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Abstract— Fuzzy set theory has found a promising field of application in the domain of digital image
processing, since fuzziness is an intrinsic property of images. For dealing with spatial information in this
framework from the signal level to the highest decision level, several attempts have been made to define
mathematical morphology on fuzzy sets. The purpose of this paper is to present and discuss the different
ways to build a fuzzy mathematical morphology. We will compare their properties with respect to
mathematical morphology and to fuzzy sets and interpret them in terms of logic and decision theory.

Fuzzy sets Mathematical morphology
Erosion Opening Closing
Stochastic geometry Approximate reasoning
Uncertain and imprecise spatial information

1. INTRODUCTION

In digital picture processing, fuzzy set theory has found
a promising field of application. Fuzziness is an intrinsic
quality of images and the natural outcome of most of
the picture processing technigues. Let us illustrate
these two statements with some examples:

e inany medical image, pathological tissues appear
without clear-cut frontiers. as diffuse patches subtly
imbedded in sane tissues: in a similar way, irrigated
fields continuously evolve towards dry fields in an
aerial or satellite image;

e extracting edges in very noisy images, like SAR
or ultrasonic images, ts only possible using simultane-
ously low pass filters and edge detectors, resulting in an
information spatially inaccurate; similar results exist
for most of the local features: corners, vertices, etc.

Fuzzy sets ideally it our intuitive knowledge of the
diffuse localization or limits of the image components
due to both uncertainty and imprecision; they are less
demanding than their probabilistic counterparts which
may also model uncertainty but at the cost of mathe-
matical requirements which necessitate heavy exper-
imental protocols or limiting hypotheses.

Fuzzy sets being able to model uncertainty and
imprecision attached both to the image components
and the picture processing operations which are per-
formed on it come forward as the comprehensive frame-
work to represent information from the signal level to
the highest decision level. Unfortunately, from one point
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Fuzzy mathematical morphology
Fuzzification
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Triangular norms and conorms
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of view at least, the fuzzy set tool-box appears poor: it
is when spatial transformation of information is con-
cerned. In order to bridge that gap, several attempts
have been made in the last 15 years. Let us make a brief
historical review of this topic:

e in 1965, fuzzy sets were introduced by Zadeh;"
elementary set operations were defined (intersection,
union, complementation, inclusion, etc.);

e in 1979, Rosenfeld introduced topology on fuzzy
sets;(?

e since 1982, geometrical operations were developed,
and are summarized by Rosenfeld;'®

e in 1980, elementary mathematical morphology
operations (dilation and erosion) were applied on grey-
level images interpreted as fuzzy sets,”’ using max. and
min. operators; only binary structuring elements were
considered;

® in 1984, shrinking and expanding were defined,”
which exactly corresponded to classical erosion and
dilation with a binary structuring element;

e in 1988, Kaufmann provided a definition of the
Minkowski addition for two fuzzy sets'® (the first
really fuzzy approach) by means of the z-cuts of the
two fuzzy sets: (u®v), = u, ®v,. where p, denotes the
x-cut of u and @ denotes the Minkowski addition; it
is given briefly in an appendix without any reference
to mathematical morphology and so it has not been
exploited in that way;

e in 1988, operations varying continuously from
classical erosion to classical dilation with a binary
structuring element (support of the structuring element)
were proposed;® they are not really fuzzy dilation and
fuzzy erosion and, therefore, this approach will not be
considered in the following;
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o since 1989, several attempts have been made to
use directly grey-level mathematical morphology on
images with grey levels interpreted as fuzzy sets.!” '?
instead of developing a fuzzy approach.

However, although these developments solve many
limited problems associated with information diffusion
and control, they do not provide the universal basis
which is needed. A model for such a basis is provided
by mathematical morphology which created a coherent
set of operations able to process grey-level images.
However, mathematical morphology cannot be directly
extended to fuzzy sets, since it ts not internal in the
[0, 1] segment. Several attempts have been made to
adapt mathematical morphology or to mimic it. They
will constitute the backbone of this communication.
One family of works emphasizes a mathematical
morphology approach. The second family is more
representing the fuzzy set and decision theory aspect
of the problem. In the first family, we find the works
by Sinha and Dougherty, and by de Baets and Kerre,
and in the second family, the works by Bandemer and
Nither and by the authors, which have been indepen-
dently developed.

The purpose of this communication is to present and
discuss the different ways to build a mathematical
morphology in order to process fuzzy sets. We will first
give a presentation, without discussion, of the existing
definitions (part 2). In part 3, the required properties
of the basic operations will be reviewed from the two
different points of view of mathematical morphology
and of decision theory. Some ways to reduce the required
properties will be explored. In part 4, from the previous
requirements, two major construction principles are
exhibited. One relies on a fuzzification principle. The
second is based on translating set equations into func-
tional ones and involves the theoretical framework of
triangular norms and conorms, which appears to be
well adapted in this context. In part 5, the existing
definitions of part 2 are examined under the light of
the requirements. In particular, it will be shown that
the various definitions may have slightly different pro-
perties. The second construction principle leads to an
infinity of definitions for the basic operators. An im-
portant result is that this family of fuzzy mathematical
morphology operators is partially ordered. Part 6 is
devoted to a critical comparison between the six defi-
nitions with respect to mathematical morphology and
fuzzy sets, and their properties are interpreted in terms
of logic and decision theory.

Table 1.
Structuring  Classical
Set element MM dPMM
Binary Binary BMM  Possibly compatible
Fuzzy Binary GMM  Possibly compatible
Fuzzy Fuzzy FMM

Not compatible

I. BLOCH and H. MAITRE

Attention will be paid here only to the four basic
operations of mathematical morphology (erosion,
dilation, opening, closing), but it should be clear for
the reader that for every definition, a complete set of
morphological operations could be derived.

For the sake of clarity, we will denote binary mathe-
matical morphology as BMM, the morphology which
uses binary sets and binary structuring elements; grey-
level mathematical morphology (GMM) will represent
classical morphology with a function (or a grey-level
image) and a binary structuring element, whereas func-
tional mathematical morphology (FMM) will represent
classical mathematical morphology on functions with
functional structuring element. We are interested in
developing a fuzzy morphology (PMM). As mentioned
previously, considering a fuzzy set as a grey-level func-
tion does not allow us to use FMM as a ®MM (see
Table 1) since, for instance, the dilation of a set defined
in [0,1] by a set defined in [0, |] provides a new set
defined in [0, 2] (see Fig. 1). As binary sets are special
fuzzy sets, we may expect ®MM to be compatible with
classical mathematical morphology, when at least one
of the two sets is binary, because starting from one
fuzzy set (with values in [0, 1]) we may obtain another
fuzzy set. On the contrary, FMM cannot guarantee
this internal property.

Seen from a mathematical morphology point of
view, these attempts to specify an adequate mathematical
morphology for a given application are comparable to
the developments proposed for statistical,"® soft''*
and topographical''® morphologies.

2. FUZZY EROSION AND DILATION:
SEVERAL DEFINITIONS

The attempts to build a morphology relying on true
fuzzy approaches and dealing with fuzzy sets and fuzzy
structuring elements will be briefly recalled in this
section. Several definitions can be found in the literature
for fuzzy dilation and erosion. They will be numbered
in a non-chronological way, according to an order
which will become clear later in this publication. We
proposed definitions 1 and 2,® and then a third."”
Sinha and Dougherty gave definition 4'8-!® and its
generalization (definition 5).2%) We proposed?!’ a more
general definition (6), which includes the previous ones,
except definition.1.

In the following, fuzzy sets are represented by their
membership functions, defined over a space S of objects
or points (without restriction on its dimension) and
taking their values in the interval [0, 1]. The space of
all fuzzy sets (or, equivalently, of all membership func-
tions)is denoted by M. All definitions are given for any
fuzzy set u of M, any fuzzy structuring element v of M,
and any point x of S. u, denotes the x-cut of g, i.e. the
binary set with characteristic function defined as:

0
Hox) = { :

if u(x)<a,
if p(x)=> o
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Fig. 1. Why FMM cannot be used as a ®MM: (a) initial fuzzy set u, structuring elements v, and vy; (b)

functional dilation provides a function taking values in [0, 2] (left: dilation of u by v,, right: dilation of u by

v,. the initial function is dashed); (c) translating and truncating the result in order to obtain a membership

function (i.e. in [0, 1]} is not satisfactory because information is lost (left) and the result does not reflect the
shape and the size of the structuring element (right).



1344

Definition 1:(10:22:23)

1

D1, (u)(x)= [ sup u(y)da,
0 Ye(va)x
1

El, (w(x)= | inf p(y)da,

D yevax

where v, = {xeS/v(x) > a} =
to simpllfy the notations.

Definition 2:(16:24.2%)
D2 (p)(x) = sup min [u(y), v(y — x)],
13

E2 (1)(x) mf max[u(y

)1 —v(y—x)].
Definition 317

D3, (u)(x) = sup [i(yn(y —x)],

E3 (1)(x) = inf [y

ye§

Definition 4:'8:'%

D4 (p)(

Wiy —x)+ 1 —v(y—x)].

x) = sup max[0, u(y) + v(y —x) — 1],
yeS§

E4 (1)(x) = infmin[1,1 + p(y) — v(y — x)].

yes

Definition 5:2%

DS (p)(x) = sup max[0, | — A(u(y)) — A(v(y — x))],

ye§
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ES(@)(x) = infmin[1, (1 — u(y)) + Av(y — x)}],

ye§

with £ a function from [0, 1] to [0, 1] satisfying the six
following conditions:

e /(z) is a non-increasing function of z;

e A0)=1;

e A(l)=0;

e the equation A(z) = 0 has a single solution;

o Vae[0.5,1], the equation A(z)=a has a single
solution;

o Vze[0,1], i(z)+ Al —2)> 1.

The case where A(z)=1—z = A4(z) corresponds to
definition 4.

Definition 6:21-:24.26)

6.(1)(x) = sup ifv(y — x), u(y)1,

E6, () = infulc(v(y — X)) (),

where i is any T-norm and u the associated T-conorm
with respect to a complementation c (see definitions in
Section 4.2.2).

