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Abstract. In this paper, we present an extension of the state-of-the-
art normalized graph cut method based on asymmetry of the affinity
matrix. We provide algorithms for classification and clustering problems
and show how our method can improve solutions for unequal and over-
lapped data distributions. The proposed approaches are based on the
theoretical relation between classification accuracy, mutual information
and normalized graph cut. The first method requires a priori known class
labeled data that can be utilized, e.g., for a calibration phase of a brain-
computer interface (BCI). The second one is a hierarchical clustering
method that does not involve any prior information on the dataset.
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1 Introduction

Separation of the informative part from noise or artifacts in observed data is a
significant step for dimension reduction and feature extraction. The main aim of
this work is to increase performances of classification algorithms for multi-class
data, which may have different types of distribution, and reveal clusters based
on data affinity information.
Data mining is a process of discovering patterns and their relations into ob-

served datasets. One of the extensively used approaches for similarity analysis
between data samples is spectral graph clustering [8]. Directed graphs are asym-
metric structures, which are able to involve information on data diversity, e.g.
an employer may know some personal data about his employee while the last
one is acquainted only with public information of his boss [11].
The problem with different data distributions is the general form for natural

signal analysis, e.g. speech or electroencephalogram (EEG) classification when
we need to implement adaptive artifact rejection. However, existing approaches
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do not handle properly data having different distributions, e.g. two overlapped
Gaussian and uniform distributions. In this paper, we present an extension of
the normalized graph cut approach [12] based on asymmetric affinity matrix [11].
We provide a short numerical analysis of the existing normalized cut in regard
to the number of data samples in recovered clusters, propose a new invariant
one and apply it to the image segmentation problem. Experimental results on
real datasets show the applicability of the method to problems of data ranking
and clustering.

2 Normalized Graph Cut

A set of points in a data space can be represented as a weighted undirected
graph G = {S,A} [14], where S = {x1,x2, . . . ,xn} is the set of vertices and
Aij , i, j = 1, . . . , n are edge altitudes, and denote the similarity between xi and
xj . The measure of similarity for a graph is usually presented in matrix form
and called affinity matrix [2]. An example is as follows:

Aij = e−
||xi−xj ||

2

F

σ2 , i, j = 1, . . . , n, (1)

where the Gaussian kernel bandwidth could be estimated via the Parzen-Rosen-
blatt method [13]: σ = 1.122V AR[x]n−2/5 and V AR[x] is the overall variance
of the data x.
Clustering problems can be expressed as the problem of splitting a set S

into disjoint subsets {S1,S2, . . . ,Sm} or cutting the graph G into m subgraphs,
where the similarity among the vertices in a set Si is high and the similarity
between different sets Si and Sj (i "= j) is low [12]. Let us recall a few definitions
from graph theory [1]: the degree of the ith vertex is the cumulative weight
of its connected edges: Dii =

∑n
j=1Aij ; the association of set Si to S, where

Si ⊆ S, is the cumulative weight of edges: Assoc(Si,S) =
∑

xi′∈Si

∑

xj∈S
Ai′j ;

the association of set S to Si, where Si ⊆ S, is the cumulative weight of edges:
Assoc(S,Si) =

∑

xj∈S

∑

xi′∈Si
Aji′ ; a graph cut between two sets Si and Sj is

the cumulative weight of edges that connect vertices from Si to Sj : Cut(Si,Sj) =
∑

xi′∈Si;xj′∈Sj
Ai′j′ .

