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Abstract

This paper proposes a classi"cation of fuzzy distances with respect to the requirements needed for applications
in image processing under imprecision. We distinguish, on the one hand, distances that basically compare only the
membership functions representing the concerned fuzzy objects, and, on the other hand, distances that combine spatial
distance between objects and membership functions. To our point of view, the second class of methods "nds more general
applications in image processing since these methods take into account both spatial information and information related
to the imprecision attached to the image objects. New distances based on mathematical morphology are proposed in this
second class. ( 1999 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Fuzzy set theory "nds in image processing a growing
application domain. This may be explained not only by
its ability to model the inherent imprecision of images
together with expert knowledge, but also by the large and
powerful toolbox it o!ers for dealing with spatial in-
formation under imprecision [1]. This is, in particular,
highlighted when spatial structures or objects in the
images are directly represented by fuzzy sets. A large set
of image processing transformations involves the analysis
of structures taking into account geometrical, topologi-
cal, morphological, distance, connectivity and neighbor-
hood information. In particular, pattern recognition is
performed by considering not only the object to be recog-
nized but also the context information provided by the
other objects in the scene. The interest of fuzzy spatial
relationships for representing and processing imprecise
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image content has been highlighted by several authors
several years ago (see e.g. [2}4]).

Several set and geometrical measures and transforma-
tions have been generalized to fuzzy sets (e.g. [5,6]).
Fuzzy topological and connectivity aspects have been
introduced in [7]. Fuzzy morphological operators have
been de"ned [8,9], which analyze relationships between
fuzzy sets and fuzzy structuring elements by controlling
the spatial extension of the transformations. Other fuzzy
relationships like adjacency [10] or relative position
[11}13] have also been developed recently.

Distance measures have been proposed in several
works, and constitute the purpose of this paper. The most
common approach consists in de"ning distances between
two fuzzy sets. We will shortly review the proposed
de"nitions, classify them depending on the type of in-
formation they convey, and propose some generaliz-
ations. The presentation given below is directly inspired
by the classi"cation proposed in [14], but adapted to
image processing purposes, by underlining for each
de"nition the type of image information on which it
relies. One class of approaches is concerned only by the
comparison of the membership functions and is widely

0031-3203/99/$20.00 ( 1999 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
PII: S 0 0 3 1 - 3 2 0 3 ( 9 9 ) 0 0 0 1 1 - 4



addressed in the literature, while the second one intro-
duces also spatial domain distances and constitutes the
most original part of this paper. In Section 2, we "rst
recall basic de"nitions and properties of proximity rela-
tionships and distances, and discuss the needs for image
processing. Then we present the main methods that can
be used for de"ning fuzzy distances. In Section 3 we
propose a classi"cation of distances relying only on
the comparison of membership functions. In Section 4 we
de"ne original distances taking also spatial information
into account. A simple illustrative example is given in
Section 5. Finally, we provide a short discussion on the
possible use of these two classes of distances in image
processing and pattern recognition in Section 6.

2. Fuzzy distances and image processing

In this section we specify the context of this study and
recall basic de"nitions that will be used in the following.
We also present the principles underlying the main ap-
proaches for de"ning fuzzy distances. These principles
will be instantiated under di!erent forms in Sections 3
and 4.

2.1. Fuzzy objects

In this paper we deal with speci"c fuzzy sets, that
represent spatial image objects and the imprecision at-
tached to them. They are de"ned as follows.

Let us denote by S the space on which the image is
de"ned (usually Rn or Zn). We denote by x, y, etc., the
spatial variables, i.e. points of S (pixels or voxels).

We denote by dS(x, y) the spatial distance between two
points x and y of S (related to the Cartesian space they
are belonging to and independent of their membership
to any possible fuzzy set). Generally dS is taken as the
Euclidean distance on S.

A crisp object is, as usual, a subset of S. Similarly,
a fuzzy object is de"ned as a fuzzy subset of S. A fuzzy
object is de"ned bi-univoquely by its membership func-
tion, denoted by Greek letters (k, l, etc.). A membership
function characterizing a fuzzy object is therefore a func-
tion, say k, from S into [0,1]. For each x in S, k(x) is a
value in [0,1] which represents the membership degree
of the point x to the fuzzy set k. Such a representation
allows for a direct representation of the spatial informa-
tion. We denote by F the set of all fuzzy sets de"ned onS.

For any two fuzzy objects k and l, we denote by d(k, l)
their distance. The de"nition of distances between fuzzy
objects is the scope of this paper.

Since we are mainly interested here in the type of
information that is included in the various distance def-
initions, we assume that the fuzzy sets satisfy the neces-
sary properties such that all mathematical expressions
are well de"ned. For instance in the continuous case,

several de"nitions assume that the membership functions
are Lebesgue integrable. This will not be speci"ed in the
following. Moreover, in most cases we will restrict to the
discrete bounded case (i.e. membership functions de"ned
on Zn and having a bounded support), since this is the
most useful case in image processing.

2.2. Types of problems related to distances

Several problems can be addressed when fuzzy distan-
ces are concerned. We distinguish three of them, brie#y
addressed yet in [15]:

f distances between two points in a fuzzy set,
f distances from a point to a fuzzy set,
f and distances between two fuzzy sets.

The "rst type of distance is the less treated in the litera-
ture. In the crisp case, this kind of distance is widely used
in classical image processing and pattern recognition
[16]. The de"nition of its fuzzy equivalent should lead to
the design of new tools for generalizing classical methods
when imprecision in structures and images has to be
taken into account. We proposed in [17] to de"ne a dis-
tance between two points in a fuzzy set as a fuzzy general-
ization of the concept of geodesic distance in a crisp set,
by introducing fuzzy connectivity. Typical applications
in fuzzy image processing consist in "nding the best path
in the geodesic sense in a spatial fuzzy set representing
some objective function (satis"ability of a property, se-
curity areas around objects, etc.). Fuzzy geodesic distance
is also the basis for fuzzy geodesic operators, e.g. mor-
phological ones [18,19]. This type of distance is not
considered in the following.

Distances from a point to a fuzzy set do not deserve
much attention in the literature, although they are useful
in image processing: they can be used for classi"cation
purposes where a point has to be attributed to the nearest
fuzzy class, or when considering distance from a point
to the complement of a fuzzy set k, we obtain the basic
information for computing a fuzzy skeleton of k. We
de"ned such distances based on fuzzy mathematical
morphology in [20]. They are just mentioned in Section
4 since they may serve as a basis for de"ning distances
between two fuzzy sets, but they are not further investi-
gated here. We restrict this paper to the third kind of
distances (between two fuzzy sets). It is the most widely
addressed in the literature, but not often in the context
of image processing. We think that the speci"cities of
image information call for a study of the existing
de"nitions in terms of image properties they include, and
even for the de"nition of new ones. Applications of such
distances cover a very large "eld, including image re-
gistration, assessment of relationships between image
components, comparison of imprecise image objects,
structural pattern recognition, etc. Roughly speaking,
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these applications can be grouped into two classes. The
"rst class deals with distances dedicated to the compari-
son of shapes, these shapes being possibly contained in
di!erent images, or represent one image object and one
model object. The concerned applications are related to
registration and to recognition. The second class deals
with distances between two objects in the same image,
and provides measures for quantifying how far one object
is from the other. It can also serve for model-based
pattern recognition, as a relationships between image
(respectively model) objects. For instance, if we consider
a graph-based recognition method, where the objects of
the scene are the modes of the scene, then distances of the
"rst class provide a way to compare nodes in two graphs,
while distances of the second class can be considered as
attributes of the arcs between two nodes in each graph.

2.3. Properties of proximity relationships

Since the de"nitions summarized in this paper do not
always satisfy strictly the properties of a distance (or
metric), we should rather speak of more general proxim-
ity functions. However for sake of simplicity we will
keep the term distance. The main classes of proximity
measures are recalled in this section.

