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Abstract—Two ways of introducing spatial information in Dempster—Shafer evidence theory are examined:
in the definition of the monosource mass functions, and, during data fusion. In the latter case, a “neighbor-
hood” mass function is derived from the label image and combined with the “radiometric” masses,
according to the Dempster orthogonal sum. The main advantage of such a combination law is to adapt the
importance of neighborhood information to the level of radiometric missing information. The importance
of introducing neighborhood information has been illustrated through the following application: forest area
detection using radar and optical images showing a partial cloud cover. «*: 1998 Pattern Recognition
Society. Published by Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Due to the increasing number of sensors in data
acquisition, data fusion has become an important field
of research. In image processing, data fusion may be
performed at different stages:'*’ pixel, feature and deci-
sion level. At the decision level, information from each
individual image is derived from some preliminary
process and these first classification results are com-
bined in the last step. At the pixel level, many data
fusion methods have been proposed, such as probabil-
istic fusion and Bayesian inference. The simplest ap-
proach is to concatenate the data from the different
sensors as if they were measurements from one single
sensor.? In this case, establishing a good model for
multisource data is the difficulty (due to the hetero-
geneity of the vector components derived respectively
from the optical image and from the radar image).
More sophisticated methods of statistical multisource
classification have been proposed.® ~% However, they
are neither adapted to missing information (e.g. cor-
responding to the presence of clouds in remote sens-
ing optical images), nor to the case of a class defined as
the complement of another one (since such a class
may be highly heterogeneous and cannot be defined
by statistical features).

* Author to whom correspondence should be addressed.
Tel: 33 1 39254934; fax: 33 | 39254922; e-mail:
sylvie.mascle@cetp.ipsl.fr.

Evidence theory

Missing information

The Dempster—Shafer mathematical theory of evid-
ence was first introduced by Dempster in the 1960s,
and was later extended by Shafer.!” By allowing the
representation of both imprecision and uncertainty,
evidence theory appears as a more flexible and general
approach compared to the Bayesian approach. In
particular, it can deal with missing information as well
as with complementary classes. Applications have
been developed in image processing (e.g., object detec-
tion,"®* medical imaging,'” remote sensing classi-
fication,''"'? as well as other domains such as
pattern recognition and classification.’ ) However,
to our knowledge, only very few works '*' attempt to
incorporate spatial information in evidence theory,
whereas a Markovian assumption is widely used in
classical Bayesian modeling. In this paper, we intro-
duce spatial information at two levels: in the defini-
tion of monosource mass functions, and in a new
regularization step, applied after the combination of
the different sources.

The application we consider is data fusion of radar
and optical images with partial cloud cover. Identi-
fication of different land cover types is one of the most
important topics in remote sensing applications. Op-
tical images, such as SPOT images, allow good classi-
fication results, for example. using classical Bayesian
methods. However, optical sensors may be affected by
clouds, and there may be some countries (northern or
equatorial} where cloud free optical images are diffi-
cult to obtain. In this case, radar images, such as
ERS-1images, may be used to supplement the missing
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optical image information, since they are not in-
fluenced by acquisition time and weather conditions.
However, SAR images suffer from speckle, which
makes application of classification procedure difficult.
Thus, there is a great interest in developing data
fusion methods for optical and radar images that
reduce the imprecision in the data of the individual
sensors, thereby improve classification results. In such
approaches to data fusion, the ability of the De-
mpster—Shafer theory to model the incompleteness of
each image, either due to cloudy pixels in the optical
image or to speckle in the SAR image, is very useful.
Moreover, this example will illustrate the importance
of spatial neighborhood information, since thin cloud
boundaries cannot be detected in a reliable way using
only radiometric information. In particular, we will
compare our results with those provided by the data
fusion rule #: “if there is a cloud in the optical image,
then take the decision given by the radar image classi-
fication, otherwise take the decision given by the op-
tical image classification” (note that this rule assumes
that there is no imprecision in cloud detection in the
optical image).

The remainder of the paper is organized as follows.
In Section 2, the way Dempster—Shafer evidence the-
ory may be used to represent different cases of ignor-
ance in optical and SAR images is presented. It is
illustrated in the simple case where perfect cloud de-
tection is assumed. In Section 3, some ways for intro-
ducing spatial information in evidence theory are
proposed. and a data fusion algorithm adapted to the
presence of partial cloud cover in the images is de-
scribed. In Section 4, this algorithm is applied to the
problem of forested area discrimination using one
SPOT image with partial cloud cover and one ERS
image of the same scene. Different cases of simulated
cloud cover are studied, and the performance of our
data fusion method relative to the above defined clas-
sification rule # is quantified. Finally, the data fusion
algorithm is applied to images with actual (not
simulated) cloud cover, and the results are presented.
Section V is our conclusion.

2. IGNORANCE REPRESENTATION LSING
DEMPSTER-SHAFER EVIDENCE THEORY

Let © denote the set of hypotheses about the mem-
bership of a pixel to a class. Dempster--Shafer theory
allows one to consider hypotheses that correspond to
arbitrary subsets of ©, as well as hypotheses that
correspond to the unions of classes (called compound
hypotheses). This is in contrast to the probabilistic
approach, in which only singletons (also called simple
hypotheses) may be considered. This makes the
modeling very flexible and many different situations
can be taken into account: ambiguities between
classes, mixture, missing information, etc.