We will see (Section 4.2.2) that this definition unifies
the preceding ones except the first: definitions 2—4 are
obtained with particular T-norms, definition 5 cor-
responds to a weak T-norm. Figure 2(a)—(f) (respec-
tively, g-1) illustrates these definitions for S being a
one-dimensional (respectively, two-dimensional) space.
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. Tlustrations of definitions 1-6: (a) initial one-dimensional fuzzy set and fuzzy structuring element;

(b) dilation and erosion for definition 1; (c) dilation and erosion for definition 2 [definition 6 with i(x, y) =

min{x, y) and u({x, y) =

max(x, y)]; (d) dilation and erosion for definition 3 [definition 6 with i(x, y) = x)y and

u(x,y) = x + y — xy; (e) dilation and erosion for definition 4 [definition 6 with i(x, y) = max(0,x + y — 1) and
u(x,y) = min(1, x + y)1; (f) dilation and erosion for definition 5 with A =1 — x* (definition 6 with the weak

T-norm i(x,y) =

max[0,1 — A(x) — 4(y)] and the weak T-conorm u(x, y)=min[1,A(1 — x) + A(1 — y)1); (g)

initial two-dimensional fuzzy set and two-dimensional fuzzy structuring element; (h) dilation and erosion

for definition 1; (i) dilation and erosion for definition 2 [definition 6 with i(x, y) =

min(x, y) and u(x, y) =

max(x, y)]; (j) dilation and erosion for definition 3 [definition 6 with i(x, y) = xy and u(x,y) = x + y — xy];

(k) dilation and erosion for definition 4 [ definition 6 with i{x, y) =

max (0, x + y — l)and u(x, y) = min(1, x + y)];

(1) dilation and erosion for definition 5 with =1 —x3 [definition 6 with the weak T-norm i(x,y)=

max[0. 1 — A(x) —

A(»)] and the weak T-conorm u(x, y) =

min[1, A(1 — x) + A(1 — y)]).
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For a better understanding of these definitions and
of their similarities or differences, we now examine the

principles governing their construction and the under-
lying concepts.

This very general construction can be tracked in
Bloch et al.*®17:21) a5 well as in Sinha et al.,*82% but
the details of these steps are different. They will be
explained in the next sections: Sections 3.1, 3.2 and 3.3

aim at defining requirements for ®MM, two principles
3. REQUIRED PROPERTIES FOR CONSTRUCTING governing its construction are stated in Section 4, and

A FUZZY MORPHOLOGY the derivation of definitions for fuzzy dilation and
. . . erosion is achieved in Sections 4.2.1 and 4.2.2.

A logical construction of a fuzzy mathematical mor- df fuzzy morphological
phology has to follow the sequence of three steps: Whgt has to b'e vexpecte. rom tuzzy p &

operations? Intuitive requirements on the effects of the

transformations such as expanding, contracting and

filtering correspond to algebraic properties: extensivity

is a mathematical property to express that a transfor-

mation expands a set, anti-extensivity formalizes con-

tracting, increasingness, idempotence, and extensivity

e defining requirements;
e stating principles governing the construction;
e deriving basic definitions (dilation and erosion)

based on these principles and satisfying as many
requirements as possible.
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or anti-extensivity arc the mathematical properties
representing filtering, etc..'*” Other requirements cor-
respond to analytical properties (e.g. robustness to
small variations expressed by continuity properties of
the operators). As the properties of classical morphology
are well known from a theoretical as well as from a
practical point of view. they suggest requirements for
®OMM. In Section 3.1, a set of properties will be given,
directly derived from classical morphology. and thus
matnly seen from a morphological point of view. How-
ever, on the other side. in order to remain connected
to fuzzy set theory, we will have to take note of some
other properties, discussed in Section 6, which are
inherited from decision theory.

Before we start constructing a ®MM, we have to
keep in mind that the extension of a theory to cover.
new fields will probably not be done preserving all the
nice properties of the initial theory. In Section 3.3, the
requirements which can be relaxed or even lost will
thus be discussed.

3.1. Properties suggested by clussical mathematical
morphology

In this section, the main properties of classical
mathematical morphology are listed that could be
imposed to ®MM. They will be numbered for a later
use and are only summarized here. Precise definitions
and interpretations are given in Appendix 1, where for
each property the operations (dilation, erosion.
morphological opening and morphological closing)
for which they are required, in order that ®MM inherits
this property, are also specified.

3.1.1. Four fundamental principles. In the framework
of mathematical morphology, four fundamental
principles are assumed.!>” Here. we translate them in
terms of fuzzy sets.

Property 1. Translation invariance.
Property 2. Compatibility with homotheties.
Property 3. Local knowledge.

Property 4. Semi-continuity.

3.1.2. Algebraic properties. In addition to these basic
properties, classical mathematical morphology oper-
ations have important algebraic properties which are
effectively used for the applications. They are given
below.
Property S.

Property 6.
Property 7.

Duality with respect to complementation
Increasingness.

Extenstvity or anti-extensivity.

Property 8. Idempotence.

Property 9. Pseudo-commutativity of dilation.
Property 10. Fitting characterization.

Property 11. Compatibility with union and intersection,
or with *max™ and "min” on functions (with either
equalities or inequalities as in classical morphology).
Property 12. Tteration and combination.

1349

3.2, Properties related to fuzzy sets

As our purpose 1s to extend mathematical morphology
to fuzzy sets, another requirement can be asserted,
expressing that, in degenerate cases, fuzzy morphology
coincides with classical:

Property 13. Compatibility with BMM and GMM. If
W (1) denotes a morphological operation on g with
respect to the structuring element v, and ¥ the classical
corresponding operation, compatibility means:

vis binary =¥, (1) = ¥, (u).

Compatibility has to be satisfied by the four operations.
We cannot require the same property for v not being

binary, since FMM on functions taking their values in

[0. 1] does not provide results in [0, 1], as seen before.
A last possible required property is the following:

Property 14. Relationship with cuts. As fuzzy sets may
be interpreted as stacks of binary sets (cuts at level «,
for xe[0. 1]), it could be expected that a transformation
can be obtained from operations on the cuts of the
fuzzy set and/or of the fuzzy structuring element, or
that the cuts of the results are related to the cuts of the
initial fuzzy sets. We will later see that this property
could indeed be used as a constructing rule (Section
4.2.1).

3.3, Reducing the requirements?

In order to obtain an operational method to cons-
truct the basic operations of ®MM, it would be appre-
ciated to reduce the number of selected requirements.
This can be done in two ways: at first, some properties
described in the previous sections are redundant, and
the suppression of some of them provides an equivalent
set of properties; the second consists of suppressing
properties which are considered of less importance for
the application to fuzzy sets. These two ways will now
be explored.

3.3.1. Reducing redundancy. Property 11 can be
reduced if property 5 is satisfied. The duality between
erosion and dilation allows us to deduce the two sets
of properties (P.11.1 P11.4) and (P11.5-P11.8) from
cach other. Moreover. pseudo-commutativity (pro-
perty 9) makes properties P.11.1 and P11.2 equivalent.
In the same way, P.11.3 and P11.4 are equivalent, and
so are P11.6 and P11.7, P11.5 and P11.8. Thus, the
eight equations of property 11 can be reduced to two,
P.11.1 and P11.3 for example, when P.5 and P.9 hold,
according to the following equivalence table, which
exhibits two equivalence classes (Table 2).

As we will see in Section 5, duality (P.5) and pseudo-
commutativity (P.9) are satisfied for all definitions,
thus the restriction of P.11 to only two equations is
valid.

Moreover, the increasingness and idempotence of
closing and opening defined as a combination of erosion
and dilation can be deduced from properties 6 and 7.
It is obvious that the combination of two increasing
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Table 2. Equivalence between the equations in property 11. showing two equivalence classes
( x indicates equivalence between two properties)

P11t
P.11.2
P.11.6
P.11.7
P.11.3
P.11.4
P.11.5
P18

x X X X
X X X X
X X X X

operations is increasing. Thus property 6 for ¥ being
erosion and dilation is sufficient to ensure the increasing-
ness of closing and opening. Let us show that the
tdempotence of opening can be deduced from prop-
erties 6 and 7 (the same reasoning holds for closing).
As opening is anti-extensive (P.7), we have:

0.[0.40] < 0, (p).
From the definition of opening, we have:
0,[0,(1)] = D,[EAD(E (1)) = D,[C(E, ()]

As closing is extensive, £ (y) < C (E (10). As dilation 1s
increasing, D.[E,(10] < D, [C(E.(;0)]. which expresses
that:

0,10 < 0,[0.(1)].

In a similar way, increasingness of erosion is deduced
from increasingness of dilation using duality (P.5). The
same result holds for extensivity (respectively, anti-
extensivity). P.5 also implies the equivalence of P.12.1
and P.12.2. Duality between closing and opening, which
can be deduced from duality between erosion and
dilation, allows us to consider the properties of only
one of these two operations. Decreasingness of erosion
with respect to v is deduced from P.5 and from increasing-
ness of dilation. In summary. as long as properties 5,
6.7, 8 and 12 are concerned. we need:

e P.5for erosion and dilation only;

e P.6for one operation only (dilation, for example),

e P.7 for two operations (dilation and closing, for
example);

e P& is not needed (neither for closing nor for
opening) if P.6 and P.7 are satisfied:

e P.12 reduced to P.12.1 and P.12.3.

Reducing the properties related to the four basic
properties of mathematical morphology (P.1. P.2. P.3
and P.4) can be achieved in a similar way. Using the
duality property, invariance with respect to translation
for eroston can be deduced from invariance of dilation
(or conversely). and thus for opening and closing. Com-
patibility with homotheties for dilation does not
necessarily imply the same property for erosion. How-
ever. it s verified for definitions. as it will be seen later.
If the property is satisfied for both erosion and dilation.
itis also satisfied for opening and closing. The property

P11 P.11.2 P.11.6 P.11.7 P.11.3 P.11.4 P.115 P.118

X X X X

X X X

of local knowledge for dilation is sufficient to deduce
the property for erosion, closing and opening. The
same result applies for semi-continuity (note that for
the convergence of a series of membership functions,
we consider here only uniform convergence, which
implies simple convergence). In summary, as far as
properties 1-4 are concerned, we need:

e P.1 for one operation (dilation, for example);
e P.2 for dilation and erosion;

e P.3 for one operation;

e P.4 for one operation

to guarantee the four properties for the four basic
operations.

In property P.9, the relation for erosion can be
deduced from that for dilation (expressing its pseudo-
commuiativity) and from P.5 {duality).

The property P.13 (compatibility with BMM and
GMM) need only be satisfied for dilation and then can
be deduced for the other operations.

Using duality, if we have a fitting characterization
(P.10) for erosion and opening, a similar character-
ization can be obtained for dilation and closing.

As far as P.14 is concerned, the strongest relationship
we could impose on the cuts is an equality between the
cuts of the fuzzy set resulting of a ®MM operator and
the result of the corresponding BMM operator applied
to the cuts of the fuzzy sets, for instance, for dilation
[D.)], = D, (1,). At this point, it should be noted that
an x-cut is usually interpreted as a decision threshold.
Thus, the previous equality is equivalent to commuta-
tivity of the ®MM operators with decision thresholding.
Clearly, such a commutativity is not always desirable.
Indeed, it would mean that the fuzzy model is of no
use, since all operations could be performed on binary
sets after the decision. On the contrary, in many appli-
cations, the interest of a fuzzy model relies on the
possibility for the decision step to be rejected at the
end of the reasoning process. Therefore, we will not
impose a priori some particular relationship with the
x-cuts. Table 3 summarizes these results.