2.3.1. Dexnitions
A metric is a positive function d such that

(1) ∀k3F, d(k,k)"0 (re#exivity),
(2) ∀(k, l)3F2, d(k, l)"0Nk"l (separability),
(3) ∀(k, l)3F2, d(k, l)"d(l,k) (symmetry),
(4) ∀(k, l, m)3F3, d(k, l))d(k, m)#d(m, l) (triangular

inequality).

Several kinds of measures can be de"ned with less re-
quirements: a pseudometric is a function satisfying 1,
3 and 4 (separability does not necessarily hold), a semi-
metric satis"es 1, 2 and 3 (and not the triangular inequal-
ity), a semi-pseudometric satis"es only 1 and 3, etc. (see
e.g. [21]).

Since distances may be derived from similarity
measures, we recall here the de"nition of this concept.

A similarity relation [22] is a function s taking values
in [0,1], such that

(1) ∀k3F, s(k,k)"1 (re#exivity),
(2) ∀(k, l)3F2, s(k, l)"s(l, k) (symmetry),
(3) ∀(k, l, m)3F3, t[s(k, m), s(m, l)])s(k, l) (t-transitiv-

ity, where t is a t-norm).

A similarity relation is also called t-indistinguishability
or t-equivalence.

If we set d"1!s, obviously d is a semi-pseudometric.
If t"min, then we also have

∀(k, l, m)3F3, d(k, l))max[d(k,m), d(m, l)]

which is a property of a hyper-metric. If t is the
Lukasiewicz t-norm (i.e. t(a, b)"max(0,a#b!1)),
then d satis"es also the triangular inequality and is a
pseudometric. If f is an additive generator (typically like
the functions used for generating continuous Ar-
chimedian t-norms [23]), then d"f " s is a pseudometric
(taking values in R`) if and only if the t-norm generated
by f is less than t [24]. A similar relationship holds
between a metric and a t-equality (i.e. a similarity such
that s(k, l)"1 if and only if k"l).

From a topological point of view, the de"nition of a
metric d on F induces a topology on F, and therefore
a continuity. It has been studied for instance in [25] for
the case of the fuzzy Hausdor! distance. Partial results
can also be obtained if d has less properties: if we set
cl(k)"Ml3F, d(k, l)"0N for d being a semi-pseudomet-
ric, then the function cl is a pre-closure on F, which
therefore de"nes a pretopology on F (see e.g. [26,27]).
Conversely, we may derive a semi-pseudometric from
any (non-idempotent) adherence de"ned on F.

2.3.2. Needs in image processing and pattern recognition
Although we may speak about distances between im-

age objects in a very general way, this expression does
not make necessarily the assumption that we are dealing
with true metrics. For several applications in image pro-
cessing, it is not sure that all properties are needed.

An important use of distances is related to the com-
parison of shapes, which reinforces the interest of deriv-
ing distances from similarities. The concept of similarities
between objects, in particular image objects, contains
some subjective aspects. As already stated by PoincareH at
the beginning of the century, and underlined by several
authors in the fuzzy sets domain (see e.g. [28,29]), subjec-
tive similarities does not require to be transitive. This
induces a loss of triangular inequality in the derived
distance. In image processing, typically for applications
where image objects have to be compared to models, the
triangular inequality is of no use, since the two argu-
ments of the distance function belong to two di!erent sets
of objects. For such applications, semi-metrics or even
semi-pseudometrics may be su$cient.

We may even go farther in this direction. Indeed, since
a semi-pseudometric does not satisfy the separability
property, the study of the equation d(k, l)"0 can be
exploited in terms of pattern recognition. For instance if
we build classes according to prototypes, this equation
can be used as a classi"cation rule: every object which is
indistinguishable from a prototype will be added to the
corresponding class. This has been developed in the con-
text of pre-topologies [26,30]. It is the non-idempotency
of the adherence function in a pre-topology that allows to
aggregate objects to a class. This is again an argument in
favor of semi-pseudometrics.

Another aspect that can be useful in image processing
and pattern recognition is the link existing between
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semi-metrics and fuzzy partitions derived from a t-indis-
tinguishability relation. This clearly "nds applications as
soon as the recognition or classi"cation problem can be
stated as the (fuzzy) partitioning of the set of objects.

2.4. Representation of fuzzy distances

In the previous sections, we always assumed that d
takes values in R` (or more speci"cally in [0,1] for some
of them). This corresponds to the most used representa-
tion of the distance between two fuzzy sets, as a number.
However, since we consider fuzzy sets, i.e. objects that are
imprecisely de"ned, we may expect that the distance
between them is imprecise too. This argument is ad-
vocated in particular in [31,32]. Then the distance
is better represented as a fuzzy set, and more precisely
as a fuzzy number (a convex upper semi-continuous fuzzy
set on R` having a bounded support).

In [32], Rosenfeld de"nes two concepts that will be
used in the sequel. One is distance density, denoted by
d(k, l), and the other distance distribution, denoted by
*(k, l), both being fuzzy sets on R`. They are linked
together by the following relation:

*(k, l)(n)"P
n

0

d(k, l)(n@) dn@. (1)

While the distance distribution value *(k, l)(n) represents
the degree to which the distance between k and l is less
than n, the distance density value d(k, l)(n) represents the
degree to which the distance is equal to n.

Finally, the concept of distance can be represented as
a linguistic variable. This assumes a granulation [33] of
the set of possible distance values into symbolic classes
such as `neara, `fara, etc., each of these classes being
de"ned as a fuzzy set. This approach has been drawn e.g.
in [34}36].

2.5. Overview of the main approaches

In this section, we brie#y summarize the main ap-
proaches that can be followed in order to de"ne a fuzzy
distance. These include:

f approaches that rely on the de"nition of a crisp dis-
tance and try to generalize them,

f approaches that infer a distance from a similarity func-
tion,

f approaches that deduce a distance from set relation-
ships between both sets (or other types of relation-
ships),

f symbolic approaches.

2.5.1. Generalizing a crisp distance to a fuzzy one
In this section, we consider the class of approaches to

de"ne a fuzzy distance that rely on extension of a given
crisp distance. They belong to the general problem of

extending a relationship R
B

between two binary objects
to its fuzzy equivalent R (fuzzy relationship between
two fuzzy objects). Instantiations of the described
methods to the case of distance are provided in Sections 3
and 4.

From a-cuts: A way to de"ne crisp sets from a fuzzy set
consists in taking the a-cuts of this set. Therefore, one
class of methods relies on the application of the relation-
ship R

B
to each a-cut. This gives rise to two di!erent

`fuzzi"cationa methods in the literature.
The "rst fuzzi"cation method consists in `stackinga

the results obtained with binary operations on the a-cuts:
the fuzzy equivalent R of R

B
is de"ned as (see e.g.

[8,35,37]):

R(k, l)"P
1

0

R
B
(ka, la) da, (2)

where ka denotes the a-cut of k, or by a double integra-
tion as

R(k, l)"P
1

0
P

1

0

R
B
(ka,lb) dadb. (3)

Other fuzzi"cation equations are possible, like

R(k,l)" sup
a|*0,1+

min(a,R
B
(ka, la)) or

R(k, l)" sup
a|*0, 1+

(aR
B
(ka, la)), (4)

the "rst one of these equations being meaningful if
R

B
takes values in [0,1].

This approach has been applied to the de"nition of
several fuzzy operations, for instance connectivity [6],
fuzzy mathematical morphology [8], fuzzy adjacency
[10], and of course distances [15,20,37] as will be seen
later.

The second fuzzi"cation method is the extension prin-
ciple [38], which leads in the general case to a fuzzy
number (rather than a crisp number):

∀n3V(R
B
), R(k, l)(n)" sup

RB(ka,la)/n

a, (5)

whereV(R
B
) denotes the image of R

B
, i.e. the set of values

taken by R
B

(R` or [0,1] in the case of distances).
Translating binary equations into fuzzy ones: Another

way to proceed, in order to derive a fuzzy de"nition
from a crisp one, consists in translating binary equa-
tions into their fuzzy equivalent: intersection is
replaced by a t-norm, union by a t-conorm, sets by
membership functions, etc. Examples can be found
for de"ning fuzzy morphology [8], fuzzy inclusion
[9], etc.