Given an affinity matrix, the graph cut clustering [12] can be solved as a
block-diagonalization of the affinity matrix A or minimization of the graph cut
Cut(Si,Sj). To solve this problem we can assume that if such an affinity matrix is
block-diagonalized, the summation of the weights of this diagonal block matrix is
maximized and the summation of the weights in the off-diagonal block matrices
is minimized. To minimize Cut(Si,Sj) we can assign a weight vector wi of
length n to each cluster, i = 1, . . . , m. The kth element of wi defines a grade of
membership of the kth data point to the ith cluster, i.e., the larger the weight, the
stronger the association. Thus, the block-diagonalized task becomes a quadratic
programming problem expressed as [2,9]:

ŵ = min
w
wTAw, s.t. wTw = 1, (2)
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where the solution of (2) is the eigenvector of A corresponding to the largest
eigenvalue λ: Aŵ = λŵ. In general, to select m clusters from a dataset we
perform the eigenvalue decomposition of its affinity matrix A and define m

largest eigenvalues λi, i = 1, . . . , m ≤ n that represent m clusters in the data.
The described graph cut algorithm has obstacles: if data consist of its shifted

copies, we cannot split clusters due to similar eigenvalues [12] and the algorithm
is inclined to cut small isolated data subsets [14], since the value of Cut(Si,Sj)
increases with the number of edges going across the two partitioned sets and
with the distance between them. These problems are classically solved via a
normalized form of the graph cut approach.
Normalized graph cut for a symmetric matrix A is a fraction of edge connec-

tions in subgraphs to all the nodes in the graph [12]:

nCut(Si,Sj) =
Cut(Si,Sj)

Assoc(Si,S)
+

Cut(Si,Sj)

Assoc(Sj ,S)
. (3)

The value of (3) becomes small if we cut Si and Sj that have few edges with low
weights between them and many internal edges with high weights. So, the com-
mon graph cut approach uses a part of the affinity matrix, and the normalized
graph cut uses the full matrix.
To solve (3) we assume that there is a length-n vector w, the values of which

are either 1 or −b [12]. These values are used to separate vertices of the graph: if
the jth component of w is 1, then the corresponding vertex belongs to the first
cluster, and if it is −b, the vertex belongs to the second one. In matrix notations,
the minimization of nCut(Si,Sj), based on symmetric affinity matrix, amounts
to solve:

ŵ = min
w

1TA1−wTAw
1TA1

, s.t. wTA1 = 0. (4)

Introducing a diagonal matrix D = diag(A1), where A1 =
∑n

j=1Aij and

1TA1 = wTDw, this optimization problem is rewritten as:

ŵ = min
w

wT (D−A)w
wTDw

, s.t. wTD1 = 0. (5)

Since (5) is the generalized Rayleigh quotient [3], we can apply the Cholesky
decomposition to the diagonal matrix D, leading to

ŵ = min
w

wT (D−
1

2 (D−A)D− 1

2 )w

wTw
, s.t. wTw = 1 (6)

and minimize it by solving a standard eigenvector problem, expressed as:

D−
1

2 (D−A)D− 1

2w = λw. (7)

A common approximate solution for such an integer programming problem is
to compute a real vector w and assign its entries to {1,−b} by testing the vector
w against each of its entries such that the resulting partition has a minimal
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nCut(Si,Sj) value. A critical question is also how to chose stopping criteria for
nCut(Si,Sj) that define the number of clusters in the dataset. To find eigenvec-
tors for high-dimensional data, e.g. in image segmentation tasks, and to avoid
the out of memory state, we need to take into account sparseness of the affinity
matrix.

3 Normalized Graph Cut Based on Asymmetric Affinity

In this section, we present an extension of the normalized graph cut by intro-
ducing asymmetry in the affinity matrix and show its advantages for the tasks
of clustering and data ranking comparing with the state-of-the-art techniques.
Minimization of Eq. 3 is well adapted to datasets consisting of clusters with
similar normal distributions [13]. It is based on properties of the defined sym-
metric affinity matrix (Eq. 1), since we use a constant σ-value for each pair
of data points. An example of incorrect clustering is presented in Figure 1(a).
Here we apply the normalized graph cut approach to a dataset that consists
of two overlapping clusters with normal and uniform distributions. Using the
symmetric affinity matrix in Figure 1(b) does not lead to a good separation, see
Figure 1(a).
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Fig. 1. Overlapped data clustering based on: (a,b) symmetric and (c,d) asymmetric
affinities