3.3.2. Relaxing some requirements. As mentioned
previously, not only may we eliminate redundancy
between requirements in order to exhibit a reduced set
of active constraints to create a fuzzy mathematical
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Table 3. The right column lists the operations for which the properties
on the left column are required in order that ®MM inherits these

properties as in GMM and FMM

Property
P.1: translations
P.2: homotheties
P.3: local knowledge
P.4. continuity
P.5: duality
P.6: increasingnesss
P.7: extensivity
P.8: idempotence
P.9: pseudo-commutativity
P.10: fitting characterization
P.11: compatibility withwandn
P.12: iteration, combination
P.13: compatibility with classical
mathematical morphology

P.14: relationship with cuts

morphology, butalso we may accept that some of them
be less stringent. We have several arguments to do so:

e the application domain is not necessarily the most
general one: for instance, image processing is dealing
with discrete finite spaces instead of continuous infinite
spaces;

e fuzzy set theory may induce specific properties;

e the extension of mathematical morphology to a
new domain will certainly bring about compromises
and loss on some properties.

Generally speaking, the raised question is the follow-
ing: which are the weakest properties we need. and
what for? It can be expected that if we impose only
weak requirements, the deduced ®MM operators will
also have weaker properties.

Since we intend to apply ®MM to digital pictures,
which are inherently discrete, the continuity require-
ment (P.4) can be forgotten, as it does not make sense
for finite discrete spaces.

For fuzzy sets, compatibility with homotheties seems
not of prime importance, especially because only
homotheties with respect to membership values can be
considered. Thus, property 2 does not need to be
strongly imposed. We will see in the following that it
is satisfied for some definitions and not satisfied for
others.

The fitting characterization (P.10) is commonly used
in BMM and GMM, in particular for erosion and
opening, and involves mainly set inclusion. This
property is strongly used in the construction of Sinha
et al.?? (see See Section 6.1.4) as ®DMM is seen in that
work mainly from a mathematical morphology point
of view. In the other constructions (definitions 1, 2, 3
and 6), as set operators such as inclusion are generalized
into their fuzzy counterparts, the derived ®MM im-
plicitly contains concepts based on inclusion, and thus
fitting characterizations. As even in the work by Sinha
et al.?? the explicit formula for fitting is quite compli-
cated, we will not impose P.10 as a strong requirement
for DMM.

Needed only for

Dilation
Dilation and erosion
Dilation

Dilation

Between erosion and dilation
Dilation

Dilation and closing

None

Dilation

Erosion and opening
Dilation (P.11.1 and P.11.3)
P.12.1 and P.12.3

Dilation

None

It has already been stressed in the previous section
that P.14 (relationship with cuts) is not always desirable
if we do not need commutativity with decision thres-
holding. Thus, this requirement may be relaxed. We
will see in Section 5 that particular definitions of fuzzy
dilation may lead to weak or strong relationships
between the a-cuts of the dilated fuzzy set and the
dilated «-cuts.

Finally, as long as the set of properties P.11 is
concerned, we may accept that only inequalities hold,
resulting in weaker implications for the derived opera-
tions. As another example of such a relaxation of our
demand, we will see that relaxing extensivity (P.7) and
idempotence (P.8) will result in weaker algebraic
properties for opening and closing, but will not sentence
the intuitive filtering effects that were expected from
these operations.

3.3.3. Testing requirements and their reduction. To
see how the reduction of requirements works, let us
take the example of Sinha er al.,*%*® where an inclu-
ston indicator I (v, g) for two fuzzy sets is defined, from
which a fuzzy erosion is constructed as follows:

Efu)(x)=1(v+ x. )

[conversely, the inclusion indicator is related to erosion
by I(v, 1) = E (1}(0)].

Nine axioms are given to be satisfied by the inclusion
indicator. Let us examine how they are related to the
required properties of ®MM. The question is to decide
whether they are necessary and/or sufficient for assur-
ing good properties of erosion and dilation. Let us first
recall these axioms, for any inclusion indicator I (v, u):

o Al I(v,)=1<vcu*
o A2 v, ) =0={x/v(x)=1}n{x/ulx)=0} # .

*Note that U, n and < are here again taken in the sense
of Zadeh (i.e. the union of two fuzzy sets is computed as the
maximum of their membership functions, the fuzzy intersec-
tions as their minimum, < means: Vx5, v,(x) < u(x)).
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Table 4. Equivalence between axioms A1-A9 and properties
P.1-P.14 (only implications hold for the second and fourth

items)
Al for binary v and u P.13
Al for a binary v Implied by P.13
A2 for binary v and y P.13

A2 for a binary v Implied by P.13

A3 P.6 (increasingness of erosion
with respect to u)
Ad P.6 (decreasingness of erosion
with respect to v,)
AS P.1
A6 P9
A7 P.11.6
A8 P.11.7
A9 P.11.5
o A3 pcu =1I(v,u) < Hv.p1).
o Ad v v =I(v )= 10, p.
e AS. I(v,)=I(v+t,p+t)for any translation t.
o A6. I(v,u) = IS v%).
e A7 I(vuv,py=mn[l(v,u), (v, p)].
o A8 I(v,unp)Y=mmm [I(v,u), I(v,u')].
o AS. I(v,uup')zmax(I(v,u), I(v,u')].

Equivalences between axioms A1-A9 and properties
P.1-P.14 are given in Table 4 (proofs can be found
in??,

It is clear from Table 4 that the nine axioms A1- A9
are weaker than the complete set of properties in
Section 3.1. For example, properties such as duality
(P.5) and algebraic properties such as idempotence
(P.8)do not find any equivalent among the nine axioms.
Also, these axioms are not independent, since A4 can
be deduced from A3 and A6, and A7 can be deduced
from A6 and A8. Thus, if a minimal set of requirements
were to be stated, some of the nine axioms should be
discarded.

In Sinha et al.'® the most important properties 1o
be satisfied by ®MM are: P.1, P.6, P.7, P.8 and P.10.
However, the nine axioms proposed by the authors
only provide weaker properties than the five which
were listed.

4. TWO CONSTRUCTION PRINCIPLES

Among the above requirements, our choice is to
privilege two of them and take them as construction
principles: duality (property 5) and compatibility with
BMM and GMM (property 13).

Duality allows us to define only one operation (dila-
tion or eroston) and to deduce the other ones from it,
as well as a set of morphological operators deduced
from erosion and dilation by combination and/or itera-
tion.

It has been stated in the Introduction that classical
morphology can be applied to fuzzy sets with binary
structuring elements, thus providing adequate solutions,
In order to guarantee coherence with existing literature,
we suggest taking this compatibility as a stringent

I. BLOCH and H. MAITRE

requirement for the constructed fuzzy operations.
Moreover, compatibility with classical BMM and GMM
constitutes a guide for generalizing the transformations
to fuzzy ones. We present two ways for achieving this
generalization.*

4.1. Duality

At first, the principle of duality with respect to
complementation establishes a strong relationship
between dilation and erosion, since one operation can
thus be deduced from the other. This allows us to
construct only one operation. Duality between opera-
tions ® and ‘¥ on fuzzy sets with respect to complemen-
tation is defined, according to Serra,?” as:

ViueM, O(u)=[PE9)1"

This s the definition used in P.5. If complementation
is defined as usual by:

VxeS, u(x)=1—p(x),

duality with respect to complementation between
erosion and dilation with a structuring element v is
expressed as (definition 7):

vxeS, D,(wx)=1—E[(1—wx). (def7)

An analogous definition between opening and closing
is expressed as:

Vxes, O ((x)=1—F(1—p(x),
for opening and closing defined as usual by:

0.,(1)=D,[E ()],
Culw) = E,[D,(10].
For a general complementation function ¢, we have
a similar definition:
VxeS, D(u)(x)=c[E c(u)(x)],
VxeS, O,(1)(x)=c[F,(c()x)].
The expression given in definition 7 has been used
to define erosion in definitions 1-3. The general

form for any complementation ¢ has been used for
definition 6.1

* As mentioned in the Introduction, we cannot expect these
generalizations to be also coherent with classical FMM.

t However, a slightly different definition has been used by
Sinha et al."®2% for duality (definition 8):

¥xe M. D,(u)(x) = 1 — E,(1 — p)(x).

If E () 1s a generalization of the classical erosion, it results
from definition 8 that D (u) is a generalization of the
Minkowski addition, and not of the dilation in the sense of
Serra:?” for definition 4 it is expressed as D4, (u)(x)=
sup,.s max[0, u(y)+ v(x —y)— 1], and for definition 5 as
D5, (1)(x) = sup,esmax[0, 1 — A(u(y) — A(v,(x — y))] [these
&quations are the original ones given by Sinha et al..!*8:20"],
Surprisingly, opening and closing as defined in this work
satisfy the principle of duality according to definition 7:

Oy =1-C(1 —p),
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In the following, we only consider definition 7 for
duality, as it provides similar relationships between
dilation and erosion and between opening and closing.

4.2. Compatibility with classical mathematical
morphology for binary structuring elements

The compatibility with BMM and GMM can be
achieved in two ways. The first relies on the interpre-
tation of a fuzzy set as a stack of binary sets. Then,
fuzzy operations are obtained by “stacking” binary
operations in the same way. The second consists of
considering fuzzy sets as functions. Then binary
operators are generalized using their functional counter-
part.

4.2.1. Fuzzification using x-cuts. A fuzzy set can be
considered as a stack of binary sets by means of its
a-cuts, and reconstructed from them. Two ways are
commonly used for this task:

1
plx) = [ z,(x) da,
4]

uix)= sup] [, (x)].

ag]0.1
In a way similar to the above reconstruction of a
fuzzy set from its own cuts, the fuzzification ® of a
binary function ® can be obtained by one of the follow-
ing equations:

1
O(u) = j &(;tz)dx,
0

sup [x(i)(y,)]‘

26]0.1]

D(p) =

This fuzzification principle indicates the first way to
construct fuzzy dilation and erosion from the binary
definitions.

Let us consider the first fuzzification equation. For
two fuzzy sets ¢ and v, the dilation of g by v is obtained
by fuzzification over i then over v. or, equivalently, by
the converse:

1 11

D (wi(x)= [d i) df = fid (g)x)dadp
0 00
1 11
= [d, (wx)dx= [ [d, (g)xdfdx
4]

00

Footnote (Continued )

resulting from a definition of these operations different from
the classical definition:

O(p)= D[ E.(o].
C.() = E.[D, (0]

In order to treat the operations defined by definitions 4 and
S in the same way as the others, we use the definitions 4 and
S presented in Section 2 instead of the original equations of
references (18 and 20). In this way. D4 and DS actually
generalized classical dilation and no more Minkowski addition.
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A straightforward derivation provides:
1

D(u)(x)= [ sup u(y)da,
Q Yelvz)x
which is definition 1.
In the same way, the erosion of ¢ by v is obtained by:
1

E ()= | inf u(y)do.
Q Ye(va)x

These definitions guarantee that D (i) and E (u) are
the membership functions of fuzzy sets (i.e. taking
valuesin [0, 1]). By construction, if v is crisp, the defini-
tions coincide with the classical ones.