This translation is particularly straightforward if the
binary relationship can be expressed in set theoretical
and logical terms. This can be obtained in a natural way
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for several distances, like nearest point distance or Haus-
dor! distance [20]. This remark endows methods based
on mathematical morphology with a particular interest,
since mathematical morphology is mainly based on set
theory. This approach will be used in Section 4.

2.5.2. Distances from similarity
We already mentioned that a distance can be derived

formally from a similarity measure (see for instance
[22,24,39}42]). Then the problem amounts to de"ne the
similarity measure. This can be addressed using one of
the previous methods, given a similarity between crisp
sets. However, because of the links between similarity
and pattern recognition problems, this approach is often
used for comparing objects based on some features, pos-
sibly fuzzy ones, that are extracted from the images in
preliminary stages. Then the similarity concerns these
features, and not the objects as spatial fuzzy sets. This
may explain why this approach leads mainly to distances
dealing with membership functions only (Section 3).

Similarity-based approaches can bene"t from the
existing algorithms for checking if a relation is a sim-
ilarity, in particular if it satis"es the transitivity property
(e.g. [43,44]).

2.5.3. Distances from set relationships
Set relationships provide a lot of information for the

comparison of objects, typically in the case where image
objects have to be compared with some models or proto-
types. Similar objects are expected to strongly overlap
and to have reduced di!erences. We have chosen to
present here the approach proposed in [45,46], where
a very useful typology of comparison measures is pro-
posed.

In this work, a comparison measure is generally de-
"ned as a function of three variables F

S
[M(kWl),

M(l!k), M(k!l)], where M is a fuzzy set measure (e.g.
fuzzy cardinality) and ! denotes a di!erence operator
(such that kLlNk!l"0, and kLk@Nk!lL
k@!l). This approach is closed from Tversky de"nitions
[47]. Then speci"c types of comparison measures are
de"ned:

f a similitude measure is a comparison measure such
that F

S
(x, y, z) is non-decreasing with respect to x

and non-increasing with respect to y and z (this
corresponds to the fact that two fuzzy sets are more
similar if they have a greater intersection and less
di!erence);

f a satis"ability measure is a similitude measure such
that F

S
(0, y, z)"0, F

S
(x, 0, z)"1, and which does not

depend on z (this corresponds to the case where the
"rst object is considered as a reference to which the
other is compared);

f an inclusion measure is a re#exive similitude measure
such that F

S
(0, y, z)"0 and F

S
does not depend on z;

f a resemblance measure is a symmetrical and re#exive
measure;

f a dissimilarity measure is a comparison measure tak-
ing value 0 if k"l, and such that F

S
is independent of

x and increasing with respect to y and z.

A distance between two fuzzy sets can be derived from
a dissimilarity measure, or from 1!F

S
if F

S
de"nes a

similitude measure. Several distances that have been pro-
posed in the literature can be classi"ed from this point of
view.

2.5.4. Distances from other relationships
When distances are mainly used for comparing shapes,

they may be derived from other relationships between
objects, not only metric ones. Set relationships can be
used as shown in the previous section, but also several
other ones, like geometrical features extracted from
the object or any other type of attribute, and topo-
logical relationships like `overlapa, `meeta, etc. [48}50].
Since such measures do not necessarily include in-
formation on the spatial distance, they are mainly found
in the "rst class of de"nitions (Section 3) and used
for model-based pattern recognition, for approaches
relying on prototypes, for applications like indexing
and searching in image databases (as in [50,51] for
instance).

Such methods are often related to similarity-based
measures.

2.5.5. Symbolic approaches
We mean by `symbolic approachesa methods that try

to de"ne linguistic variables representing distances (the
last type of representation mentioned before). In image
processing, the problem amounts to derive symbolic rep-
resentations from the numerical information carried by
the image and from computation on it (see e.g. [35]).
These representations then provide a kind of summariz-
ation of the image content related to metric information.
These approaches are not further detailed here, and the
following sections are restricted to numerical ap-
proaches, where distances are evaluated as numbers or
fuzzy numbers.

3. Distances between two fuzzy sets by comparing
membership functions

In this section, we review the main distances proposed
in the literature that aim at comparing membership func-
tions. They have generally been proposed in a general
fuzzy set framework, and not speci"cally in the context of
image processing. They do not really include information
about spatial distances. The classi"cation chosen here is
inspired from the one found in [14]. Similar classi"ca-
tions can be found in [52}54].
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3.1. Functional approach

The functional approach is probably the most popular.
It relies on a ¸

p
norm between k and l, leading to the

following generic de"nition [21,31,55]:

d
p
(k, l)"CP

x|S
Dk(x)!l(x)DpD

1@p
, (6)

d
=
(k, l)"sup

x|S
Dk(x)!l(x)D. (7)

d
p

is a pseudometric, while d
=

is a metric. In general,
d
p

does not converge towards d
=

when p becomes in"-
nite, but it converges towards [21]:

d
E44 S61

(k, l)"infMk3R, j(Mx,Dk(x)!l(x)D'kN)"0N, (8)

where j denotes the Lebesgue measures on S. d
E44 S61

is
a pseudometric, called essential supremum, and related
to d

=
by the relation d

E44 S61
)d

=
. Equality does not hold

in the general continuous case (a counterexample can be
found in [21]).

In the discrete "nite case, these de"nitions become

d
p
(k, l)"C +

x|S
Dk(x)!l(x)DpD

1@p
, (9)

d
=
(k, l)"max

x|S
Dk(x)!l(x)D. (10)

In this case, they are all metrics. Therefore, this approach
is also called metric-based in [54].

A noticeable property of d
p

is that it takes a constant
value if the supports of k and l are disjoint. In such cases,
we have

d
p
(k, l)"DkD#DlD, (11)

where DkD denotes the fuzzy cardinality of k, and for d
=

we
have

d
=
(k, l)"maxC sup

x|S
k(x), sup

x|S
l(x)D, (12)

which is equal to 1 if the fuzzy sets are normalized.
These equations show that, as soon as the support of

k and l are disjoint, the value taken by their distance is
constant, irrespective of how far the supports are from
each other in S.

A slightly di!erent version of d
1

has been proposed
in [52,56], where the distance is normalized by DSD (car-
dinality of S). However, this normalization does not
change the properties, neither the type of information
taken into account. It allows an easier link to similarity.

The distance d
=

is also called geometrical distance
in [52]. However, this de"nition (as well as the general

de"nition d
p
) considers only the geometry of the two

fuzzy sets with respect to each other, in terms of shape of
the membership function, but does not include the geo-
metry related to dS.

The distance d
1
has been used in a pyramidal approach

in image processing in [40] for recognizing objects based
on their attributes. In this example, the fuzzy sets do not
represent the objects themselves but fuzzy attributes
of the objects. Therefore, the spatial information is not
taken into account at the level of the distance formula-
tion but is rather included implicitly in the type of fea-
tures used.

Other forms of distances can be found in this class. For
instance, in [53], the following form is proposed (in the
"nite discrete case):

d(k, l)"
+

x|S
Dk(x)!l(x)D

+
x|S

(k(x)#l(x))
. (13)

This equation corresponds to a normalization of d
1

by
the sum of the cardinality of k and l. Again, its value is
constant if the supports of both fuzzy sets are disjoint, the
constant being equal to 1.