In the following, the set of operations which is
classically applied to the set of classes is extended to
©. In particular, inclusion, intersection, and union
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between two hypotheses A and B are defined and
denoted as follows:

A < B<if A is true, then B is true
(ANB is true<> A is true and B is true
(AUB) is true<> A is true or B is true

Since, as mentioned in the introduction, we will take
(in Section 4) the problem of forest area discrimina-
tion as example, throughout this section, we refer to
this problem to provide simple illustrations of De-
mpster—Shafer theory implementation. In these illus-
trations, the only considered classes are: forested areas
and unforested areas (i.e. anything else than forest).
The number of hypotheses in Dempster-Shafer formu-
lation is therefore 2% = 4. These hypotheses are the
two simple hypotheses F (forest) and F (unforested
areas), one compound hypothesis @ = FAF, and the
empty set 0. @ represents the case where no class or
union of classes among the considered ones is valid,
such as in the case of unknown classes. Obviously, in
our application, the hypothesis ¢ will never be chosen
since the definition of F prevents us from “forgetting”
some classes. Therefore, we will focus on the three
remaining hypotheses: F, F, and ©O.

2.1. Ignorance representation in optical and radar
image models

The Dempster-Shafer evidence theory provides a
representation of ignorance by assigning a non-zero
mass function (m) to compound hypotheses. m, which
is also called the basic probability assignment, is de-
fined for every (simple or compound) hypothesis A,
such that the mass value m(A4) belongs to the interval
[0.1] and satisfies the two following normalization
conditions:

m(@) = 0,
m:{y m(4) =1, (1
A< 0.

Assigning a non-zero mass to a compound hypothesis
AuB means that we have an option not to make the
decision between 4 or B but rather leave the pixel in
the AUB class. In particular, assigning a non-zero
mass to @ allows one not to classify some pixels, for
which there is a global ignorance. For example, since
the presence of a cloud in the optical image represents
a case of total ignorance about the membership to
F or F of the area covered by the cloud, it seems
reasonable to define cloudy pixel mass function such
that: m(F) = my(F) = 0 and mg(®) = 1 (where the
subscript "O” means “optical” mass function). Con-
versely. in the case of pixels belonging with certainty
to forested areas, we choose: mg(F) = 1 and my(F) =
my(®) = 0.

In the Bayes theory, the uncertainty about an event
is measured by a single value (probability), and the
imprecision about uncertainty measurement is as-
sumed to be null. The Dempster-Shafer evidence
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theory provides a representation of both imprecision
and uncertainty through the definition of two func-
tions: plausibility (Pls) and belief (Bel). Both map the
set of hypotheses to the interval [0, 1]}, and they are
derived from mass function as follows:

Bel(4) = ) m(B), 2)
Bc A

Pls(4)= ) m(B), 3)
BrA #0

The belief value of hypothesis A may be interpreted as
the minimum uncertainty value about A, and its
plausibility value, which is also the “unbelief” value
of the complementary hypothesis A (since
Pls(A) = | — Bel(4)), may be interpreted as the max-
imum uncertainty value about 4 (Bel(4) < Pls(A)).
Then, the length of the interval [Bel(4), Pls(A)], called
the “belief interval”, gives a measurement of the im-
precision about the uncertainty value.

A special case which concerns our application is
where only three hypotheses are considered: A4, 4, and
© = AuUA. The length of the belief interval is equal to
the ® mass value, both for the A and the 4 hypothe-
ses. For the hypothesis A, Pls(4) — Bel(4A) = m(®),
since Pls(4) = m(®) + m(A4) and Bel(A) = m(A4). For
the A hypothesis, Pls(4) — Bel(4) = m{©®).Therefore,
a straightforward way to represent radar classification
global imprecision is to attribute a constant non-zero
mass mg(®) (the subscript “R” means “radar”) to
every pixel in the radar image. This is a simple repres-
entation of the fact that the radar image information
is less accurate than the optical image information.

In summary, the Dempster-Shafer formulation
provides a way to model the two cases of ignorance
respectively met in optical and radar images: total
ignorance of land cover type in the case of cloud pixels
(in the optical image), and a global ignorance factor
for radar monosource classification.

2.2. Data combination and decision making

Having defined the evidence functions of each of the
different sources, they are combined using Dempster’s
rule of combination,'” also called orthogonal sum. If
m, denotes the basic probability assignment provided
by source {1 <i < p), the orthogonal sum, denoted

m=m, + --- + m,, is defined by:
m(®) =0
Z H m;(a,)
if K 1’ A :n,mw'\uﬂ:.—tlgisp 4
if K#1, m(A) K (4)
where K= ) [T mya) (5)

an--ra,=01<i<p

From equation (5), we see that K (K € [0, 1]) repres-
ents the mass which would be assigned to the empty
set @, after combination, in the absence of normaliz-
ation [division by (1 — K) in equation (4)]. Thus, K is
often interpreted as a measure of conflict between the
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different sources: the larger K is (with 0 < K < 1), the
more the sources are conflicting and the less it makes
sense to combine them. When K is equal to 1, the
sources are said to be totally or flatly contradictory,
and it is no longer possible to combine them. K has
been introduced in equation {4) as a normalization
factor; however, non-normalized forms may be prefer-
red, since they keep track of conflicts through the
value of m(()."">

More details about the algebraic properties of
Dempster—Shafer theory can be found in reference
(16). In particular, it is shown that the Dempster’s rule
of combination is commutative and associative, which
allows one to combine the available sources in any
order.