Let us now consider the second way of representing
a fuzzy set by its a-cuts. Here again, we may construct
a fuzzy dilation by a double fuzzification, and obtain:

D (w(x)= sup [d sup u(y)],
2€]0,1] yelva)x

providing:
D)) = sup [¥(y = x)u(y)].
y€es

which coincides exactly with definition 3. An analogous
result is obtained for the fuzzy erosion.

4.2.2. Translating set relationships into functional
ones. Another way to build ®MM is to base the initial
definitions on the translation of set operations (inclu-
sion, intersection and union) into functional terms, i.e.
to exhibit, for each operation, functions from [0, 1] x
[0, 1] 1o [0, 1] which satisfy some given limit conditions
expressing the compatibility with binary set operations.
As many such extensions can be proposed, several
definitions exist (definitions 2-5). However, we will
show that they may receive a unified presentation by
means of T-norms (and associated T-conorms) as they
can be interpreted, respectively, as fuzzy intersection
and fuzzy union (from which a fuzzy inclusion can be
derived; definition 6).

The definitions and main properties of T-norms and
T-conorms are provided in Appendix 2, and Fig. 3
illustrates the most used T-norms and T-conorms.

From any T-norm i taken as fuzzy intersection and
the associated T-conorm u taken as fuzzy union (with
respect to a complementation ¢}, it is possible to cons-
truct a ®MM. From the following set equivalence
[where Eg(X) denotes the erosion of the set X by B,
and S the considered space]:

xeEg(X)e>B, c X XUB{=S<VyeS, ye X UBS,

a natural way to define the erosion of a fuzzy set u by
a fuzzy structuring element v is:

E((x)= in{ ulp(y), c(v(y — x)) 1.
In this equation “U™ has been translated in terms of a

T-conorm u and “V” by an infimum.
By duality with respect to the complementation c,
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Fig. 3. Example of T-norms and T-conorms: (a) i, and uy; (b) i(x, y) = min(x, y) and u(x,’y] =max(x, y): (c)
i(x,v)=xyand u(x. y) = x + y — xy; (d) i(x, y) = max(0, x + y — 1) and u(x, y) = min(], x + y).
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Fig. 3. (Continued)

Table 5. Different definitions for fuzzy union and intersection, and corresponding definitions for fuzzy erosion and dilation

T-conorm

Def. T-norm

2 max(x, y) min(x. v)

3 X+ y—xy Xy

4 min{1, x + y) max{0.x +y — 1)

5 min[ 1L, A(1 —x}+ A(1 —3}] max[0.1 —Ai(x)— 2(»)]
{weak T-conorm) (weak T-conorm)

6 T-conorm u(x. y} T-norm i(x.y)

fuzzy dilation is then defined by:

D (p)x) = sup ifpy)oviy — x)].
yels

which corresponds to the following set equivalence:

xeDy()>B.NnX # PJ<IreS.yeB.NX.

Here, "N has been translated in terms of a T-norm i

and 3" by a supremum.

Table 5 shows that all definitions given in Section 2
except the first can be stated in this framework, i.e. they
all correspond to a particular T-norm and the associated
T-conorm. It should be noted that definition 5?9
corresponds in the general case only to weak T-norm
and T-conorm, as they are not assoctative and do not
admit 1 (respectively, 0) as the unit element if / # /.

Erosion

Dilation

inf max[p(y). 1 —v(y —x)]

yes

in{_ Ly —xy+ 1 —v(y —x)]
infmin[ 1,1 4+ u(y) —v(y —x)]
ves

infmin[ 1, A(1 — u(y) + A(v(y — x))]

yes

infulc(viy —xh, u(y)]
yes§

sup min[u(y), v(y — x)]

ye

sup [u(yv(y —x)]

sup max [0, p(y) + v {y — x) — 1]
yes

sup max[0, 1 — A{u(y)) — Avy(y — x))]
ye

sup i[v(y — x),u(y)]

Figure 4 gives an example of such weak T-norm and
T-conorm. We will show in Section 5 that this will have
some consequences on the properties derived from this

definition.

Let us now consider the other definitions given in

the literature (see the Introduction) and not mentioned
in Sectton 2 because they are less general. The definition

of Rosenfeld'® is given for binary structuring elements

and corresponds exactly to the classical definition of

grey-level operators. As the operations derived from
any T-norm are compatible with GMM, they include
the definition of Rosenfeld®’ as a particular case.
We have the same result for the definition given by
Goetcherian, which also considers only binary struc-
turing elements. From the Minkowski addition defined
by Kaufmann‘® through the a-cuts by (u@®v), = j, ® v,,
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Weak T-conorm

w(X., Y
o

0.0

(b)

Fig. 4. Example of a weak T-norm derived from a 2 function and the associated weak T-conorm [Alx)=
I—x*[a)ite, v) = max [0, 1 — A(x) — A(1) ]z (b) uix, vi=min[1, A(1 —x)+ A(1 — »)]).

the z-cuts of the dilation are obtained by:
(D.10], =D, (1,).

and the erosion is obtained by duality. It can then be
shown?" that, according to this equation, the derived
expression for dilation is:

D (p)(x)= sug min{v{y — x), ()],
yed

which corresponds to the definition obtained from the
T-norm “min”. These remarks show that the definitions
proposed in previous works fall within definition 6.
Note that the definition given by Giardina'? for fuzzy
dilation takes the form:

supmin[ 1, z(y)+ v(y — x)],
yes

and thus involves a T-conorm instead of a T-norm.
Some important consequences are that this definition
is not compatible with BMM and GMM, and, as soon
as there exist x in § such that v(x) =1 or g(x) =1, the
result of dilation is completely saturated (i.e. = 1).

In the same way. the definitions proposed by di Gesu
et al***"" based on symmetrical difference or average
operators, are not compatible with BMM.

This principle of translating set operations into
functional ones has also been used by Sinha and
Dougherty."'® Instead of translating directly relation-
ships involving union and intersection, they start from
the fitting characterization of erosion which is considered
as a marker in a morphological sense.'*-3% Thus, they
define an inclusion indicator for fuzzy sets I{v, u), from
which a fuzzy erosion is derived. The two approaches
are strongly related to each other, as inclusion can be
defined from union and complementation. In the binary

case, we have:
AcB<A“UB=S.
In the fuzzy case, a similar equation provides:

I(v, 1) = inf (v U p)(x),
XeS

for given fuzzy union and fuzzy complementation.
I(v, ) represents the degree to which the fuzzy set v is
included in the fuzzy set u. Definitions 4 and 5829
correspond, respectively, to:

I(v, ) = inf min[1, 1 —v(x) + u(y)],

xe8§

I{v, ) = insf_min[l,)‘(v(x)) + A1 — ()]
These definitions correspond to particular T-norm
and T-conorm (eventually weak ones), as we have seen
before.

Other inclusion indicators have been proposed in
the literature, but they are generally not convenient for
®MM as they do not lead to the required morphological
properties. For example, let us consider the definitions
of Kosko**" (definition 9) and Ishizuka*?’ (definition
10) for a finite space S:

 Ziesmax[0,v(x) — u(x)]

I(v,1)=1
* 3 ces¥(x)

(definition 9)

min,gmin[1, 1 —v(x) + u(x)]’

Iv, )=
1 f maxmsv(x)

(definition 10)

These two expressions are similar to those obtained
with the bounded sum as T-conorm followed by a
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normalization. The poor properties obtained for fuzzy
morphological operations derived with definitions 9
and 10 are due to this normalization. Fuzzy erosion
derived from definition 9 is not internal in [0, 1] in the
general case, and thus leads to a result which is not a
fuzzy set. Definition 10 provides operations which are
not compatible with the binary case. For example, for
a binary structuring element, the dilation derived from
definition 10 is exactly a mean operator, in complete
contradiction with the basically non-linear nature of
mathematical morphology. For these reasons, these
two inclusion indicators will not be considered in the
following.

5. COMPARISON OF PROPERTIES BETWEEN THE
DIFFERENT DEFINITIONS

In this section, we establish some properties of the
fuzzy mathematical operators constructed according
to the principles described in Section 4. We first look
at the required properties defined in Section 3 and
examine each definition of Section 2 with respect to
these properties. The main results for definition 4 and
some for definition 5 have already been given in refer-
ences (18, 20).

Some additional relationships between these six
definitions are finally stated.

As duality (P.5) and compatibility with BMM and
GMM (P.13) are taken as construction principles, these
properties are satisfied for definition 1 and for all
definitions derived from the general form (definition 6).
However, for definition 5 which corresponds only to a
weak T-norm, P.5 holds for any function 4 but P.13 is
satisfied ifand only if 2 = 2, (see definition 5, in part 2).

P.2 (translation invariance) holds for all definitions
if S is translation invariant (i.e. S is infinite). Note that
the translation invariance condition for S is the same
as for classical morphology and is not an additional
restriction for fuzzy morphology.

The fuzzy dilation is compatible with homotheties
for definition 1 and for definition 6 if and only if i is
compatible with homotheties (thus P.2 holds for defi-
nition 3, but not for definitions 2,4 and 5). For example,
for dilation defined from the product T-norm (defi-
nition 3), we have:

VxeS, Vie[0.1], D (sulx)= sup [2iu(y)v(y — x)]
yes§
= /sup [u(y)v(y — x)]
ye§

= /D (1)(x).

The computation of the fuzzy dilation (for any defi-
nition) of a fuzzy set y in a binary mask Z is sufficient
to know the result of the operation in the eroded set
Z by the support supp(v) of the structuring element:

[D‘(;u‘\Z)] m(Esupp(\')‘Z)) = Dv(“)m(Ewpp(\')(Z] ).

Thus, P.3 (local knowledge property) holds for all
definitions.

PR 28-3-D
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Fuzzy dilation is continuous for definition 1 and for
definition 6 iff i is continuous. This is the case for
definitions 2—-4 and for definition 5 if and only if 4 is
continuous.

P.6 (increasingness of dilation with respect to ¢ and
to v,) holds for all definitions. Similar properties hold
for erosion, opening and closing.

Fuzzy dilation is extensive (P.7) [i.e. D (p) > u] iff
v(0) =1, for definitions 1, 2, 3, 4 and 6 (0 being the
origin of the space S). The condition v(0) =1 corre-
sponds to “Oe B” in the binary case. For definition 5,
it holds iff v(0) = 1 and 4 = A,.