For real-world problems, e.g. EEG signals or biomedical image analysis, we
have to deal with data that consist of overlapping clusters with various distribu-
tions. The aim of the normalized graph cut based on asymmetric affinity matrix
is to involve information about cluster diversity that arises from the directed
graph clustering approach [15].
To cover any type of data distribution, we use a specific kernel bandwidth for

each data sample, that leads to an asymmetric form of the affinity matrix, as
illustrated in Figure 1(d), and expressed as follows:

Aij = e
−

||xi−xj ||
2

F

σ2

j , i, j = 1, . . . , n, (8)

where the kernel bandwidth, σj , could be evaluated as a distance to the mth-
neighbor, m =

√
n, that comes from the spacing entropy estimation [6].
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We propose to evaluate the cut cost as a fraction of the total edge connections
to all the nodes in the directed graph in both directions [15,7]. Due to the node
directions, Eq. 9 becomes a double extension of Eq. 3. So, our new cut, which
is based on the asymmetric affinity matrix, is a sum of all possible fractional
combinations in the directed graph:

nCut(Si,Sj) =
Cut(Si,Sj)

Assoc(Si,S)
+

Cut(Si,Sj)

Assoc(S,Sj)

+
Cut(Sj ,Si)

Assoc(S,Si)
+

Cut(Sj ,Si)

Assoc(Sj ,S).

(9)

In Figure 1 we present the main difference between general and normalized
graph cut approaches when we need to divide our graph into two subgraphs.
Let us divide our affinity matrix into four pieces by two orthogonal lines (red
bold lines), the cross point must be on the main diagonal and corresponds to the
minimal graph cut. For the graph cut algorithm we minimize the sum of elements
in the top-right square (T R), and for the normalized version we minimize

sum(T R)

sum(T L) + sum(T R)
+

sum(BL)

sum(BL) + sum(BR)
, (10)

where the letters T , B, L, R specify regions (top, bottom, left, right) of the
affinity matrix and for the symmetric affinity T R = BLT .
So, the common graph cut approach uses a part of the affinity matrix, and the

normalized graph cut uses the full matrix. According to Figure 1, the defined
normalized cut is a sum of normalized fractions:

sum(T R)

sum(T L) + sum(T R)
+

sum(BL)

sum(T L) + sum(BL)
+

sum(BL)

sum(BL) + sum(BR)
+

sum(T R)

sum(BR) + sum(T R)
,

(11)

where T R "= BL.
Reasoning similarly as in the previous section, the optimization problem for

the normalized graph cut based on asymmetric affinity is an extension of Eq. 4,
and expressed as:

ŵ = min
w

(

2
1TA1−wTAw

1TA1

)

, s.t. 1TAw = wTA1 = 0, (12)

where w = {1,−b}. Introducing the diagonal matrices D1 = diag(A1) and
D2 = diag(1TA), we get a sum of the generalized Rayleigh quotients:

ŵ = min
w

(

wT (D1 −A)w
wTD1w

+
wT (D2 −A)w
wTD2w

)

(13)

that, in the standard eigenvector decomposition, applying the Cholesky decom-
position to the matrices D1 and D2, is:

(

D
− 1

2

1 (D1 −A)D−
1

2

1 +D
− 1

2

2 (D2 −A)D−
1

2

2

)

w = λw (14)
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In the case of a symmetric affinity, Eq. 14 provides the same solution for the
vector w as Eq. 7. Figure 1(c) shows an example of correctly separated clusters
obtained via asymmetric affinity in Figure 1(d).
The defined cut can be utilized for hierarchical unsupervised learning, see

Algorithm 1. Let a function split(Si) bipartite the ith subset of vertices Si, where
Si ⊆ S, into two disjoint subsets {S10i+1,S10i+2} that satisfies their minimum
cut value nCut(S10i+1,S10i+2). Applying data bipartition for each recovered
subgraph, along with stopping conditions (minimum on the normalized cut or
subgraph size), we can recursively split dataset S and present it in form of a
binary tree of disjoint subgraphs. Usually, as a stopping criterion for clustering
problems one tests the normalized graph cut value against some preassigned
threshold, e.g. in [12] for image segmentation problems.