Having computed the combined evidence functions
(m, Bel, and PIs). the classification must be done
according to a “decision criterion”. Several decision
rules, such as maximum of plausibility, maximum of
belief or compromises [e.g. max(Bel(4) + Pls(4))],
have been proposed.”'® At the present time, the
choice of criterion remains application dependent.
However. in our case, where the only compound hy-
pothesis considered is ©, all the previously mentioned
decision rules are equivalent criteria.

Table 1 summarizes Dempster-Shafer computation
in the case of two singleton classes (F and F). Each
mass function is defined, for each hypothesis, on all
image pixels. Mass values on F and @ (x and y for
“0”, z and u for “R”) are estimated during a learning
phase obtained from monosource classification. The
unforested area mass functions are given by the nor-
malization condition: } , . om(A) = 1 [equation (1}].
In the general case, x and y (resp. z and u) can take any
value between 0 and 1, provided that they satisfy the
normalization condition imposed by equation (1)
O<x+y<l(resp.O<u+:z<1)

2.3. Simple example: Data fusion of optical and radar
images in the case of no imprecision in cloud detection
(binary optical mass values)

In this section, we aim at providing a first illustra-
tion of Dempster—Shafer evidence theory through the
application to data fusion of radar and optical images
in the presence of a partial cloud cover.

We consider the simple ideal case where we assume
there is no imprecision in cloud detection (including
their shadows, where we consider the optical informa-
tion not to be exploitable), and there is no classifica-
tion error in the optical image for the unclouded
pixels. Conversely, we assume a non-zero classifica-
tion error in the radar image. Clearly, in such a case,
the best data fusion result will be obtained by only
considering the radar image on the parts of the image
where optical information is missing (cloud and
shadow). We call this classification rule #: “if there is
a cloud in the optical image, then take the decision
given by the radar image classification, otherwise take
the decision given by the optical image classification™.
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Table 1. Mass and belief functions for forested area detection using multisource (resp.
subscript “O” and “R”) images; K = x{1 —z —u} +z(1 —x — y)

Forested areas (F) Unforested areas (F) ® = FUF
mg X l—x—vy ¥
mg z l—z—u u
m =mo @ my X(z +u) + vz (t —x)(1—z)—uy uy
1 - K 1 —K - K
Bel X(z 4+ u) + yz (1 —x)(1 —z)—uy
1—-K | — K !

Table 2. Optical-radar data fusion results in the simple case where there is no imprecision in cloud detection
Optical my(F)  my(F) m,(®) Radar m,(0) Sign of Bel(F) Bel(F) Data
image image m(F) —my(F) fusion
class class class
F 0 1 0 F u - 0 F
F 0 1 0 F u + 0 1 F
(C] 0 0 1 F u - m,(F) m(F) F
Q) 0 0 1 F u + m,(F) mg(F) F
F | 0 0 F u - 1 0 F
F 1 0 0 F u + i 0 F

Assuming that there are no errors in the optical
image classification is equivalent to only considering
binary mass values for the optical image model:
VAe(F, F,@}, my(A) is equal to 0 or 1 (with m,(©)
= | representing the case of pixels labeled “cloud” or
“shadow” in optical classification). Conversely, the
imprecision in the radar image classification result
(due to non-null classification error) is modeled by
taking mg(®) = u > 0 for every pixel. Table 2 shows
the results of Dempster--Shafer data fusion for these
assumptions for each pixel label according to optical
{or radar) monosource classification.

Bel(F) and Bel(F) values are deduced from Table 1
by replacing x and y by their values [respectively
given by mg(F) and mo(®)]. In every case, we have
0 < K < 1, which means that there is no totally con-
flicting case, even when the optical and radar classes
are contradictory. This is due to the fact that a global
ignorance factor on the radar image has been intro-
duced by imposing mg(®) > 0. The only case where
the conflict is null (K = 0) is when mg(®) = 1, which
represents the case where no optical information is
available, i.e. data fusion reduces to radar image clas-
sification. Finally, we note that the only pair of
(mg(F), mg(®)) values which is not present in Table 2
is (1,1). Indeed, this represents an impossible case
because of the mass normalization condition:
Y 1z om(A) = 1 [equation (1)].

The last column of Table 2 shows the Dempster—
Shafer data fusion results, the decision rule being
equal to the maximum of belief over simple hypo-
theses. Comparing it to the first column (optical class)
and fourth column (radar class), we see that, in the
case of a binary optical image mass function,

Dempster—Shafer data fusion is equivalent to the clas-
sification rule Z. However, as we will see in the next
section, Dempster—Shafer modeling also allows the
representation of more general cases, compared to
those presented in this simple example. In particular,
the assumption about no imprecision in cloud detec-
tion is quite unrealistic, as shown by the results pre-
sented in Section 4.