Increasingness of closing and opening (P.6) are
deduced from increasingness of dilation and erosion,
but the other algebraic properties (extensivity or anti-
extensivity, idempotence) of opening and closing are
usually not satisfied. They are not satisfied for defini-
tion 1. For definition 6, they hold iff the following
relationship holds between i and u:

Y(a,b)e[0,11%, i[b,u(c(h)).a)] <a.

In particular, this condition implies the non-contradic-
tion principle and is not satisfied by min and max, nor
by the product and algebraic sum. Thus, opening and
closing derived from definitions 2 and 3 do not satisfy
P.7 and P.8. The only definition (among definitions 2
to 5 of Section 2) which leads to algebraic opening and
closing is definition 4. For definition 5, the properties
holds iff 4+ = 4, (i.e. when definition 5 coincides with
definition 4).

Fuzzy dilation is pseudo-commutative (P.9) for all
definitions. Note that in the original definitions of
Sinha et al.,''® 2% the dilation is commutative, since it
corresponds to Minkowski addition.

For definitions 2-6, the fuzzy dilation is compatible
with union (P.11.1):

D, [max(u, ¢')] = max[D,(u), D (') ].
Definition 1 verifies a weaker property:
D1 [max(u, p')] = max[D1,(u), D1,(u)].

P.11.3 (relationship to intersection) holds for all
definitions.

The iteration relation (property 12.1) does not hold
for definition 1. It holds for definitions 2, 3,4 and 6. For
definition 5, the property is satisfied iff A = 4,, since a
weak T-norm is generally not associative, a property
strongly involved in the demonstration of P.12.1 for
T-norms and T-conorms. The only function + for which
the weak operators i(x,y)=max[0,1 — A(x) — i(y)]
and u(x,y) =min[1, 2(1 — x) + 4(1 — y)] are associative
(B

The combination property (P.12.3) is not satisfied
for definition 1. For definition 6, it holds iff the following
relationship between i and u is satisfied:

V(a,h,c)e[0,1]°, i[a,u(b,c)] <ulb,i(a,c)].

This condition is satisfied, for example, for i = min and
u=max, for i(x,y)=xy and u(x,y)=x+ y — xy, for
i(x,y)=max(0,x+ y—1) and u(x,y)=min(l, x + y),
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Table 6. Comparison between the properties of definitions 1-6

o T I

| \:j]:: u(y)da SUE iLgy). v(y —x)] su? max[0, 1 — A(u(y)) — Av(y — x))]

0 YE(va)a YEJ ye

(definition 1) (definitions 2, 3,4 (definition 5)

and 6): (i; T-norm) (weak T-norm)

Duality (P.5) Yes Yes Yes
Compatibility with Yes Yes Iff 2 =2,
u@®vif vis binary (P.13)
Compatibility with Yes Yes Yes
translations (P.1)
Compatibility with Yes Iff i is compatible No
homotheties (P.2) with homotheties
Local knowledge (P.3) Yes Yes Yes
Continuity (P.4) Yes Iff i is continuous Iff 4 is continuous
Increasingness (P.6) Yes Yes Yes
Extensivity of Iff v(O) =1 Iff v(0)=1 Iff v(Q)=1 and
dilation (P.7) L= Ag
Extensivity of No Iff i[b,u(c(b)a)] <a IfTA=12,
closing (P.7}
[dempotence (P.8) No Hf i[h,ulc(b)a)] <a If 2 =1,
Pseudo-commutativity (P.9) Yes Yes Yes
Union (P.11.1) > = =
Intersection (P.11.3) < < <
[teration (P.12.1) No Yes Iff A =4,
Combination (P.12.3) No UT i[a,uth,c)] < ulb,i(a,c)] Iff A= 4q

Cuts (P.14)

but not for i, and u, (defined in Appendix 2). Thus,
we have for definitions 2, 3 and 4:

D [E,]<EJ[D. (]

For definttion 5, it is generally not satisfied. except iff
A=Ay

We have no general equation relating the cuts of
the dilated fuzzy set to the dilation of the cuts of the
fuzzy set (P.14), but for definition 2 an interesting
equality holds:

[D,.(0)]), = D>, (1)

and for the general defimtion 6, only an inclusion
holds:

[D6,(1)], = DO, (u,).

The comparison of the properties is summarized for
definitions -6 in Table 6. Complete proofs can be
found in references (16, 21, 29).

Moreover, we have the following result between
fuzzy dilations:

The dilation obtained from “min” (definition 2) is
the largest fuzzy dilation which can be built from
definition 6, i.e. for any T-norm i, the associated fuzzy
dilation D satisfies:

VxeS$, D, (ulx)< su? min[p(y) v(y — x)] = D2 (p)(x).

1D2,(w], = D2,,=D2, ()
(Do) ], = D6, (1)

In the same way, for any T-conorm u, and taking for
the complementation ¢(x) = 1 — x, we have:

VxeS, E((x)> infmax[u(y),1—v(y—x)]
ye§

= E2,(1)(x),

and thus the fuzzy erosion obtained from “max” is
the smallest erosion that can be built for c¢(x)=1—x
following definition 6.

This result shows that the operations obtained from
“min” and “max” are those which have “the largest
effect” on the initial fuzzy sets (see Fig. 2).

In the same way, the fuzzy dilation D, and the fuzzy
erosion E, obtained from i, and u, are, respectively,
the smallest dilatton and the largest erosion built ac-
cording to definition 6, and thus have the less effect on
the initial fuzzy sets. This result is, however, not satis-
fied if we consider only a weak T-norm and the associated
weak T-conorm, such as in definition 5.

The following inequalities hold between the defini-
tions given in Section 2 [with A(x) =1 — x" in defini-
tion 5 and more generally for any function 4 such that
Alx)y= 1 —xJ:

Ds<D,<D;<D,,

Eq>E,>E,>E,.
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We also have:
DOSD4SD3SD2a
Eq>E,>E,>E,.

but no general relationship between D, and D, nor
between E, and Ej.

These properties are of prime importance for the
choice of a morphology for a given application.

6. DISCUSSION: COMPARED INTEREST OF THE
DIFFERENT DEFINITIONS

In this section, we compare under different aspects
the different fuzzy mathematical morphologies presen-
ted in the previous sections. Section 6.1 deals with
morphological aspects, Section 6.2 with aspects related
to fuzzy sets and fuzzy measures. At last, Section 6.3
provides a discussion about the interest of ®MM for
decision problems in image processing.

6.1. Comparison with respect to mathematical
morphology

Table 6 shows that most of the definitions share
almost all properties of classical morphology. Defini-
tions 1 and 5 (in the general case where 4 # 4,) lead to
the weakest properties. Definitions 2-6, i.e. derived
from a T-norm or from a particular class of weak
T-norms (associated with a / function), may have all
properties of classical morphology, at least for an
adequate choice of the T-norm and associated T-conorm
or of the function 4. Let us first consider definition 6
(and definitions 2-4 as special cases of definition 6).

6.1.1. Morphological aspects for definition 6. Com-
patibility of dilation with homotheties is satisfied iff i is
compatible with homotheties, 1.e. i(2x, y) = 4i(x, y) for
Ae[0,1]. This property is satisfied for i(x,y)= xy
but neither for i(x,y) = min(x,y), nor for i(x,y)=
max(0, x + y — 1). However, the importance of the
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\
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membership scale invariance is questionable for ®MM.
For most applications we had, we found it not useful,
but contrary opinions may exist.

As far as semi-continuity is concerned, most of the
used T-norms are continuous. For example, definitions
2, 3 and 4 lead to continuous operators. As a counter-
example, the dilation derived from iy is not continuous.
Note that surprisingly, the proofs do not involve pro-
perties on z and/or v, but the quite strong requirement
of uniform convergence (which could perhaps be
relaxed). Despite the fact that this property guarantees
the robustness of the operators with respect to small
changes in the fuzzy sets, it is seldom used when working
on discrete finite spaces (e.g. in image processing).

The condition v(0) = 1 is necessary and sufficient to
guarantee the extensivity of dilation, and thus anti-
extensivity of erosion. This condition is not an additional
restriction with respect to classical morphology and
corresponds to the classical condition 0eB. If this
condition is not satisfied, we may for instance have
more imprecision or uncertainty in an eroded fuzzy set
than in the initial one: 0 valued points in the initial
fuzzy set (complementary of the support) are no more
0 valued (see Fig. 5). However, this effect is limited to
a neighbourhood of the support if there exists a point
X, with membership value 1 in the fuzzy structuring
element (see Fig. 6). This is due to the translation
invariance property, which assures that the result is
simply the translation of the result we would obtain by
translating (spatially) the structuring element by x, (so
that the space origin 0 has membership value 1). This
effect is similar to that observed in classical mathe-
matical morphology. It can be exploited for directional
transformations, which are useful for granulometry,
covariograms, etc.

The properties of extensivity (respectively, anti-
extensivity) and idempotence of closing (respectively,
opening) are only satisfied for particular T-norms and
T-conorms. The required condition is very strong:
among the T-norms mentioned in this paper, only the
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with all definitions.
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Fuzzy erosion
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Fig. 6. Fuzzy erosion with a fuzzy structuring element v such that v(0) < I but v(x,) = 1 for some point x,
of 8. The effect on 0 valued points shown in Fig. 5 is limited to a neighbourhood of the support of y. The
result is the translation by x, of the result we would obtain with a translated structuring element v_, .

T-norm i(x, y) =max(0,x + y— 1) and the associated
T-conorm u(x,y) = min(1, x + y) used in definition 4
satisfy this condition {see Fig. 7). If we absolutely need
these algebraic properties, then the choice of a particular
mathematical morphology is clearly dictated. Unfortu-
nately, definition 4 leads to effects on the initial fuzzy
sets which may be judged too weak. Moreover, it is
strongly related to FMM, as the results are exactly the
same as those obtained with classical morphology and
then by shifting and truncating the obtained function
(see Fig. 1). Actually, it 1s not surprising that the defi-
nition which is the closest to the classical definition on
functions also leads to the closest properties to the
classical ones.

The combination property is also satisfied only for
particular T-norms. However, the required condition
is here not too stringent. It is satisfied for the “min’,
the product, the bounded sum and thus the combination
relation holds in particular for definitions 2, 3 and 4..

6.1.2. Morphological aspects for definition 5. Let us
now consider definition 5. i.e. obtained for a weak
T-norm derived from a A4 function. Its properties are
weaker than those obtatned from a T-norm, as expected.
As opposed to all other definitions. definition 5 is not
always compatible with GM M if the structuring element
is binary. Actually this compatibility is satisfied if and
only if 2 = 4. i.e. in the case where definition 5 reduces
to definition 4 (see Fig. 8). In the general case, however.
definition § is compatible with BMM.

As weak T-norms deriving from a 4 function are not
compatible with homotheties, definition 5 leads to
transformations which are not compatible with
homotheties.

For the continuity property, the condition "/ conti-
nuous™ is necessary and sufficient and is similar to the
condition stated for definition 6.