3.2. Information theoretic approach

Based on their de"nition of fuzzy entropy E(k), de
Luca and Termini de"ne a pseudometric as [57]

d(k, l)"DE(k)!E(l)D, (14)

with

E(k)"!K +
x|S

[k(x)logk(x)#(1!k(x)) log(1!k(x))],

(15)

K being a normalization constant.
This distance does not satisfy the separability condi-

tion. This can be overcome by considering the quotient
space obtained through the equivalence relation
k&lQE(k)"E(l). However this is not suitable for im-
age processing. Indeed, since the entropy of a crisp set is
zero, two crisp structures in an image belong to the same
equivalence class, even if they are completely di!erent.
One main drawback of this approach is that the distance
is based on the comparison of two global measures per-
formed on k and l separately: there are no linking points
of k to points of l, which is of reduced interest for
computing distances.

Entropy functions under similarity [58,59] combine
this approach with the membership comparison ap-
proach. It has been applied in decision problems (in
particular for questionnaires) but to our knowledge not
in image processing.

Based on a similar approach, a notion of fuzzy
divergence (which can be interpreted as a distance)
has been introduced in [60], by mimicking Kulback's
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approach [61]:

d(k, l)"
1

DSD
+
x|S

[D
x
(k, l)#D

x
(l,k)] (16)

with

D
x
(k, l)"k(x) log

k(x)

l(x)
#(1!k(x)) log

1!k(x)

1!l(x)

and the convention 0/0"1. This distance is positive,
symmetrical, but does not satisfy the triangular inequal-
ity. Morever, it is always equal to 0 for crisp sets.

3.3. Set theoretic approach

In this approach, distance between two fuzzy sets is
seen as a set dissimilarity function, based on fuzzy union
and intersection. Examples are given in [14]. The basic
idea is that the distance should be larger if the two fuzzy
sets weakly intersect. Most of the proposed measures are
inspired from the work by Tversky [47] that proposes
two parametric similarity measures between two sets A
and B:

hf (AWB)!af (A!B)!bf (B!A) (17)

and in a rational form

f (AWB)

f (AWB)#af (AWBM )!bf (BWAM )
, (18)

where f (X) is typically the cardinality of X, a, b and h are
parameters leading to di!erent kinds of measures, and
BM denotes the complement of B.

Let us mention a few examples (they are given in the
"nite discrete case). A measure being derived from the
second Tversky measure by setting a"b"1 has been
used by several authors [14,39,52,53,54,62,63]:

d(k, l)"1!
+

x|S
min[k(x), l(x)]

+
x|S

max[k(x), l(x)]
. (19)

This distance is a semi-metric, and always takes the
constant value 1 as soon as the two fuzzy sets have
disjoint supports. It also corresponds to the Jaccard
index [63]. With respect to the typology presented in
[46], this distance is a comparison measure, and more
precisely a dissimilarity measure. Moreover, 1!d is a
resemblance measure. Applications in image processing
can be found e.g. in [64], where it is used on fuzzy sets
representing objects features (and not directly spatial
image objects) for structural pattern recognition on poly-
gonal 2D objects.

A slightly di!erent formula has been proposed in [56],
which however translates a similar idea:

d(k, l)"1!
1

DSD
+
x|S

min[k(x), l(x)]

max[k(x), l(x)]
(20)

with the convention 0/0"1. It is a semi-metric. It takes
the constant value 1 if the two fuzzy sets have disjoint
supports, without any other condition on their relative
position in the space.

Another measure takes into account only the intersec-
tion of the two fuzzy sets [14,52,54]:

d(k, l)"1!max
x|S

min[k(x), l(x)]. (21)

It is a semi-pseudometric if the fuzzy sets are normalized.
Again it is a dissimilarity measure, and 1!d is a resem-
blance measure. It is always equal to 1 if the supports of
k and l are disjoint.

If we set (k h l)(x)"max[min(k(x), 1!l(x)),
min(1!k(x), l(x))], two other distances can be derived,
as [54,14]

d(k, l)"sup
x|S

(k h l)(x), (22)

d(k, l)" +
x|S

(k h l)(x). (23)

These two distances are symmetrical measures. They are
separable only for binary sets. Also we have d(k,k)"0
only for binary sets. They are dissimilarity measures. The
"rst one is equal to 1 if k and l have disjoint supports and
are normalized (if they are not normalized, then this
constant value is equal to the maximum membership
value of k and l). The second measure is always equal to
DkD#DlD is k and l have disjoint supports.

These measures actually rely on measures of inclusion
of each fuzzy sets in the other. Indeed, an inclusion index
can be de"ned as [8,9] as

I(k, l)" inf
x|S

¹[k(x), 1!l(x)], (24)

where ¹ is a t-conorm. Since the distance should be small
if the two sets have a small degree of equality (the equal-
ity between k and l can be expressed by `k included in
l and l included in ka, which leads to an easy transposi-
tion to fuzzy equality), a distance may be de"ned from an
inclusion degree as

d(k, l)"1!min[I(k, l),I(l,k)]. (25)

By taking ¹"max, we recover the de"nition derived
from (k h l). This approach has been used in [39,65].
Other choices of ¹ may lead to di!erent properties of d.
For instance, if ¹ is taken as the Lukasiewicz t-conorm
(bounded sum), then (k h l)(x)"Dk(x)!l(x)D. Therefore
we have:

sup
x|S

(k h l)(x)"d
=
(k, l), (26)
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and

+
x|S

(k h l)(x)"d
1
(k,l). (27)

In this case, both distances are metrics in the discrete
"nite case.

These measures have been applied in image processing
for image databases applications in [54].

Other inclusion indexes can be de"ned, e.g. from
Tversky measure by setting a"1 and b"0, leading to
f (AWB)/f (A) [63].

The last de"nitions given by Eqs. (21) and (22)
are, respectively, equivalent to 1!%(k; l) and
1!max[N(k; l), N(l;k)] (where % and N are possibility
and necessity functions) used in fuzzy pattern matching
[66,67], which has a large application domain, including
image processing (see e.g. [68]). It is interesting to note
that they are related to fuzzy mathematical morphology,
since %(k; l) corresponds to the dilation of k by l at
origin, while N(k; l) corresponds to the erosion of k
by l at origin. These de"nitions can be straightforwardly
generalized to fuzzy union and intersection derived from
t-norms and t-conorms, leading to a correspondence with
other forms of fuzzy mathematical morphology [8].

Such generalizations using t-norm and t-conorm for
set relationships can be done for all de"nitions presented
in this section.

3.4. Pattern recognition approach

This approach consists in "rst expressing each fuzzy
set in a feature space (for instance, cardinality, moments,
skewness) and to compute the Euclidean distance be-
tween two feature vectors [14] or attribute vectors [51].
This approach may take advantage of some of the pre-
vious approaches, for instance, by using entropy or
similarity in the set of features. It has been applied, for
instance, for database applications [51].

A similar approach, called signal detection theory, has
been proposed in [54]. It is based on counting the num-
ber of similar and di!erent features.

A particular form of distances between attributes can
be found in [52], where the distance is de"ned from
vectorial representations a and b as

1!
a ) b

max(a ) a, b ) b)
. (28)

This form is very close to correlation-based approaches,
such as the one described in [56]

d(k, l)"1

!

+
x|S

[k(x)l(x)#(1!k(x))(1!l(x))]

J+
x|S

[k(x)2#(1!k(x))2]+
x|S

[l(x)2#(1!l(x))2]
.

(29)

The Bhattacharya distance [62] can also be attached to
this class. It is de"ned as

d(k, l)"C1!PSS
k(x)

DkD
l(x)

DlD
dxD

1@2
. (30)

It has been used in image processing for classi"cation in
satellite images in [69].

4. Combination of spatial and membership comparisons

The second class of methods tries to include the spatial
distance dS in the distance between k and l. In contrary
to the de"nitions given in Section 3, in this second class
the membership values at di!erent points of S are linked
using some formal computation, making the introduc-
tion of dS possible. This leads to de"nitions that do not
share the drawbacks of previous approaches, for instance
when the supports of the two fuzzy sets are disjoint.

4.1. Geometrical approach

The geometrical approach consists in generalizing one
of the distances between crisp sets. This has been done,
for instance, for nearest point distance [31,32], mean
distance [32], Hausdor! distance [31], and could easily
be extended to other distances (see e.g. [70] for a review
of crisp set distances). These generalizations follow four
main principles.