In fact, the problem is that cloud boundaries may
have the same radiometric values as some unforested
areas. Thus, in the following, we define clouds as
a cluster of pixels that has “high” radiometric pixel
values near its center, and “medium” radiometric
pixel values near its borders. In particular, such a def-
inition means that the cloud center may be detected
by thresholding method, and that, in the case of pixels
having “medium” radiometric values, we need spatial
information to decide between cloud border or un-
forested area. Then, this cloud pixel modeling clearly
illustrates the need of introducing spatial information
in the evidence theory.

3. INTRODUCTION OF SPATIAL INFORMATION

In this paper, we propose to introduce neighbor-
hood information in Dempster—Shafer evidence the-
ory at two different levels: in the definition of
monosource mass functions, and, in a final regulariz-
ation step which is performed after the combination of
the monosource mass functions. These two levels are
both based on the classical Markovian field assump-
tion, respectively, for the label images associated to
the monosource images, and for the label image asso-
ciated to the multisource data.
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3.1. Definition of monosource image mass functions

We propose to consider two terms in our definition
of the monosource image mass functions: a radiomet-
ric term m’, and a neighborhood term m* The
first one may be classically defined from pixel
radiometric value distance to cluster center, or more
simply, as we will do, from the monosource classifica-
tion result.

For the neighborhood term, we find it reasonable
to assume that the contribution of each neighbor r is
a decreasing function of the distance d (in pixels)
between r and s, the considered pixel. In our case, for
a neighborhood window such that d < dp,,, a neigh-
bor labeled i in monosource image classification in-
creases m*(i) by the value: (1/Z)) (1 — d/d..), where
Z; is a parameter which defines the importance of the
pixel influence over its neighbors versus its class i. For
example, in our application, taking Zg < Z; and
Zy =Zr allows one to give more importance to
neighborhood information in the case of cloud neigh-
bors than in the two other cases. In summary, we
define m*(i) by

1 d /
S(7) — Bl ) I Iz 6)
" (l) {reNé,'i Zl( dmax>}// ( }

where ¢, is the label of pixel r; N, the neighborhood of
the considered pixel s, is such that d < d,,; and Z is
a normalization constant such that m® satisfies equa-
tion (1).

At this stage, different combination rules of m” and
m* may be envisaged: sum, product, Dempster ortho-
gonal sum, etc. Here, we propose to simply sum them,
before (re)normalizing the global mass function to
satisfy equation (1). This is a compromise type of
fusion!” that takes into account neighborhood in-
formation, in the sense that when m'(ij) =1 and
m'(i) = 0, their combination m(i) is equal 0.5. We
choose it because we consider neighborhood informa-
tion extracted from monosource image to be less
reliable than information which will be derived after
multisource data combination.

3.2. Final regularization step

Final regularization steps are based on the rather
classical assumption that homogeneous label config-
urations are more likely, in the considered images,
than inhomogeneous ones. Such methods generally
use neighborhood information to derive a homogen-
eity index, which is introduced in the decision rule.
For example, a very simple regularization method
assigns to a pixel the label which occurs the most
often in its neighborhood. In the same way, the Ising
model, applied in the case of Markov Random Field
(MRF) label images,!'® defines a neighborhood en-
ergy term to be proportional to the number of neigh-
bors having the same label. Such regularization
methods are generally well adapted to the case of
isolated mis-classified pixels (surrounded by well-clas-
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sified pixels); however, they may not be adapted to the
cases of classification errors presenting structures or
blocks. In such cases one solution would be to in-
crease the neighborhood size, but in this case small
image structures could be lost.

In this paper, we propose a new regularization
method based on an iterative data fusion scheme,
according to the Dempster combination rule, between
the current label image mass function m, and
m (called the “data mass function™). In our applica-
tion, m is the “SPOT-ERS” combined mass function.
We choose m, to be proportional to the number of
neighbors having the same label:

1

m, (i) = I‘Vsl-

PIRI(RA) (7

reN;

where 9(.,.) is the Kronecker symbol:

o(i,iy=1,
o j) =0,

We note that the use of the orthogonal sum sup-
poses that we are more confident in the spatial mass
function than we were in the previous section. This
seems reasonable since the considered label image is
now derived from multisource information, i.e. more
reliable and complete information than monosource
information.

The advantage of the Dempster—Shafer combina-
tion rule is that ignorance may be taken into account
in the case where m(®) # 0. The importance of the
neighborhood information is directly adapted to the
level of available information from data images. This
is illustrated on Fig. 1, which shows the decision areas
between two classes A and A in the case where
m, (®) =0, and only the classes 4 and A are con-
sidered in the decision rule [i.e., Bel(4) = m(A4) and
Bel(4) = m(A)]. If we denote by = the ratio between
A and A data mass values: x = m(A4)/m(A), then
m(A) = (11 + )[1 —m(@)],  m(A) = (x/1 + %))

if i .