A strong limitation of definition S concerns algebraic
properties of the operators: extensivity of dilation (and
thus anti-extensivity of erosion), extensivity of closing

(anti-extensivity of opening), idempotence of opening
and closing, iteration relation and combination relation
are all satisfied iff A = 1, (see Fig. 8).

Our feeling is that definition 5 does not constitute a
real generalization of definition 4 as far as morphological
aspects are concerned, because too much algebraic
properties are lost as soon as definition 5 differs from
definition 4 (ie. 4 # A,). However, we will see in the
next subsection that the use of a A function can be
useful from a fuzzy set point of view.

6.1.3. Morphological aspects for definition 1. Let us
now consider the first definition. The underlying
principle ts completely different from that of the other
definitions. For definitions 2-6, the key point is mainly
a generalization of binary set operators into fuzzy
ones. The good properties derived for these definitions
are due to the properties imposed on the fuzzy set
operators, which have to match the binary set properties
used for mathematical morphology. For definition 1,
the construction relies mainly on a generalization of
binary sets into fuzzy ones by means of stacking crisp
sets (x-cuts). Then morphological operators are cons-
tructed in the same way by stacking operations on the
a-cuts. In this construction, no property related to
morphological properties appears explicitly, as opposed
to the other definitions. So, it is not surprising that the
morphological properties obtained for the first defini-
tion are weaker than for the other ones. Figure 9
shows examples where, respectively, compatibility with
union, iteration relation, combination relation, anti-
extensivity and idempotence of opening are not satisfied.
However. this definition is not without interest. The
construction principle is interesting for itself and has
been used for generalizing other operations on fuzzy
sets, like the degree of connectivity for instance.3:3®
Another interest lies in the regularization effect of the
operators, due to the integral in the formula (see Fig. 2).
Even operators with weak properties may have effects
useful for the applications: for instance, erosion followed
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by dilation is not an algebraic opening for this definition
but is useful for suppressing noise, as can be expected
from any opening (see Fig. 10). Note also that the
satisfied properties, although weak, are not weaker
than those of definition 5 for A # 4,,.

A last remark about this first definition concerns
inclusion indicator: it can be defined from the erosion
according to I(v, u) = E£1,(1)(0), and thus as:

1
[(v, 1) = | inf p(y)de
D rev:
This inclusion indicator derived from the first definition
satisfies A2, A3, A4, A5, A6 and A9, axiom Al in a
weaker form, and axioms A7 and A8 with inequalities,
due to the weaker form of P.11.1 for definition 1.

6.1.4. Further properties and operators. As a general
rule, the loss of a property for one of the definitions
has consequences at different levels: at theoretical and
algorithmical levels, and at a qualitative level for the
results of fuzzy morphological transformations.

One theoretical consequence is the derivation of
further properties. Let us consider, for example, the
generalization of the Matheron’s representation
theorems (see e.g. Serra®** and Heijmans?). It makes
sense to consider the possibility of such a generalization
for definitions having good algebraic properties for
openings, that is, mainly for definition 4. This problem
has been addressed by Sinha et al.®® The authors
consider spatially translation-invariant openings and
show that an F-opening (i.e. an opening acting on
membership functions) has a representation in terms
of elementary H-openings (acting on general real func-
tions), but not in terms of union of fuzzy openings. For
the representation by erosions, they also obtain a
weaker result than for classical mathematical morpho-
logy: it cannot be shown that any increasing spatially
translation invariant operation can be represented by
a union of fuzzy erosions.

Another theoretical consequence concerns filtering.
A morphological filter is an increasing and idempotent
mapping (see e.g. Serra®® for a general theory of
morphological filtering). An anti-extensive filter is called
algebraic opening, and an extensive filter is called
algebraic closing. Of course, morphological openings
and closings derived as the compound of an erosion
and a dilation are algebraic openings. In the fuzzy case,
as morphological openings and closings have weaker
properties than GMM ones, they are not morphological
filters. Thus, all theoretical results related to morpho-
logical filtering theory are not valid in general, except
for particular definitions. However, algebraic openings
can be constructed in another way. For example, the
iterative construction proposed in Serra®® is also
applicable in the fuzzy case: given an increasing map-
ping ¥, a decreasing series is constructed as [min(/d, ¥)]",
where Id denote the identical mapping. For any value
of n, [min(ld,)]" is increasing and anti-extensive by
construction. Let us now consider the case of a finite
space. The decreasing series [min(/d, y)]" admits a limit

1. BLOCH and H. MAITRE

[min(Id,y)]™. As this limit is such that [min(/d, )] =
[min({d, )] [min(Id, ¥)]™, it is idempotent and thus is
an algebraic opening (and an anti-extensive filter). This
construction can be generalized to the fuzzy case if we
consider a finite space S and a finite number of possible
values for the membership functions. So there exist
algebraic openings for all definitions. This example
shows that it is possible to derive fuzzy morphological
filters having the same properties as in classical morpho-
logy, whatever the chosen basic definition.

An example of fuzzy filtering is given by Dougherty
for an opening derived from definition 4. The comparison
with a mean operator shows better results for the fuzzy
opening. A deeper comparison should be made with
classical mathematical morphology with binary and
functional structuring elements. Similar results can be
obtained with the other definitions, even if the algebraic
properties are not satisfied (see Fig. 11). An advantage
of fuzzy filtering is that the great variety of fuzzy
morphologies and of possible fuzzy structuring elements
provides more flexibility. Composed filters like alternate
sequential filters®* can also be built for ®MM in a
similar way as for classical morphology: only an increas-
ing sequence of structuring elements is needed. Its
effects to filter out pepper-and-salt-like noise are similar
(see Fig. 12). Thus, the consequences of weaker prop-
erties are not as crucial at a qualitative level as at a
theoretical one.

The loss of algebraic properties for fuzzy morpholo-
gical operators has also algorithmical consequences.
Let us consider, for example, the iteration relation. If
it 1s satisfied, then it guarantees that it is equivalent to
perform, for instance, a dilation by v and then by v’ or
directly a dilation by D (v'). This equivalence may lead
to more efficient algorithms. If it is not satisfied (like
for definition 1 and definition 5 for A # 4,), an alterna-
tive way to implement the algorithm is lost and a
potential improvement too. More generally, morpho-
logical algorithms are based on chaining operators.
One advantage of mathematical morphology lies in
the strong properties of the operators which assure, for
example, that it is not worth performing the same
opening twice, etc. For ®MM, the design of an algorithm
has to be made more carefully, as the properties not
only depend on the chosen operation but also on the
chosen morphology.

Examples of algorithms derived from the four basic
operators are presented by Dougherty:*” top-hat
transform, hit or mass transform, morphological
gradient. The approach presented in this report is
mainly based on a fitting characterization of the
morphological operators: erosion serves as a fuzzy
marker and characterizes to which degree the structur-
ing element fits in the shape. They give fitting charac-
terization for erosion, dilation and opening.*® For
example, for definition 4, the following equation holds:

E4,(1)(x) = sup{(1 —)e[0, 1], v, O(—a) < pf,

where [v, ¢ (—2)](y) = min[1, max(0, v(y — x) —a}].
This equation is issued from the equivalence between

(37)
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this definition and FMM shifted and truncated. The
shift appears in the expression (1 — a) [instead of (— )
in the classical fitting characterization] and the trunca-
tion in the truncated range translation < (instead of a
simple range translation in the classical fitting charac-
terization). As the other definitions (except the first
one) rely on a generalization of union and intersection,
and thus of inclusion, they contain implicitly such a
characterization. However, the explicit formula may
be more complicated. Going further in the interpreta-
tion, we note that, for the general definition 6, erosion
is interpreted as fuzzy inclusion since we have E (u)(x) =
1(v,, ), which represents the degree to which the fuzzy
structuring element v translated at point x is included
in the fuzzy set u. Thus, the membership value to a
fuzzy eroded set corresponds exactly to a degree of
fitting. A dual interpretation holds for dilation, as a
degree of intersection.

Other transformations can be built from the four
basic ones. For example, conditional operations can
be easily generalized. Let T,(u) be a fuzzy morphological
transformation (a dilation for instance). We define the
corresponding conditional operator (conditional
dilation of a fuzzy marker g’ with respect to a fuzzy set
) as:

CT (. ) = i[T,(1), ],

where i represents a fuzzy intersection, i may be the
standard Zadeh intersection (min) or any T-norm. It
is not necessarily the same as that chosen for defining
the ®MM if definition 6 is used, and may thus have a
different interpretation with respect to fuzzy set theory.
An example of conditional dilation is shown in Fig. 13.
Other possible generalizations are thinning and thicken-
ing, dertved from the hit or miss transform. As for
classical morphology, accurate choices of structuring
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elements provide particular operations (examples for
BMM are convex hull, skeleton, etc.). In the fuzzy case,
a deeper study is needed to design interesting thinning
and thickening.

That morphological-based pattern recognition may
be of great interest for fuzzy sets has already been
pointed out,®” where a fuzzy set is considered as a
noise verston of a binary set, and fuzzy operations were
shown to provide better results than a preliminary
threshold to recover a binary set. However, we claim
that this approach is too restrictive. Fuzziness cannot
always be assimilated to noise. Imprecision and un-
certainty may be inherent to the observed phenomenon
(and not due to noise) and adequately represented by
fuzzy sets. In reference (22) we presented an application
in medical image processing where a fuzzy structuring
element was used to represent the imprecision in the
matching between two images. For pattern recognition

purposes, imprecision and uncertainty can be taken
into account by means of ®MM. The fuzziness of the
result may be used to define a degree of detection or
recognition. We will discuss this aspect in Section 6.3.

6.1.5. A general form for fuzzy mathematical
morphology? Let us now briefly discuss what could be
the most general form for ®MM satisfying the require-
ments stated in Section 3. In Sinha®® the following
form is proposed for the inclusion indicator:

I(v, ) = B[y [Aux)), ¢(v(x))], x €S,

with a series of conditions on the functions 6, ¥, A and
¢. As already mentioned above when discussing defi-
nition 5, the functions 4 and ¢ act separately on the
fuzzy set and the fuzzy structuring element, respectively.
Thus, they are only modifications of 4 and v and do
not provide any relation between y and v. More inte-
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resting are 6 and y, which actually perform the
morphological operation between g and v. The func-
tion 6 may be supremum, infimum, product, mean and
the function ¥ may be maximum, minimum, bounded
sum, bounded difference. The conditions on 6, § (and
A, @) are such that they are necessary and sufficient to
guarantee that I(v, u) satisfies the nine axioms A1-A9.
Here again, no condition guarantees the other prop-
erties like P.7, P.8, P.12.