Algorithm 1. Hierarchical clustering for unlabeled data

S // initial cluster contains complete dataset X
U = {1} // set of cluster indices to process: S = {SU} = {S1}
V = Ø // set of recovered cluster indices: V = Ø
while |U| != Ø do

for k = 1 : |U| do
[S10Uk+1,S10Uk+2] = split(SUk

)
if nCut(S10Uk+1,S10Uk+2) ≤ threshold then

U = U \ Uk

U = U ∪ {10Uk + 1, 10Uk + 2}
else

V = V ∪Uk

end if

end for

end while

Below we provide a numerical analysis of the normalized graph cut value for
symmetric and asymmetric affinity matrices depending on the number of data
samples in clusters for bipartition problem. Suppose we have n 1-dimensional
data samples generated with two Gaussian distributions N(m1, σ1), N(m2, σ2),
respectively. Here we study the normalized graph cuts depending on the number
of samples in each cluster, such that n = n1 + n2, where n1 and n2 are the
number of samples from each of the Gaussian distributions. From the properties
of the normalized cut (3), we know that nCut preserves small isolated subsets,
whereas Cut tends to separate outliers. Generally speaking, nCut is the maxi-
mum a posteriori estimation because its value depends on the number of entries
in submatrices T L, T R, BL, BR, see Figure 1. To recover the maximum likeli-
hood estimator from the nCut we propose to modify Eq. 10, and instead of the
sum operator we use the mean one for each block-matrix.
Figure 2(a) presents results for different cut values for n = 30,N(0, 1),N(5, 1),

applied to symmetric and asymmetric affinity matrices. Indeed, the normalized
cut based on the sum arises for marginal clusters, while nCut based on mean
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Fig. 2. Normalized graph cut values for (a) symmetric and (b) asymmetric data distri-
butions with varying samples ratio: (a) N(0, 1), N(5, 1); (b) N(0, 1), N(5, 3). Overall
number of generated data samples from each cluster: n1+n2 = 30. Symbols ×, •, �, ◦
denote normalized graph cuts for symmetric sum, symmetric mean, asymmetric sum,
and asymmetric mean affinity matrices, respectively

preserves constant cut value for all cluster sizes larger than m =
√

n. For this
simple example, when clusters have identical but shifted distributions, we see
that nCut based on themean for asymmetric affinity matrix has almost constant
values and does not depend on the size of the clusters when n1 > m n2 > m. In
the case of asymmetric distributions, see Figure 2(b), we generate data for n =
30, N(0, 1), N(5, 3). It is easy to see from these graphics that only the proposed
nCut based on the mean for asymmetric affinity matrix does not depend on the
size of recovered data clusters.
Algorithm 2 describes a recursive procedure for data ranking, e.g. EEG chan-

nel selection in BCI tasks, that aims to increase classification accuracy. Maxi-
mization of classification accuracy is equivalent to mutual information (MI) max-
imization of the class-labeled data [5]. MI monotonically increases with channel
subset augmentation [5]. Knowing the class labels of the data, we can evaluate
intra- and inter-class variance via an affinity matrix, so nCut is minimized only
for the most informative (separated) data channels and has a unique global min-
imum. In the case of EEG recording, the proposed selection procedure is able
to rank not only channels but also its samples, e.g. for EEG P300 responses it
identifies both delay and length of the temporal window.

4 Numerical Results

To validate the proposed normalized cut we tested it on toy and real datasets
for clustering and ranking problems1. Figure 3 shows clustering results based on
the proposed method for overlapping and duplicated data distributions. The use
of an asymmetric affinity matrix leads to good data separation.