1 «=mA/mA) [T
et v
A boundary o=1
0.8 when a=2 =2
=4
\ / o
v
2 06 T o
= T —o=a=
R s ¥ et
e S case of total
0.24% A ignorance
; 1
0 0.2 0.4 0.6 0.8 1
bayesian case m(©)
Fig. 1. Decision areas between 4 and A, assuming

m, (®) = 0, for different values of « ratio.
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Table 3. Radiometric term of optical mass function

Shadow Forest Certain unforest Unforest or cloud Certain cloud
my(F) 0 1 0 0 0
m(F) 0 0 1 0.5 0
my(©) 1 0 0 0.5 1
I if stop

ERS mass
functions

"data" label
image

it=it+1

label mass
functions

new label
image

if stop criterion
not verified

if it>1

SPOT mass
functions

monosource I

classi ﬁcationsl SPOT-ERS data fusion

regularization step

Fig. 2. Global data fusion algorithm divided in the three following steps: initialization (monosource
classifications), data fusion, and regularization step.

[1 —m(®)],m,(A4) =1 —m, (4), and the value of the
border between the two decision areas is given by the

ratio
_ I 2+ m(@)
P T |1 rm©)

In the Bayesian case, m(®) = 0, which is represented
along the Y-axis, p = 2/(a 4+ 1). This is the case where
the necessary mass m, (A) to decide class A, whereas
m(A) is inferior to m(A4) (i.e. in the absence of neigh-
borhood information the pixel would be labeled A,
2 < 1), is maximum. As m(®) increases, the minimum
value of m, (A4) that is necessary to decide 4 decreases.
For example, when x=2 and m,(4)=0.6, if
m(®) = 0.1, the pixel will be labeled A, but if
m(®) =0.3, it will be labeled A. Finally, when
m(©) = 1, m(A4) = m(4) = 0 and p = 0.5, only spatial
information is  considered: decide A if
m, (A) > m, (A).

3.3. Application to SPOT-ERS data fusion in the
presence of partial cloud cover

Monosource image radiometric mass functions
m{ and mj (where the subscripts “R™ and “O” refer to
optical and radar images) are derived respectively
from monosource image classifications: in two classes
{forest and unforested areas} for the radar image, and

four classes {forest, unforested areas, cloud and
shadow! for the optical one.

In the radar image case, for any pixel labeled
F (resp. F) in radar image classification mj(F) = 1-u,
mi(F) =0 [resp. mi(F) =0, mi(F) =1~ u)], and
mg(®) = u (cf. Table 1, with ze{0,1 — u}). As said in
Section 2.1, choosing mi(®) # 0 lets us represent the
imprecision in radar image classification. Therefore,
we choose mi(®) equal to the radar image error
(about 0.3).

In the optical image case, there are no overlapping
radiometric values between classes except between
unforested areas and clouds. Therefore, assuming no
classification error in the case of a cloud-free optical
image, the radiometric term my{, of optical image mass
function is chosen as shown in Table 3.

For the spatial term of the monosource mass func-
tion, the size of the neighborhood has been chosen
equal to the mean size of cloud borders in our images,
i.e. + 4 pixels. Due to the special importance of neigh-
borhood information in the case of clouds, we set
Zo=*Zpand Z, = Zp (cf. Section 3.1).

Having defined opticai image and radar image
mass functions (mg and mg) for every pixel, they are
combined according to the Dempster combination
rule: m = mg @ mg. The first data fusion label image
is then deduced according to maximum of belief
(which is equivalent to maximum of plausibility
in our case) over the singleton classes. Finally, the
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regularization step is performed. The stop criterion
used is the absence of change in the label image. In our
case, the convergence of this last step has been empir-
ically verified after about 10 iterations.

As a summary, the global classification algorithm
we use has the three following steps:

— initialization step: monosource classifications of
each data set;

— mass function definition with the introduction of
the neighborhood information deduced from
monosource classification, and data fusion ac-
cording to the Dempster combination rule;

— regularization step based on neighborhood in-
formation deduced from current data fusion re-
sult, and final classification.

Figure 2 illustrates this algorithm.

4. RESULTS AND DISCUSSION

The data fusion algorithm we described was ap-
plied to the problem of forested area discrimination
using SPOT and ERS-1 images. The pixel resolutions
of these two sensors are similar: respectively 20 m for
the optical images and 12.6 for the radar images (case
of 4-look data). In this section, we will consider two
applications of the proposed data fusion method. In
the first one, we apply it to monodimensional data:
ERS image (C band, VV polarization) and SPOT
channel 1 (1€[0.50-0.59 um]) image, with simulated
cloud cover. In the second one, we consider multi-
dimensional data: panchromatic SPOT image (two
visible channels: “green” 4 € [0.50-0.59 um] and “red”
4€[0.61-0.68 um], and a near infrared channel:
4€[0.79-0.89 um]). Moreover, the images of this sec-
ond set of data contain actual cloud cover,

4.1. Application 1o the case of simulated cloud cover

The first data set we consider corresponds to im-
ages acquired over a site near Canterbury (Kent,
United Kingdom). They were respectively acquired in
1990 and December 1991. There was no cloud cover
in the original SPOT image. Some simulated cloud
cover has been added in the following way: actual
clouds present in other SPOT images have been pas-
ted over original pixels, and shadows have been
simulated, given an illumination angle, by modifying
the original pixel radiometry.'® Figures 3(a) and (e)
show the SPOT images with the different simulated
cloud covers; respectively, equal to 12% and 33% of
the whole image.