The "rst one consists in considering fuzzy sets in a n-
dimensional space as (n#1)-dimensional crisp sets and
then in using classical distances [71]. However, this is
often not satisfactory in image processing because the
n dimensions of S and the membership dimension
(values in [0,1]) have completely di!erent interpretations,
and treating them in a unique way is questionable.

The second principle is a fuzzi"cation principle (see
Section 2.5): let D be a distance between crisp sets, then its
fuzzy equivalent is de"ned by

d(k, l)"P
1

0

D(ka, la) da (31)

or by a discrete sum if the fuzzy membership functions
are piecewise constant [14,37] (ka denotes the a-cut of k).
In this way, d(k, l) inherits the properties of the chosen
crisp distance. Another way to consider the fuzzi"cation
principle consists in using a double integration (see Sec-
tion 2.5). However using this double fuzzi"cation, some
properties of the underlying distance may be lost.

The third principle consists in weighting distances by
membership values. For the mean distance this leads, for
instance, to [32]

d(k, l)"
+

x|S
+

y|S
dS(x, y)min[k(x), l(y)]

+
x|S

+
y|S

min[k(x), l(y)]
. (32)
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The last approach consists in de"ning a fuzzy distance
as a fuzzy set on R` instead of as a crisp number using
the extension principle (see Section 2.5). For the nearest
point distance this leads to [32]

d(k, l)(r)" sup
x,y,dS(x,y)xr

min[k(x), l(y)]. (33)

The Hausdor! distance is probably the distance between
sets, the fuzzy extension of which has been the most
widely studied. One reason for this may be that it is a true
metric in the crisp case, while other set distances like
minimum or average distances have weaker properties.
Another reason is that it has been used to determine
a degree of similarity between two objects, or between an
object and a model [72]. Extensions of this distance have
been de"ned using fuzzi"cation over the a-cuts and using
the extension principle [14,25,73,74,75,76]. Other
authors use the Hausdor! distance between the endo-
graphs of the two membership functions [25]. Several
generalizations of Hausdor! distance have also been
proposed under the form of fuzzy numbers [31]. Exten-
sions of the Hausdor! distance based on fuzzy math-
ematical morphology have also been developed [20] and
are presented in the next section.

Extensions of these de"nitions may be obtained by
using other weighting functions, for instance, by using
t-norms instead of min.

These distances share most of the advantages and
drawbacks of the underlying crisp distance [70]: compu-
tation cost can be high (it is already high for several
crisp distances); moreover, interpretation and robustness
strongly depend on the chosen distance (for instance,
Hausdor! distance is noise sensitive, whereas mean dis-
tance is not).

4.2. Morphological approach

We proposed in [20] original approaches for de"ning
fuzzy distances taking into account spatial information,
which are based on fuzzy mathematical morphology.
They are summarized below.

4.2.1. Distances from a point to a fuzzy set
Distances from a point to a fuzzy set can be de"ned

using a weighting approach or using a fuzzi"cation from
a-cuts. In this way, they are de"ned as numbers.

We propose an original approach for de"ning the
distance d(x,k) from a point x of S to a fuzzy object k as
a fuzzy number, by translating crisp equations into their
fuzzy equivalent. Standard expressions for the distance
involve concepts that are not set theoretical ones, and are
therefore not trivial to translate. Therefore, the easiest
way to perform this translation is to "nd a formalism
where distances are expressed in set theoretical terms.
This formalism is provided by mathematical morpho-

logy, since the distance from a point to a set can be
expressed in terms of morphological dilation, as well as
several distances between two sets. The translation of
dilation in fuzzy terms can be achieved with good proper-
ties using the framework of fuzzy mathematical morpho-
logy we developed in [8].

In the crisp case, and in a "nite discrete space, we have
respectively for n"0 and for n'0:

d
B
(x,X)"0 Q x3X, (34)

d
B
(x,X)"n Q x3Dn(X) and x NDn~1(X), (35)

where Dn denotes the dilation by a ball of radius n
centered at the origin of S (and D0(X)"X) (see e.g. [77]
for a study of discrete balls and discrete distances in the
crisp case). In this case, the extensivity property of the
dilation holds [16], and x NDn~1(X) is equivalent to
∀n@(n, x NXn{(X). Eq. (35) is equivalent to

x3Dn(X)W[Dn~1(X)]C, (36)

where AC denotes the complement set of A in S. This is
a pure set theoretical expression, that we can now trans-
late into fuzzy terms. This leads to the following de"ni-
tion of the degree to which d(x,k) is equal to n:

d
(x,k)(0)"k(x), (37)

d
(x,k)(n)"t[Dnl(k)(x), c[Dn~1l (k)(x)]], (38)

where t is a t-norm (fuzzy intersection), c a fuzzy comple-
mentation (typically c(a)"1!a for a3[0,1]), and
l a fuzzy structuring element used for performing the
dilation. Several choices of l are possible. It can be simply
the unit ball, or a fuzzy set representing, for instance, the
smallest sensitive unit in the image, along with the impre-
cision attached to it. In this case, l has to be equal to 1 at
the origin of S, such that the extensivity of the dilation
still holds [8].

The properties of this de"nition are the following [20]:
If k(x)"1, d

(x,k)(0)"1 and ∀n'0, d
(x,k)(n)"0, i.e. the

distance is a crisp number in this case. If k and l are
binary, the proposed de"nition coincides with the binary
one. The fuzzy set d

(x,k) can be interpreted as a density
distance, from which a distance distribution can be de-
duced by integration. Finally, d

(x,k) is a non-normalized
fuzzy number (in the discrete "nite case).

From this de"nition, distances between two fuzzy sets
can be derived using supremum or in"mum computation
of fuzzy numbers using the extension principle [62]. The
details are given in [20].

4.2.2. Distances between two fuzzy sets
We de"ned distances between two fuzzy objects using

a morphological approach in [20], in an original way.
They are obtained by direct translation of crisp equations
expressing distances in terms of mathematical morpho-
logy into fuzzy ones (see Section 2.5). We just give the
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examples of nearest point distance and Hausdor! dis-
tance.

In the binary case, for n'0, the nearest point distance
can be expressed in morphological terms as

d
N
(X,>)"n Q Dn(X)W>O0 and Dn~1(X)W>"0

(39)

and the symmetrical expression. For n"0 we have

d
N
(X,>)"0 Q XW>O0. (40)

The translation of these equivalences provides, for n'0,
the following distance density:

d
N
(k, k@)(n)"tC sup

x|S
t[k@(x),Dnl(k)(x)],

cC sup
x|S

t[k@(x),Dn~1l (k)(x)]DD (41)

or a symmetrical expression derived from this one, and

d
N
(k, k@)(0)"sup

x|S
t[k(x),k@(x)]. (42)

This expression shows how the membership values to k@
are included, without involving the extension principle.
Like for the nearest point distance, we can extend the
Hausdor! distance by translating directly the binary
equation de"ning the Hausdor! distance:

d
H
(X,>)"maxCsup

x|X

d
B
(x,>), sup

y|Y

d
B
(y,X)D. (43)

This distance can be expressed in morphological terms as

d
H
(X,>)"infMn,XLDn(>) and >LDn(X)N. (44)

From Eq. (44), a distance distribution can be de"ned, by
introducing fuzzy dilation

*
H
(k, k@)(n)"tC inf

x|S
¹[Dnl(k)(x), c(k@(x))],

inf
x|S

¹[Dnl(k@)(x), c(k(x))]D, (45)

where c is a complementation, t a t-norm and ¹ a t-
conorm. A distance density can be derived implicitly
from this distance distribution.