Let us consider definition 6, where the transforma-
tions are derived from a combination operator. Is the
family of T-norms too restrictive or could a more
general family also be used? Table 7 presents the pro-
perties of the T-norms and T-conorms (described in
Appendix 2) involved in the demonstrations of the
results given in Section 5 (morphological properties
summarized in Table 6). This table shows that all
properties of the T-norms are used at least once. So if
we want all morphological properties, we cannot extend
the family of combination operators and must remain
in the T-norm family (for morphological operators
expressed in the form of definition 6). However, if we
accept to lose some properties, we can consider a larger
family. For instance, T2 and T'2 (assoctativity) is used
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only to prove the iteration relation. If we do not need
this relation for a particular application, we can consider
non-associative operators. However, from a data fusion
point of view, associativity is a key property which is
satisfied for all commonly used combination operators,
except for mean operators.®® (However, mean
operators have no unit element and thus cannot provide
®MM operators which are compatible with BMM.)
Weak T-norms and T-conorms do not satisfy T2 and
T'2, nor T3 and T'3. If we accept to lose the properties
involving T2 and T3 (extensivity of dilation, compa-
tibility with GMM, iteration relation), weak T-norms
may be used. However, the choice for a weak T-norm
should be made more carefully if we want to have the
other properties. In particular, extensivity and idempo-
tence of closing requires a strong relation which is
seldom satisfied.

More generally, we have proved that if the fuzzy
dilation takes the following form:

D, (u)(x) = sg?f [v(y —x), w(»)],

then f is necessary a T-norm if we want the required
properties. Some conditions must be added if we want

Table 7. Properties of i and u involved in the proofs of the morphological operators for
definitions deriving from a (weak) T-norm and T-conorm ( x means that no property, or no
additional property, is required)

Properties of fuzzy mathematical
morphology operators

Properties of i and u
involved in the proofs

Additional necessary
and sufficient properties

Duality D, Cl1,C2 X

Compatibility with classical T3, T3, TO, T'0, T4, T'4 X

morphology if v is crisp

Compatibility with translations X X

Compatibility with homotheties X i and u compatible with
homotheties

Local knowledge T4, TO, T'4, TO x

Continuity X TS, T'S

Increasingness of dilation T4 x

Decreasingness of erosion T4, C1 x

with respect to v

Extensivity of dilation iff v(0) = 1 T3 x

Anti-extensivity of erosion iff T3, CO x

vi0)=1

Extensivity of closing anti- T4, T'4 i[b,u(c(b),a)] <a

extensivity of opening

Idempotence T4, T'4 i[b,u(c.(b)a)] <a
Pseudo-commutativity of Ti
dilation X
Dilation and erosion of (or by) T4, T4
an intersection or an union b
Iteration T4, T2, T4, T2
Combination T4, T'4 X

. < .
Inclusion of the cuts of the T4, T3 ia,uth, )] < ulb.i(a,c)]
dilation in the dilation of X

the cuts
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compatibility with homotheties, extensivity and idem-
potence of closing and/or the combination relation
{see Table 6).

Now let the fuzzy dilation be in the following form:

D()(x) =g { f[v(y — x), 1(»)], yeS},

where g is a function of eventually an infinity of variables,
and let g, be the corresponding function of one variable
only. Then we have the following result:

If g, is a continuous function, then g, is necessarily
a bijection, g, © fmust be a T-norm (again with some
restriction if we want all properties), and g =g, O
(sup,es) if g, is increasing or g =g, O (inf,) if ¢, is
decreasing. So this case is the same as the previous one
up to a continuous bijection.

These results show that definition 6 is the most
general for a dilation taking the above form if we want
all properties. Proofs of these results can be found in
reference (29). Note that the conditions on () and ¥
obtained by Sinha and Dougherty'*® are weaker because
they only require the nine axioms A1-A9 and not the
other properties.

S

6.1.6. Use of fuzzy mathematical morphology. A last
remark in this section concerns the use of ®MM. When
a particular definition has to be chosen, the choice is
guided by the morphological properties we look for. If
we need weak properties, the choice is large; if we need
stronger properties (like idempotence for intance), then
the choice is much more restricted. If definition 6 has
been chosen, another guide comes from the require-
ments on the properties of i and w. This will be discussed
in Subsection 6.3 as it concerns mainly fuzzy aspects
related to combination operators. Then, as for classical
morphology, particular operators and structuring
elements have to be chosen. The problem is similar to
the classical one and is solved by looking at the desired
effects and the desired properties. In classical mathe-
matical morphology, compact structuring elements

2D fuzzy structuring element

I. BLOCH and H. MAITRE

are often used®*# as they lead to a better behaviour of
the transformations and to more mathematical prop-
erties. We suggest to define a compact fuzzy set by
means of one of the three following conditions (leading
to different definitions):

e a fuzzy set is compact iff its support is compact;

e afuzzy set is compact iff all its a~cuts are compact
(this definition is more restrictive);

e a fuzzy set is said to be compact to a degree f3 iff
B =sup{xe]0,1], p, is compact}.

From the previous lines, we see that there is a lot of
elements to chose in order to design a ®MM application.
Fig. 14 shows the effect of the shape of the structuring
element.

Unfortunately, no experience exists until now for
real fuzzy applications similar to those we have for
classical mathematical morphology. However, we hope
that we can benefit from the many applications in
mathematical morphology on one hand and in fuzzy
set theory on the other hand to soon acquire this
necessary experience.

6.2. Comparison with respect to fuzzy sets

6.2.1. New operations on fuzzy sets. As mentioned
earlier, since the introduction of fuzzy sets, many fuzzy
operations have been proposed. They mainly concern
logical aspects (“and/or” operators, implications, entail-
ment schemes, etc.) and set operators directly related
to the logical ones. However, to process spatial infor-
mation as is often done in picture processing, only
some elementary topological and geometrical operators
exist. In this context, ®MM appears as a powerful
theory as it provides a large class of operations, widely
used in classical image processing and now also avail-
able for fuzzy image processing. Basically, from one
operation (dilation, for example) four basic operations
are constructed whose properties are well known, and

2nd structuring element

Membership values

Fig. 14. Influence of the shape of the structuring element (definition 3 is used): (a) initial fuzzy set x4 and two
different shaped fuzzy structuring elements v, and v; (b) D, () and D, (u); (¢) E,, (1) and E,,(u); (d) O,,(n)
and O,,(p).
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then a complete set of morphological operators gen-
eralized for fuzzy sets is built. From this, the set of
possible operators for manipulating fuzzy sets is greatly
extended. Moreover, DMM provides operations whose
effects are spatially controlled, for instance, dilation
allows us to propagate fuzziness to a extent defined by
the structuring element.

6.2.2. Interpretation of the /. function in definition 5
in terms of fuzziness. Another effect on the fuzziness is
provided by the function 4 introduced in definition 5.
This function acts on the imprecision or uncertainty
representatton by modifying u and v. Definition 5
applied to a fuzzy set u and a fuzzy structuring element
v is equivalent to applying definition 4 to 1 — A(u) and
1 — A(v), providing a ®MM which is close to FMM (see
Section 6.1)."Examples of the effect of £ on a fuzzy set
are shown in Fig. 15. For instance, the function i(x) =
I — x" decreases the fuzzy character of 4 and makes

lambda(x) = l-x-n (n=3)

0.6

lambda (x)

///

lambda (%)
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the set crisper when nincreases. As 4 does not represent
any relationship between u and v, it does not really
help in designing ®MM operators. Thus, we propose
that it be introduced in the modelling phase where the
fuzzy sets and structuring elements are defined from
the problem to be solved. In this stage, from the measures
made on the image, we have to derive ¢ and v member-
ship functions. As the fuzzy set and the fuzzy structuring
element derive from different deductions, there is theo-
retically no reason that they make use of a similar 1
function.

6.2.3. Functions vs fuzzy sets. More generally, one
of the main contributions of ®MM with respect to
FMM relies in the modelling of fuzziness. Membership
functions are functions into [0, 1] which cannot be
considered as any function, since the underlying inter-
pretation plays an important role: 0 and 1 are particular
values representing certainty about the presence or the

lambda(x) = (1-x)/(1+nx) {n=-0.5)

lambda(x)
C.G
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. 15. Influence of the choice of the A function: (a) different / functions; (b)1 — A(x) for the above functions;

(c) corresponding fuzzy dilation for definition 5.
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absence of information. The value 0.5 also often plays a
privileged role, as a decision thresholding for instance.
As said before, the problem when using FMM directly
on membership functions is that the result is generally
not a membership function, and we have seen that
shifting and truncating the result does not lead to a
satisfactory result. This could suggest proceeding in
another way. We may transform any function with
values in [0, 1] in a function with values in [0, + « ]
(or [—aoc, + «c]) by a bijective increasing mapping |
such that f(0)=0 [or f{(0)= —x] and f(1)= + x.
Transforming a fuzzy set p and a structuring element
v according to this mapping, it is now possible to dilate
them using classical mathematical morphology.
The resulting function, taking valuesin [0, + o ] (or in
[ —ac, +]), is then transformed by the inverse map-
ping f ! in order to recover a membership function.
Thus, a fuzzy dilation can be defined as:

DMMﬂ=f”[WQUmUM+IMy—ﬂU}

The main drawback of this approach is to distort
the fuzziness scale in a way which makes the interpre-
tation more difficult. F instance, value 1, expressing
certainty, is no longer accessible since it goes to the
numerically inexistent infinite value. This problem
would also exist for the value 0 if we take f in
[+x, -]

Other drawbacks appear at the property level. Let

us assume that there exists, z in S such that v(z)= 1.
Then we have:

Vxes, dyeS, flu(y)+ f(x(y—x)) =+,

and thus:

Vxe§S, D,()(x)=1.

This means that the dilation is completely saturated,
and does not fit the intuitive idea of a dilation which
respects the shape and size of the structuring element.
Moreover, this shows that compatibility with BMM
and GMM cannot be achieved using this definition.
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Note that if we choose f taking values in [0, + o],
then the form:

fHf @+ fb)],

which is involved in the dilation, corresponds to the
general form of a strictly monotonous archimedian
T-conorm.®*® Thus, the dilation is obtained as a “sup”
of a T-conorm instead of the “sup” of a T-norm as in
definition 6, and this explains the previous behaviour,
as well as the loss of properties related to the interpre-
tation of fuzzy dilation as a degree of intersection
between the shape and the fuzzy structuring element.

Note that an analogous form has been proposed by
Giradina'” with the T-conorm min(1, x + y), which
leads to the same drawback.

Let us now consider fuzzy erosion. It can be built in
two ways: either from dilation by duality, or following
the same construction scheme as for dilation. In the
first case, we obtain directly:

E (W)(x) = irg[l =S = () + f vy = x)]].

In the second case, we first transform the fuzzy sets
u and v according to a function ¢ from [0,1] to
[ — 0, + 0], use classical FMM and then apply ¢ .
This leads to:

E,(1)(x) = ivrelsffb*’[d)(#(y)) — v(y —x)1.

