a threshold on the orientations entropy computed from the nine re-
maining cases. The threshold obtained using all malignant cases to-
gether was used to assess the false positive fraction on the remaining
benign cases. Although no definite conclusion can be drawn due to
the limited size of the database, this evaluation tends to validate the
approach.

Figure 4 illustrates the detection result on a slice of a volume
containing a spiculated lesion after false positive reduction.

6. CONCLUSIONS

In this paper we have addressed the problem of detection of con-
vergence areas in an image. This work was motivated by the de-
tection of spiculated lesions and architectural distortions in DBT
datasets, which are suitably modeled by convergence patterns. In [2],
a method based on an a contrario modeling was proposed in order to
achieve this goal. Nonetheless, this approach is computationally in-
tensive and may not be directly applied to process real data. For this
reason, we have proposed a fast implementation. Our approach re-
lies on two key features. First, the convergence index used during
the detection is decomposed into two independent quantities using
dynamic programming. Second, we proposed a way to efficiently
compute these quantities using two families of structuring elements,
which depend on the orientation of structures represented by each
pixel in the image. The complexity of the obtained algorithm is
O(NR2) compared to O(NR3) for the previous approach, which,
associated to a multiscale approach, is suitable to process a DBT
volume.
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