A direct de"nition of a distance density can be ob-
tained from

d
H
(X,>)"0 Q X"> (46)

and for n'0:

d
H
(X,>)"n Q XLDn(>) and >LDn(X)

and

(X\. Dn~1(>) or >\. Dn~1(X)). (47)

Translating these equations leads to a de"nition of the
Hausdor! distance between two fuzzy sets k and k@ as
a fuzzy number:

d
H
(k,k@)(0)"tC inf

x|S
¹[k(x), c(k@(x))],

inf
x|S

¹[k@(x), c(k(x))]], (48)

d
H
(k,k@)(n)"tC inf

x|S
¹[Dnl(k)(x),c(k@(x))],

inf
x|S

¹[Dnl(k@)(x), c(k(x))],

¹A sup
x|S

t[k(x), c(Dn~1l (k@)(x))],

sup
x|S

t[k@(x), c(Dn~1l (k)(x))]BD. (49)

The above de"nitions of fuzzy nearest point and Haus-
dor! distances (de"ned as fuzzy numbers) between two
fuzzy sets do not necessarily share the same properties as
their crisp equivalent. This is due in particular to the fact
that, depending on the choice of the involved t-norms
and t-conorms, excluded-middle and non-contradiction
laws may not be satis"ed. All distances are positive, in
the sense that the de"ned fuzzy numbers have always a
support included in R`. By construction, all de"ned
distances are symmetrical with respect to k and k@. The
separability property is not always satis"ed. However, if
k is normalized, we have for the nearest point distance
d
N
(k, k)(0)"1 and d

N
(k,k)(n)"0 for n'1. For the

Hausdor! distance, d
H
(k, k@)(0)"1 implies k"k@ for ¹

being the bounded sum (¹(a, b)"min(1,a#b)), while it
implies k and k@ crisp and equal for ¹"max. Also the
triangular inequality is not satis"ed in general.

4.3. Tolerance-based approach

This approach has been developed in [21]. The basic
idea is to combine spatial information and membership
values by assuming a tolerance value q, indicating the
di!erences that can occur without saying that the objects
are no more similar. The proposed de"nitions are semi-
pseudometrics and are derived from the functional ap-
proach (see Section 3). The authors "rst de"ne a local
di!erence between k and l at a point x of S as

dq
x
(k, l)" inf

y,z|B(x,q)
Dk(y)!l(z)D, (50)

where B(x, q) denotes the (spatial) closed ball centered at
x of radius q.
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Then the functions d
p
, d

=
and d

E44 S61
are de"ned up to

a tolerance q as

dq
p
(k, l)"CPS[dq

x
(k, l)]pdxD

1@p
, (51)

dq
=
(k, l)"sup

x|S
dq
x
(k, l), (52)

dq
E44 S61

(k, l)"infMk3R, j(Mx3S,dq
x
(k, l)'kN)"0N. (53)

Several results are proved in [21], in particular about
convergence: dq

p
(k, l) converges towards dq

E44 S61
(k, l) when

p goes to in"nity, all pseudometrics are decreasing with
respect to q, and converge towards d

p
, d

=
and d

E44 S61
when q becomes in"nitely small, for continuous fuzzy
sets.

This approach has been extended in [27], by allowing
the neighborhood around each point to depend on the
point.

Note that this approach has strong links with morpho-
logical approaches, since the neighborhood considered
around each point can be considered as a structuring
element.

This approach has been illustrated on an example of
noisy character recognition.

4.4. Graph theoretic approach

A similarity function between fuzzy graphs may also
induce a distance between fuzzy sets. This approach
contrasts with the previous ones, since the objects are no
more represented directly as fuzzy sets onS or as vectors
of attributes, but as higher level structures. Fuzzy graphs
in image processing can be used for representing objects,
as in [79], or a scene, as in [80]. In the "rst case, nodes
are parts of the objects and arcs are links between these
parts. In the example presented in [79] for character
recognition, nodes are fuzzy sets representing features of
a character, extracted by some image processing. In the
second case, nodes are objects of the scene and arcs are
relationships between these objects. In the example of
[80], the nodes represent clouds extracted from satellite
images. These two examples use di!erent ways to con-
sider distances (or similarity) between fuzzy graphs.

In [79], the distance is de"ned from a similarity be-
tween nodes and between arcs (both being fuzzy sets),
given a correspondence between nodes (respectively be-
tween arcs). The similarity used compares only member-
ship functions, using a set theoretic approach (see Section
3) and corresponds to Eq. (19). Although it has not been
considered in this reference, spatial distance can then be
taken into account if we include it in the attribute set.
This idea is probably worth to be further developed.

Another way to consider distances between objects is
in terms of cost of deformations to bring one set in
correspondence with the other. Such approaches are par-

ticularly powerful in graph-based methods. The distance
can then be expressed as the cost of the matching of two
graphs, as done in [80] for image processing applica-
tions, or as the Levensthein distance accounting for the
necessary transformations (insertions, substitutions, dele-
tions) for going from the structural representation of one
shape to the representation of the other [81]. In [80], the
fuzzy aspect is taken into account as weighting factors,
therefore the method is quite close of the weighted Leven-
sthein distance of [81]. Spatial distances could also be
introduced as one of the relationships between objects in
these approaches.

A distance between conceptual graphs is de"ned in
[82], as an interval [N, %] where N represents the neces-
sity and % the possibility, obtained by a fuzzy pattern
matching approach. Although the application is not re-
lated to image processing, the idea of expressing sim-
ilarity as an interval is interesting and could certainly
be exploited in other domains. A second interest of this
approach is that the nodes of the graph are concepts,
which could be (although not explicitly mentioned in this
reference) represented as fuzzy sets (like linguistic vari-
ables).

Although these examples are still far from the main
concern of this paper, it is worth mentioning them, since
they bring an interesting structural aspect that could be
further developed.

4.5. Distance between two sets of fuzzy sets

An interesting generalization of previous approaches
would be to compute a distance between two sets of fuzzy
sets, typically in order to compare two fuzzy classi"ca-
tions on an image. An entropy-based criterion has been
proposed in [83] for estimating the ability of a feature
to characterize and discriminate two classes. However,
it does not include spatial information. An alternative
would be to generalize the approach developed in [84],
where two crisp classi"cations are compared using a cri-
terion including not only the number of di!erently classi-
"ed points but also a spatial distance information.

5. A simple illustrative example

We consider in this section a simple illustrative
example, in the fuzzy 2D case. In a magnetic resonance
(MR) image of the human brain we have segmented
several internal structures using a fuzzy segmentation
method. Five fuzzy structures are shown in Fig. 1 (with
the standard `left-is-righta convention of medical im-
ages): left ventricle (v1), right ventricle (v2), left caudate
nucleus (nc1), right caudate nucleus (nc2) and left
thalamus (t1).

We have computed distances from all structures to v2,
using most of the de"nitions given in this paper. The
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Fig. 1. Top: 5 fuzzy objects resulting from a rough fuzzy segmentation of a MR brain image (membership values rank between 0 and 1,
from white to black). Bottom: superposition of these fuzzy objects (the maximum membership value is displayed at each point) and labels
as observed in the original MR image.