Figure 3 shows the classification results obtained
by classification rule #, by Dempster-Shafer data
fusion (cf. Fig. 2) before regularization step (called
“DS") and after by Dempster—Shafer data fusion regu-
larization step (called “DSr”), for the two cases of
cloud cover equal to 12% and 33%. We note that in
both cases classification rule # fails at cloud borders
because of their misdetection by the thresholding
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method. The improvement through data fusion based
on the evidence theory is obvious comparing Fig. 3(b)
[resp. 3(f)] to Fig. 3(c) [resp. 3(g)]. However, we note
there are still some small structures of mis-classified
pixels (classification noise). Applying the classical
MRF regularization method (with Ising model), we
found that these structures are too large to be cleaned.
Conversely, after performing the regularization step
we described in Section 3.2 with a neighborhood size
equal to 5 pixels in line and in column, most of them
disappear [cf. Fig. 3(d) and (h)]. Therefore, we con-
clude in favor of this new regularization method
which is more flexible than the probabilistic model.

Similar results were obtained in the case of cloud
cover equal to 66%, except that, the more significant
is the cloud cover in SPOT image, the more the final
classified image looks like ERS monosource classifica-
tion. Figure 4 shows the percentage of well-classified
pixels, versus the percentage of cloud cover in the
image, again performing data fusion according to
classification rule #., and to Dempster—Shafer
modeling with and without the regularization step.
The performance of ERS monosource classification
and the SPOT monosource classification have been
indicated as references: they are equal to 72% for ERS
image, and decreases from 92% to 40%, as a function
of cloud cover, for the SPOT images. In this latter
case, detected clouds are not classified.

Comparing the three data fusion methods we note
the improvement, previously shown in Fig. 3, due to
the introduction of spatial information in the evidence
theory. However, we note that the number of correc-
ted pixels is only a small percentage of the total
number of image pixels. Moreover, the results do not
improve monotonically as a function of the percent-
age of cloud cover, since the greatest improvement is
achieved for a cloud cover equal to 33% rather than
66%. Actually, since classification rule .# only fails at
cloud borders, improvement is rather an increasing
function of the percentage of cloudy pixels in SPOT
images which are: (i) undetected according to the
threshold value, and (ii) well-classified in the ERS-1
image classification. This second condition is set to
eliminate the problem of ERS classification errors in
the comparison of the data fusion algorithm perfor-
mance.

Figure 5 shows the difference in percentage of well-
classified pixels between evidential data fusion (“DS”
or “DSr”) and classification rule #, versus cloudy
pixels possibly corrected, i.e. satisfying (i) and (ii). We
note that the percentage of actually corrected pixels
relative to the percentage of possibly corrected pixels
is about 40% before regularization step and about
50% after regularization step.

In summary, the efficiency of the data fusion
method we described in Fig. 2 has been verified, and
its superiority to classification rule # has been estab-
lished on our data, both qualitatively (cf. Fig. 3) and
quantitatively (cf. Figs 4 and 5). Particularly, it was
shown that taking into account imprecision in cloud
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Fig. 4. Comparison between the three multisource classifica-

tion algorithms: classification rule .#, Dempster—Shafer data

fusion before and after regularization step (resp. denoted
“DS” and “DSr”).

border detection allows partial correction of misclas-
sifications due to cloud non-detection by the thre-
sholding method. However, the cloud cover
considered represents only a specific case of clouds:
cumulus clouds. Therefore, we now aim at applying
the data fusion method to some real data exhibiting
more various kinds of clouds, such as low cirrus.

4.2. Application in the case of actual cloud cover

The second data set we used was acquired at the
east of Paris (France) in summer 1996. We have at our
disposal a panchromatic SPOT image, an ERS-1 im-
age and a LandSAT image. There is cloud cover only
in the SPOT image. The LandSAT image was used to
create the ground truth map of forested and unfores-
ted areas. The three images have been projected in the
same geometry (we chose the SPOT image as refer-
ence). Projection has been done by selecting the same
reference points in each pair of images, and approxi-
mating the distortion between the images by a poly-
nomial of degree two. Thus, the mean errors were
between 1 and 2 pixels both in raw and in the column
directions.