1 Matlab code, demo, and datasets are available on:
https://sites.google.com/site/kyrgyzov/cut
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Algorithm 2. Ranking procedure for class labeled data

dir = 1; // direction (1 - forward; -1 - backward)
n // the number of channels (or samples)
X // dataset consisting of n channels and C = {0, 1} classes
U = {1, . . . , n}; // initial set of channel indices
V = Ø; // ranked set of channel indices
while |U| != Ø do

for k = 1 : |U| do
if dir = 1 then

nC(k) = nCut(X[V ∪ Uk|C1],X[V ∪Uk|C2])
else

nC(k) = nCut(X[U \ Uk|C1],X[U \Uk|C2])
end if

end for

i = mini nC //index of a channel with minimal nCut
V = V ∪Ui

U = U \ Ui

end while
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Fig. 3. Data clustering via nCut based on asymmetric affinity matrix: (a) 3 clusters
with overlapping; (b) 9 clusters with duplications and overlappings

Figure 4 shows image segmentations of the original 80× 100 image from [12].
We preserve rules from [12] to evaluate the symmetric affinity matrix (multiplied
symmetric affinities of brightness value of pixels and their spatial location) and
perform partitioning with the same threshold value (nCut ≤ 0.04). Subplot
(d) shows the segmentation results based on asymmetric affinity (multiplied
asymmetric affinity of brightness value of pixels and symmetric affinity of their
spatial location), with limit on nCut based on the mean operator. Asymmetric
affinity represents data diversity that allows us to identify image segments more
efficiently.
Results for class-labeled EEG datasets show the usefulness of the proposed

normalized graph cut for non-stationary signals corrupted by noise and arti-
facts [4]. In fact, we perform only data ranking and do not change classification
methods. The following results, which are grounded on the informative EEG
channels selection procedure, demonstrate its accuracy and efficiency. For the
presented experiment, we used EEG P300 speller provided in [10] (winners of
the BCI Competition III, Dataset II). It estimates the classification rate for an
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(a) (b) (c) (d)

Fig. 4. Image segmentation via nCut with testing against predefined threshold based
on: (b) symmetric affinity with limit on nCut based on sum; (c) symmetric affinity
with limit on nCut based on mean; (d) asymmetric affinity with limit on nCut based
on mean

ensemble of SVMs over 2 subjects with 64 EEG channels. Based on Algorithm 2,
we perform data ranking for each of two subjects and utilize an increasing set of
the most informative ordered channels to estimate their classification accuracy.
Training datasets for this 2-class EEG classification problem are acquired with
64 channels and define 85 labeled cognitive states. After data preprocessing each
channel for one P300 response consists of 14 samples. To estimate the normal-
ized graph cut value for such dataset we calculate 64 affinity matrices for each
of the EEG channels, so we have [85 × 85× 64] data cube D. The final affinity
[85 × 85] matrix A is the mean value over the 3rd dimension (EEG channels)
of the data cube D. There are many ways to calculate the final affinity matrix
for such datasets. In fact, such a 3D global affinity model allows us to rank
not only EEG channels but also data samples in each of the channels, so we
can identify the most informative observation window for P300 data records.
Analyzing 3D affinity structure by its labeled dimensions, it is also possible to
identify impostors in data record. Results are displayed in Fig 5.
The minima on the nCut graphs correspond to the optimal number of EEG

channels. The classification accuracy graph dynamics are inverse to those of the
normalized graph cut. This figure shows that a good accuracy can be achieved
with a reduced number of channels: 20 and 15 for Subjects 1 and 2, respectively.
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Fig. 5. Classification rate and nCut based on asymmetric affinity matrix vs. dimen-
sionality of optimally selected channels
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5 Conclusion

In this paper, we proposed a modification of the normalized graph cut and
showed its usefulness to unsupervised learning as well as class-labeled data rank-
ing tasks. Advantages of the modified approach with respect to unsupervised
learning for overlapping and unequal data distributions were shown. We also
provided a modified normalized cut estimation for asymmetric matrix based
on the mean operator for hierarchical graph clustering. The algorithm for data
ranking is a calibration step with small computing time for further classification.
It selects the most informative parts of the data, which is critical for real-world
problems, and does not require any prior information on classification environ-
ment, strategy and subjects.
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