Table 1
Distances between fuzzy sets using the de"nitions of Section 3, involving comparison of membership functions only

Distance between v2 and
Distance nc2 v2 v1 nc1 t1

1 d
=

1.000 0.000 0.996 1.000 1.000
2 d

1
255.510 0.000 289.718 317.380 322.078

3 d
2

13.348 0.000 13.532 15.054 14.849

4 d
=

normalized 1.000 0.000 0.996 1.000 1.000
5 d

1
normalized 0.052 0.000 0.059 0.064 0.065

6 d
2

normalized 0.003 0.000 0.003 0.003 0.003

7 Fuzzy entropy 40.831 0.000 127.679 55.575 87.030
8 Normalized fuzzy entropy 0.008 0.000 0.026 0.011 0.018

9 Fuzzy divergence 164.720 0.000 125.834 0.000 0.000
10 Normalized fuzzy divergence 0.033 0.000 0.025 0.000 0.000

11 Pappis (di!/sum) 0.945 0.000 0.957 1.000 1.000

12 1 } sum of t over sum of ¹ (t"min) 0.971 0.000 0.978 1.000 1.000
13 1 } sum of t over sum of ¹ (t"prod) 0.989 0.644 0.992 1.000 1.000
14 1 } sum of t over sum of ¹ (Lukasiewicz) 1.000 0.821 1.000 1.000 1.000

15 1 } Norm. sum of t over ¹ (t"min) 0.126 0.000 0.165 0.163 0.168
16 1 } Norm. sum of t over ¹ (t"prod) 0.129 0.049 0.169 0.163 0.168
17 1 } Norm. sum of t over ¹ (Lukasiewicz) 0.131 0.055 0.170 0.163 0.168

18 1 } Max of inter. (min) 0.667 0.110 0.749 1.000 1.000
19 1 } Max of inter. (product) 0.890 0.208 0.910 1.000 1.000
20 1 } Max of inter. (Lukasiewicz) 1.000 0.220 1.000 1.000 1.000

21 Max of non-inclusion (min) 1.000 0.498 0.996 1.000 1.000
22 Max of non-inclusion (product) 1.000 0.247 0.997 1.000 1.000
23 Max of non-inclusion (Lukasiewicz) 1.000 0.000 0.997 1.000 1.000

24 Norm. sum of non-incl. (min) 0.053 0.011 0.060 0.064 0.065
25 Norm. sum of non-incl. (product) 0.053 0.007 0.060 0.064 0.065
26 Norm. sum of non-incl. (Lukasiewicz) 0.052 0.000 0.059 0.064 0.065
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Table 2
Distances between fuzzy sets using the geometrical approach: weighted average distance using 3 di!erent t-norms, fuzzi"cation (using
integral over a-cuts) of mean, min and Hausdor! distances

Distance between v2 and
Distance nc2 v2 v1 nc1 t1

Weighted mean dist (min) 16.296 8.165 16.402 22.820 36.762
Weighted mean dist (prod) 16.174 7.501 15.402 22.668 36.589
Weighted mean dist (Lukasiewicz) 16.096 5.855 13.574 22.502 36.299

Integral of mean dist 14.536 5.145 12.897 20.298 32.453
Integral of min dist 1.696 0.000 2.071 8.937 23.204
Integral of Hausdor! dist 19.068 0.000 21.944 25.373 35.952

results obtained with the distances of the "rst class (Sec-
tion 3) are summarized in Table 1. For de"nitions involv-
ing min and max as intersection and union, we computed
the results obtained with extended de"nitions, using
other t-norms and t-conorms. The results using distances
of the second class (Section 4) are given in Table 2 for
the geometrical approach, and in Table 3 for the mor-
phological approach.

Then we have computed distances from these "ve
structures to a fuzzy model of v2, that has been extracted
from another MR image. This model is shown in Fig. 2. It
presents di!erences with v2, but its overall shape is sim-
ilar to the one of v2. This is typically the kind of examples
we have to deal with in model-based pattern recognition.
The distances obtained for this model to all structures
are shown in Table 4 for the de"nition of the "rst class, in
Table 5 for the geometrical approach, and in Table 6 for
the morphological approach.

Finally, we have computed the distances of 3 points
to v2. The coordinates of these points are respectively
(25, 40) (point A, with high membership value to v2),
(26, 25) (point B, at the border of v2, with low member-
ship value), and (60, 10) (point C, outside of the support of
v2). These points are superimposed on v2 in Fig. 3. The
results are given in Table 7.

As can be observed from Table 1, the d
p
distances (lines

1}6) are not able to di!erentiate the structures with
respect to v2: a value 0 is obtained for v2 (since
d
p
(k,k)"0) and for all other objects almost the same

value is obtained. The normalization is questionable
since it may lead, as in this example, to very low values
for all objects. This normalization problem occurs for all
other normalized distances in this table.

The problem of the constant value if the supports of
k and l are disjoint can also be observed: in this example,
v2 and nc1 have disjoint supports, as well as v2 and t1.
Using these distances, nc1 and t1 have the same distance
to v2, although t1 is farther from v2 than nc1 in S.

Since the distance based on fuzzy entropy (lines 7 and
8) does not combine points of k with points of l, but only

Fig. 2. A fuzzy model of v2, extracted from another image.

a global measure of the fuzzy sets, made separately, the
results can even be counterintuitive. In this example, nc1
has a lower distance to v2 than v1, although v1 is closer
to v2 than nc1 in S (spatially).

For the fuzzy divergence (lines 9 and 10), similar prob-
lems occur: some counterintuitive results are obtained,
nc1 and t1 have a null distance to v2.

The distances presented in lines 11}23 are not able to
di!erentiate between nc1 and t1, and even v1 and nc2.
Very similar values are obtained for all these structures,
although they are spatially at very di!erent distances
from v2. The property d(k,k)"0 does not always hold
(see lines 13, 14, 16}22).

In lines 24}26, similar problems are observed. Addi-
tionally, the normalization leads to very low values for all
structures.

Using distances taking into account spatial informa-
tion, more satisfactory results are obtained. Using the
geometrical approach (Table 2), the lowest value is al-
ways obtained for v2. A null value is obtained only using
the minimum and the Hausdor! distances, since they are
the only ones which satisfy d(k,k)"0. Objects nc2 and
v1 have similar distances to v2, as it appears on Fig. 1.
Then nc1 is found farther, and then t1. These results "t
well the intuition.

The use of di!erent t-norms in the weighted average
distance changes the absolute values that are obtained,
but not the ranking. Since the following inequalities hold:

∀(a, b)3[0, 1]2, max(0, a#b!1))ab)min(a, b),

(54)

similar inequalities between the derived distances are
obtained. For this distance, the choice of the t-norm is
not really important, since it does not change the proper-
ties of the distance, and for image processing purposes,
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Table 4
Distances between fuzzy sets using the de"nitions of Section 3, involving comparison of membership functions only. The distance is
computed between each of the "ve structures and a model of v2

Distance between a model of v2 and
Distance nc2 v2 v1 nc1 t1

1 d
=

1.000 0.286 0.996 1.000 1.000
2 d

1
258.522 24.494 295.514 328.604 333.302

3 d
2

13.445 1.782 13.686 15.305 15.103

4 d
=

normalized 1.000 0.286 0.996 1.000 1.000
5 d

1
normalized 0.052 0.005 0.060 0.067 0.067

6 d
2

normalized 0.003 0.000 0.003 0.003 0.003

7 Fuzzy entropy 28.567 12.264 115.415 43.312 74.767
8 Normalized fuzzy entropy 0.006 0.002 0.023 0.009 0.015

9 Fuzzy divergence 231.768 22.065 224.870 0.000 0.000
10 Normalized fuzzy divergence 0.047 0.004 0.046 0.000 0.000

11 Pappis (di!/sum) 0.918 0.147 0.941 1.000 1.000

12 1 } Sum of t over sum of ¹ (t"min) 0.957 0.256 0.970 1.000 1.000
13 1 } Sum of t over sum of ¹ (t"prod) 0.981 0.653 0.990 1.000 1.000
14 1 } Sum of t over sum of ¹ (Lukasiewicz) 1.000 0.815 1.000 1.000 1.000

15 1 } Norm. sum of t over ¹ (t"min) 0.129 0.037 0.167 0.173 0.177
16 1 } Norm. sum of t over ¹ (t"prod) 0.133 0.061 0.172 0.173 0.177
17 1 } Norm. sum of t over ¹ (Lukasiewicz) 0.135 0.066 0.173 0.173 0.177

18 1 } Max of inter. (min) 0.631 0.114 0.631 1.000 1.000
19 1 } Max of inter. (product) 0.863 0.208 0.863 1.000 1.000
20 1 } Max of inter. (Lukasiewicz) 1.000 0.220 1.000 1.000 1.000

21 Max of non-inclusion (min) 1.000 0.616 0.996 1.000 1.000
22 Max of non-inclusion (product) 1.000 0.396 0.996 1.000 1.000
23 Max of non-inclusion (Lukasiewicz) 1.000 0.286 0.996 1.000 1.000