Figure 6(a) shows the channel 1 of the SPOT image.
In Fig. 6(a), we can see a field of fair weather cumulus
clouds with transition toward deeper convection, and
probably some cirrus clouds, e.g. over the small rec-
tangular forest area in the left of the image. As in the

<

Fig. 3. SPOT images with simulated cloud covers respec-

tively equal to (a) 12% and (¢) 33%. and corresponding data

fusion results respectively obtained by (b and f) classification

rule A, the presented method (c and g) before regularization
step and (d and h) after regularization step.
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Fig. 5. Difference in percentage of well-classified pixels be-
tween data fusion algorithm of Fig. 2 with or without regu-
larization step and classification rule #, versus the percent-
age of cloud “borders™ (difference between actual cloud cover
and cloud class obtained as result of SPOT image mono-
source classification), possibly corrected using ERS image.

previous case. the study of histograms and pixel
values shows that there is overlap between the range
of cloud pixel radiometric values and the range of
unforested area radiometric values. For example, in
Fig. 6(a), we can see that there are some clouds over
the forested areas having lower values than some
fields. Using the three SPOT channels, we achieve
classification error equal to 47.63%. Figure 6(b)
shows the ERS image. The ERS image monosource
classification error is equal to 15.01%. We note the
improvement in ERS classification performance, since
in the previous example classification error was about
30%. The main reason is that the image we now
consider was acquired in the presence of vegetation
(summer), which induces different backscattering
mechanisms, and helps to distinguish between the
different land cover types. However, we note that the
forest class is overestimated by ERS classification,
since it cannot distinguish between forested areas and
some dense vegetation areas, such as corn fields.
The extension of the previously presented data
fusion method to the case of multidimensional data is
simply done by modifying the radiometric mass value
computation during the learning process. For a given
pixel, the radiometric term in the SPOT mass function
is now defined according to its three radiometric
values in the three different SPOT channels. In par-
ticular, the infrared channel is used to remove ambi-
guities between forest areas and cloud shadows, which
are now present if we only consider the visible SPOT
channels (contrary to the previous case of simulated
cloud cover), such as at the top of the SPOT image
[Fig. 6(a)], and ambiguities between roads [in the left
part of Fig. 6(a)] or airport [in the right upper part of
Fig. 6(a)] and clouds. The two images acquired in the
visible SPOT channels show great redundancy. How-
ever, in the case of contradictory information, we used
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(a) SPOT image
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(d) comparision betweeen SPOT-ERS
fusion and classification
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. unforested areas D forest

. uncorrected pixels

Fig. 6. (a) channel | of SPOT image with actual cloud cover, (b) ERS image, (c) data fusion result
obtained by the described algorithm, and (d) comparison with ERS monosource classification.

a distance function to combine them, and to define the The ERS mass function myg is defined, as previously,
mass function. The neighborhood term of the SPOT from ERS image monosource classification. The im-
mass is defined as previously, and combined with the precision in radar image classification results is taken
radiometric one to provide the SPOT mass functionm,,.  into account by giving a non-zero mass to ®, constant
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and about equal to the radar image classification
error, except on the left border of the image where no
data are available [see Fig. 6(b)], where it is set equal
to 1. Finally, we found that a slight improvement may
be achieved in the results if we introduce a neighbor-
hood term in the ERS mass function (like in the SPOT
one). Indeed, radar images suffer from speckle, which
induces some classification errors (which cannot be
totally removed by performing the regularization step
during radar image monosource classification).

Having defined the SPOT and ERS mass functions,
data fusion is performed according to the algorithm of
Fig. 2. Figure 6(c) shows the final classification result
obtained after the regularization step (the size of the
neighborhood being the same as in the previous case
of application). The classification error is equal to
7.6%. It was equal to 11.1% before the regularization
step. We note the improvement due to the regulariz-
ation step, and the performance of the method in
comparison with classification rule #, which leads to
a classification error of 18.0%. Comparing these re-
sults with ERS monosource classification, we note
that the classification error has been reduced by a fac-
tor 2. Figure 6(d) shows a comparison between ERS
classification and SPOT-ERS data fusion: the pixels
which are well-classified in the two images are coded
in black, the pixels mis-classified in ERS classification
and well-classified by multisource classification are
coded in yellow (called “corrected pixels” where “cor-
rected” refers to data fusion), the pixels mis-classified
by both ERS classification and multisource classifica-
tion are coded in blue (called “uncorrected pixels™),
and the pixels mis-classified by multisource classifica-
tion when well-classified in ERS classification are
coded in green (called “introduced errors™). First, we
note that “corrected pixels” are much more numerous
(they represent about 9.6% of the whole image) than
the “introduced errors” (x~2.2% of the whole image),
which results in a decrease of classification error. In
particular, we recognize some yellow structures, e.g.
near the left border of the image, which may be fields
exhibiting high density vegetation cover, and were
mis-classified using the ERS image alone. Then,
we note that some mis-classified pixels by data fusion
(represented either in blue or in green) are forest
borders. These classification errors may be due to
the imprecision in the image projection to a common
geometry, as well as to the imprecision introduced in
the outline by the regularization step. We also note
that the other “introduced errors” concern a
small forest area in the lower part of the image.
Looking at the SPOT image, we see that it is under
a quasi-transparent cirrus cloud, which modifies the
pixel radiometry. In fact, this cloud remains undetec-
ted because it has no high radiometric pixel center.
Therefore, this shows the limit of the described
method, which fails in this case of a very thin cloud.
Conversely, the cirrus cloud in the left of the image
has been detected and the corresponding pixels well
classified.
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The “uncorrected pixels” represent about 54% of
the whole image. However, we note that most of them
are located under cloud cover in the SPOT image, and
thus must not be considered in the performance anal-
ysis of the data fusion method (clearly, when no in-
formation is available from the optical image, data
fusion is limited to the radar image classification per-
formance). Among the other cases of “uncorrected
pixels”, we note the poor estimation of the boundary
of the forested areas in the right part of the image, and
the road which crosses the forest in the left low part of
the image. This road was well classified (in unforested
areas) before the regularization step, but then it was
erased by the regularization.

In summary, the proposed data fusion method pro-
ved to be rather effective in the studied case of real
data. However, its main limitation appears with the
presence of transparent cirrus clouds.

5. CONCLUSION

For many applications of image classification prob-
lems, the information provided by a single sensor is
incomplete or imprecise, resulting in misclassification.
Data fusion can help reduce imprecision and provide
a more complete description. The main advantage of
Dempster-Shafer evidence theory for data fusion is
that it provides a general framework to represent
ignorance and imprecision. For example, in the de-
scribed application, it was used to model the ignor-
ance corresponding to the presence of the cloudy
pixels in the optical image, and the imprecision intro-
duced by the speckle in the radar image. In both cases,
we assign a non-zero mass to O, the union of all
classes, which provides us an option to not make
a decision between the different classes.

In this paper, we propose to improve data fusion
results by taking into account spatial neighborhood
information. In our application, this was particularly
needed because of the poor cloud border detection.
Spatial information was introduced at two different
levels:

— When defining a monosource mass function, for
every pixel, a neighborhood term was defined. It
was chosen to be proportional to the number of
neighbors having the same label, and to be a de-
creasing function of pixel distance. Then, we use
the addition law to combine this spatial term with
a classically defined “radiometric” one, because it
is derived from a monosource classification which
may be erroneous.

— At the second level, we assume spatial information
extracted from the data fusion label image to be
much more reliable. We introduce this spatial in-
formation during an iterative regularization step.
A spatial neighborhood mass function is defined
from the current data fusion label image, and it is
combined according to the Dempster combina-
tion law with the “blind” multisource mass
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function (obtained before the regularization step).
The advantage of using the Dempster combina-
tion law is that the importance of neighborhood
information is automatically adapted to the level
of ignorance at the considered pixel.

The presented method was applied to the problem of
forested and unforested area detection, having at our
disposal a radar image and an optical image showing
a partial cloud cover. At each pixel, monosource mass
functions have been defined from respective mono-
source classifications. Moreover, the non-null radar
classification error has been modeled as a global ig-
norance factor, by assigning a constant non-zero mass
to ©. The proposed data fusion algorithm was applied
to two different SPOT-ERS data sets. In both cases,
the convergence of the regularization step was
achieved after about ten iterations.

The first data set lets us compare the performance
of the proposed algorithm to the simple classification
rule # in the cases of four different simulated cloud
covers (from 0% to 66%) in the SPOT image. It was
shown that classification rule # leads to classification
errors at cloud boundaries, due to their poor detec-
tion by thresholding methods, whereas using the
evidential data fusion significantly improves the clas-
sification results. More precisely, we found that the
observed improvement is an increasing function of the
percentage of undetected cloudy pixels in the SPOT
image, possibly corrected using ERS information,
rather than a function of the percentage of clouds.
Relative to these possibly corrected pixels, about
a 50% correction was achieved. The second data set
represents a case of actual cloud cover, with fair
weather cumulus and cirrus clouds, which are much
more difficult to detect than the simulated deeper
convection cumulus. Performance was good, except in
a special case of very thin cirrus clouds.

6. SUMMARY

In this paper, we propose to introduce spatial in-
formation in Dempster—Shafer evidence theory. This
work concerns particularly pattern recognition and
classification problems using incomplete data, such as
in the presence of an hiding phenomena, or imprecise
data, such as in the case of noisy data. Then, the main
advantage of the evidence theory is that it provides
a general frame work to represent the imprecision or
incompleteness of each data set. Moreover, in such
cases of missing radiometric information, the neigh-
borhood information may be very useful. Therefore,
we propose to introduce it. In the frame of the evid-
ence theory, this was done at two different levels:
before data fusion, in the definition of the monosource
mass functions, and, during data fusion. In the latter
case, a “neighborhood” mass function is derived from
the current label image and combined according to the
Dempster orthogonal sum with the “data” mass func-
tion representing radiometric information. We show
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that the main advantage of such a combination law is
to adapt the importance of neighborhood information
to the level of radiometric missing information.

All along the paper, we consider the following ap-
plication to illustrate our purpose: data fusion of
radar and optical images showing partial cloud cover.
First, we show how the Dempster—Shafer evidence
theory may be successfully used to model the partial
cloud cover (in optical images) in terms of missing
information, and the information imprecision, due to
the speckle noise, in the SAR images. Then, because of
cloud detection inaccuracy, we introduce spatial
neighborhood information. This data fusion algo-
rithm has been applied to the problem of forested and
unforested area detection, and its performance is
stated both in the cases of different simulated cloud
cover and in the case of real data.
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