24 Norm. sum of non-incl. (min) 0.055 0.014 0.062 0.067 0.067
25 Norm. sum of non-incl. (product) 0.053 0.011 0.061 0.067 0.067
26 Norm. sum of non-incl. (Lukasiewicz) 0.052 0.005 0.060 0.067 0.067

Table 5
Distances between fuzzy sets using the geometrical approach. The distance is computed between each of the "ve structures and a model
of v2

Distance between a model of v2 and
Distance nc2 v2 v1 nc1 t1

Weighted mean dist (min) 15.851 8.340 16.131 22.354 36.680
Weighted mean dist (prod) 15.627 7.673 15.109 22.138 36.518
Weighted mean dist (Lukasiewicz) 15.381 6.230 13.297 21.870 36.250
Integral of mean dist 14.234 5.705 12.853 20.232 33.498
Integral of min dist 1.664 0.004 1.875 8.820 23.638
Integral of Hausdor! dist 18.099 2.683 21.777 25.437 36.642

1888 I. Bloch / Pattern Recognition 32 (1999) 1873}1895



T
ab

le
6

D
is
ta

nc
es

be
tw

ee
n

fu
zz

y
se

ts
u
si
ng

th
e

m
o
rp

h
ol

o
gi

ca
l
ap

p
ro

ac
h
,
fo

r
th

e
ne

ar
es

t
p
o
in

t
d
is
ta

nc
e

an
d

th
e

H
au

sd
o
r!

d
is
ta

n
ce

,
us

in
g

3
d
i!

er
en

t
t-
n
or

m
s.

T
h
e

d
is
ta

n
ce

is
co

m
p
ut

ed
b
et

w
ee

n
ea

ch
o
f
th

e
"
ve

st
ru

ct
u
re

s
an

d
a

m
o
de

l
o
f
v2

I. Bloch / Pattern Recognition 32 (1999) 1873}1895 1889



T
ab

le
6

(C
on

ti
nu

ed
)

1890 I. Bloch / Pattern Recognition 32 (1999) 1873}1895



Table 7
Distance from a point to a fuzzy set: example of three points and v2, with three di!erent t-norms

Fig. 3. The three points used in the presented example with
respect to v2.

the ranking between distance values is often more impor-
tant than their absolute value.

All previous examples provide results as numbers.
When using the morphological approach, the results take

the form of fuzzy numbers as seen in Table 3. The curves
in this table show the degrees to which the distance is
equal to n as a function of n. Again the results "t well the
intuition. The distributions obtained for v2 are concen-
trated on the low distance values. Then, when the struc-
tures become farther from v2, the curves are shifted
towards higher distance values.

Here again the choice of a speci"c t-norm is not cru-
cial as it changes mainly the absolute values. Lower
membership degrees are obtained when using a smaller
t-norm.

The fact that the Hausdor! distance provides higher
values than the nearest point distance corresponds to the
fact that the size of the dilation applied to one set needed
to reach the other is less than the size of the dilation
needed to completely include the other set. This is the
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case for crisp sets, and the same property holds in the
fuzzy case.

Tables 4}6 correspond to the case where, starting from
a model object, we are looking among a set of objects
if one of them corresponds to the model. This contrasts
with Tables 1}3, where we try to assess the distance
between objects of the same image. We cannot expect to
have a distance between v2 and the model strictly equal
to 0, however, we expect lower values than between the
model and any of the other structures. This is indeed
observed for several distances of Tables 4. The d

p
distan-

ces provide satisfactory results in this respect (lines 1}3).
The normalized d

p
distances (lines 4}6) are not as satis-

factory, because of the normalization, leading to dif-
ferences between values that are too low to be really
discriminating.

Entropy and divergence approaches (lines 7}10) are
not satisfactory and lead to counter-intuitive results as
before.

The distances in lines 11}23 provide satisfactory re-
sults. Lower values are obtained for v2 than for the other
structures. The fact that these other structures are not
discriminated is less important for this type of problem.
It is enough to know that none of them matches the
model.

The last distances (lines 24}26) su!er from the normal-
ization problem. Although lower values are obtained for
v2, they are not very di!erent from the others.

The geometrical distances presented in Table 5 provide
good results, very similar to those obtained in Table 2.
We do not obtain a null value for v2 using the nearest
point and the Hausdor! distances, since v2 does not
perfectly match the model, but we obtain values that are
still much lower than those obtained for the other struc-
tures.

The morphological approach in Table 6 also provides
good results, similar to those obtained in Table 3. Small
variations can be observed in the curves, but they are not
really signi"cant. The curves are a little bit more spread
for v2 than in Table 3, as expected since the match is not
perfect.

Finally, considering the distance of a point to a fuzzy
set (to v2 in Table 7), de"ned as a fuzzy number, we again
observe satisfactory results. For the "rst point, which has
a high membership to the fuzzy set, the distributions take
a high value at 0 (equal to k(x)), and decrease very fast.

For the second point, which belongs to k with a low
membership value, the distributions are more spread.
This represents the ambiguity in de"ning the distance of
this point to the fuzzy set. For instance if we consider
some defuzzi"cation process using a threshold value of k,
depending on this threshold, the point would be more or
less close to k.

The third point is outside of the support of k, therefore
the membership degrees of low distances are all equal to
0, and the distributions are shifted towards higher values.

6. Discussion and conclusion

Among the three kinds of distances that can be con-
sidered in fuzzy sets, we mainly discussed in this paper
the widely used distance between two fuzzy sets, for
which several de"nitions exist. The large variety of such
distances has been presented from an image processing
point of view, following the type of information they
convey. We proposed also some generalizations and
a new morphological approach. We underlined some
advantages of all these distances for image processing
and pattern recognition. Their use needs now to be
further investigated in this domain.

Two classes of distances have been de"ned, those
comparing mainly the membership functions, and
those accounting also for spatial distances. Most
de"nitions we found in the literature belong to the
"rst class. This is mainly due to the fact that they have
been developed for other applications than image pro-
cessing.

In the "rst class of methods, the only way k and l are
combined is by computation linking k(x) and l(x), i.e.
only the memberships at the same point of S. No spatial
information is taken into account. A positive conse-
quence is that the corresponding distances are easy to
compute. The complexity is linear in the cardinality of S.
Considering image processing applications, we suggest
that the "rst class of methods (comparing membership
functions only) be restricted when the two fuzzy sets to be
compared represent the same structure or a structure and
a model. Applications in model-based or case-based pat-
tern recognition are foreseeable.

On the other hand, the de"nitions which combine
spatial distances and fuzzy membership comparison
allow for a more general analysis of structures in images,
for applications where topological and spatial arrange-
ment of the structures of interest is important (segmenta-
tion, classi"cation, scene interpretation). This is permitted
by the fact that these distances combine membership
values at di!erent points in the space, therefore taking
into account their proximity or farness in S. The price to
pay is an increased complexity, generally quadratic in the
cardinality of S.

When facing the problem of choosing a distance, sev-
eral criteria can be used. First, the type of application
at hand plays an important role. While both classes of
methods can be used for comparing an object and a
model object, only the second class can be used for
evaluating distances between objects in the same image.
Among the distances of the "rst class, the results we
obtained show that entropy and divergence based ap-
proaches are not satisfactory. Also normalized distances
should be avoided in most cases. The choice among the
remaining distances can be done by looking at the prop-
erties of the distances (for instance, do we need d(k,k)"0
for the application at hand?), and at the computation
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time. Among the distances of the second class, similar
choice criteria can be used.

It is noticeable that most of these de"nitions are found
in other domains than image processing. We did not "nd
much applications in image processing. Among these few
applications, most of them deal with fuzzy sets represent-
ing features extracted from the images, and not directly
spatial image objects. This may be explained by the fact
that less de"nitions accounting for spatial information
are available. However, we argue that this is an interest-
ing "eld for future research.
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