However, there is no reason to transform fuzzy sets
differently depending on the operation we would like
to apply. Thus, a reasonable choice is ¢ = f. The two
ways for defining fuzzy erosion are then equivalent iff:

Via,b)e[0,11%, f7'[f(1 —a)+ f(h)]
+/7 ' fa)— f()] =1,

which is obviously not satisfied for any function f from
[0,1]to[—oc, + co]. Thus, this is an additional draw-
back of this approach.

6.2.4. Excluded middle and non-contradiction. One
important feature of fuzzy sets is their behaviour with
respect to the rules of excluded middle and non-contra-
diction. For binary sets, the rule of excluded middle
always holds and is expressed, for a subset 4 of a space
S, as:

AuvAt=S.
By duality, the rule of non-contradiction for crisp sets
holds and is expressed as:

AnA =@,

For fuzzy sets, these rules may be or may not be
satisfied depending on the fuzzy union and intersection
used. For a T-norm i and the corresponding T-conorm
u with respect to a complementation c, the two rules
are expressed equivalently as:

i[x,c(x)] =0,
<ulx,c(x)]=1

(non-contradiction)
(excluded-middle).
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Let us consider the T-norms given in Table 5, “min”
and product do not satisfy the rule of non-contradiction.
The T-norm max(0,x + y — 1) and the weak T-norm
max(0, 1 — A(x) — 4A(y)) satisfy this rule (as for any func-
tion A the equation A(x) + A(1 — x) > 1 holds, see defi-
nition 5, part 2). Let us see now how these two rules
are related to ®MM. Let us consider the necessary and
sufficient condition to be satisfied by i and u for the
extensivity and idempotence properties (needed to have
algebraic openings and closings):

i[b,ulc(b),a]] € a.

By setting a = 0, the rule of non-contradiction is deduced.
We conclude that non-contradiction for i and u is a
necessary condition to ensure extensivity and idem-
potence of openings and closings, and it reduces
drastically the set of eligible T-norms. Unfortunately,
non-contradiction is not a sufficient condition: for
instance, a weak T-norm derived from a 4 function for
+ # Ao does not lead to algebraic closings and openings,
although it satisfies the non-contradiction rule.

Let us now consider the condition for the combina-
tion relation:

ila,u(b,c)] <u[b,ula,c)].

This condition is not as strong as the one for extensivity
and idempotence and is satisfied for a larger family of
T-norms and T-conorms. This can be easily shown by
the following result:2®

For any T-norm i and associated T-conorm u with
respect to a complementation c such that the condition
for extenstvity and idempotence i[b,u[c(b),a]] <a is
satisfied, we have:

o iand u satisfy the rules of excluded middle and of
non-contradiction;

o ! and u satisfy the condition for the combination
relation, i.e. i[a, u(b, )] < u[b,u(a,c)].

Conversely, for any T-norm i and T-conorm u such
that they satisfy the condition for the combination
relation i[a, u(b, ¢)] < u[b, u(a, c)] and the rules of non-
contradiction and excluded middle, then i and u satisfy
the condition for extensivity and itdempotence, i.e.
i[b,ufc(b),a]] < a. Note that the proof of this result
involves properties T'3 (unit element) and T'2 (associ-
ativity), discarding, by the way, weak T-norms and
T-conorms.

6.2.5. Refinement and weak inclusion. A fuzzy set v is
said to be a refinement of another fuzzy set u or an
enhanced version of g if and only if:'*®

Vxes, {u(X) <5 =v(x) < plx)
H(x) 2 = ¥(x) 2 (o).

It can be shown?® that if v is an enhanced version of
i, then we have:

VXES* Evuc(v)(v r\c(v)](x) < Euuc(u)(.um ((H))(x)’

for the fuzzy erosion defined by definition 6, n and U
being fuzzy intersection and union defined by any
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T-norm and T-conorm (not necessarily the same as
those used for the erosion definition), and ¢ being a
fuzzy complementation. The interest of this equation
from a fuzzy set point of view relies in the interpretation
of E._.mvnc()0)=I[vue(v),vne(v)] in terms of
fuzzy entropy of the fuzzy set v.*®:*" Note that this
definition of entropy not always satisfies the require-
ments for a fuzzy entropy as stated by de Luca et al.*"
depending on the choice of the T-norm.

A fuzzy set v is said to be weakly included in a fuzzy
set g iff:2®

Vxes, v(x) S; or p{x)> ;

If v is weakly included in p, then E (u)(0) = I(v, 1) > }.
In the same way, if v, is weakly included in g, then
E(u)(x) > . If it holds for any x, then E (1) > !. These
equations may also be interpreted in a context of fuzzy
measures.'*®

6.3. Comparison with respect to decision theory
and data fusion

Our aim in constructing fuzzy morphologies was
originally to provide tools for data fuston and decision
making in a fuzzy set framework. From this point of
view, definition 6 has many advantages, which will be
explained now. They rely on two main properties of
T-norms and T-conorms: the first is their interpretation
in terms of fuzzy intersection and union (directly used
in Section 4); the second is their interpretation in terms
of combination operators, commonly exploited for
fusing information represented by fuzzy sets and for
deciston making.

6.3.1. Interpretation of T-norms and T-conorms. T-norms
are originated in stochastic geometry: a statistical
metric space*!’ is defined as a set S such that a function
I(x; p, g) is associated with any points p and ¢ of S.
This function may be interpreted as the probability
that the distance d(p, ¢) be less than or equal to x. One
of the conditions imposed to I1{x; p, q) is expressed as:

TII(x: p,q).

and extends the classical triangular inequality on dis-
tances.* The study of statistical metric spaces, carried
out e.g. in Schweizer and Sklar,“?*¥ leads to the
characterization of associative functions on the unit
square, by using results on functional equations*!
and transformations from semi-groups into new semi-
groups.

Let us now try to interpret the various elements
involved in T-norm theory with respect to the proces-
sing of uncertain, imprecise or ambiguous information,
and particular for data fusion and decision theory.

At first, the elements of [0, 1] can be interpreted as
measures derived from data given by one or several
sensors, for instance, a measure of membership to a

M{y:q.r)] < {x+ y.p, 7).

* The name triangular norm assigned to T is due to the
role played by T in this inequality.
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class, a measure of evidence of presence, a measure of
satisfaction of a criterion. This measure can be quantity
of information, a probability, a membership degree, a
mass function, a plausibility function, etc., depending
on the theoretical framework considered. Additional
constraints can be imposed on these measures accord-
ing to this framework, but here we will consider
membership degrees to fuzzy sets without any additional
particular constraint. The value O and 1 play particular
roles. The value 0 means that, for an event, the sensor
provides a null measure, either because it considers the
event as impossible, or because it has no information
or a complete ignorance about the event. On the
contrary, the value 1 means that the sensor considers
the information, or the event as sure and thus represents
a total certainty. Values which are strictly between 0
and 1 represent degrees of partial knowledge on the
information. They can also be interpreted as impre-
cision, or as a quantity of information available about
the event.

In this context, T-norms and T-conorms appear as
operators for combining information, or for aggregating
criteria, represented by measures in [0,1]. A T-norm i
is necessarily less than the “min™ and thus, as a con-
junction operator, represents a consensus between
information, or its common or redundant part. It
reduces the less certain information and has at most
confidence in the sensor which gives the smallest
measure. It searches for a simultaneous satisfaction of
criteria or objectives. On the contrary, a T-conorm u,
necessarily greater than the “max”, increases the
certainty we have about an information and has at
least confidence in the sensor which gives the greatest
or the most certain measure, or the most information.
It is disjunction operation, which expresses redundancy
between criteria. Note that these two operators rule
out any compromise operator (mean operator), i.e
comprised between “min” and “max”, for which the
global measure is intermediate between the partial
measures provided by each sensor.?%

The commutativity (T1, T'l) and associativity (T2,
T'2) properties express that the result of the combina-
tion is independent of the order in which the infor-
mation is combined. These properties are commonly
satisfied by information combination operators (for
instance, the Dempster’s orthogonal rule of combina-
tion verifies these properties). These properties are
even often imposed as axioms governing the construc-
tion of operators, as they are commonly recognized as
minimal properties the operators should satisfy, al-
though human reasoning not always combines infor-
mation in a commutative and associative way.

The existence of a unit element (T3, T'3) expresses
that if a sensor provides this unit value, it will not
change the result of the combination and so will have
no influence on the final decision. For T-norms, the
unit element is 1. The combination of such an infor-
mation with any other one well matches the idea of a
consensus between a certainty about an event and
another measure of this event. For T-conorms, the
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unit element is 0, which corresponds to a complete
ignorance of a sensor, or the absence of information
and thus has no influence on a disjunction operator.

The increasingness property (T4, T'4) corresponds to
a constraint generally imposed on the operators: if two
sensors given information or measures x' and y’ greater
than x and y, respectively, we expect from the com-
bination of x’ and )’ a result that is also greater than
the result obtained from x and y (representing more
information, or more certainty).

The limit conditions (TO, T'0) govern the behaviour
of the combination of measures in {0, 1}, and impose
it to be compatible with the binary case. Thus, their
interpretation is the same as for classical logic, where
the reasoning deals only with values “true” and “false™.

The continuity property (TS5, T'5) assures the robust-
ness of the information combination. If a sensor provides
an information or measure x’ slightly different from x,
the combination of x’ with any other value should not
be very different from that obtained with x. This
property is not always imposed (for instance, i, and
u, are not continuous). It is, for example, possible to
impose that some values completely determine the
result and that small changes in these values drastically
change the result and the derived decision.

Complementation generalizes the negation of pro-
positions (1) of classical logic. It modelizes the notion
of “contrary™ of an information or a measure. The
property CO expresses a compatibility condition with
classical negation (1 true = false, —false = true) and thus
has the same interpretation. The decreasingness pro-
perty (C1) expresses that two measures are ordered in
the reverse sense with respect to their contrary. If we
have more cetainty or more information about an
event, we have less about its contrary. The involutive
characteristic of the complementation (C2) fits the
common sense. The most used complementation is
¢{x)=1-—x. Others have been proposed (see e.g.
Dubois®*® and Yager*?),

Duality property (D) between a T-norm and a T-
conorm expresses the equivalence between conjunction
of information and disjunction of its contrary.

The existence of a null element for an operator means
that this value completely determines the result of the
combination. It is enough that a sensor provides this
value for the result of any combination being this
value. For T-norms, the null element is 0, which is
consistent with the idea that a consensus cannot provide
any information from a set of measures with 0 being
among them. For T-conorms, the null element is 1: if
a sensor provides a total certainty about an event, its
combination by disjunction with any other information
will also be a total certainty.

If the idempotence property is satisfied, then measur-
ing again an already known information will not change
the already derived deduction. This property is not
necessarily imposed for data fusion. For instance, the
Dempster rule of combination is not idempotent. We
may want on the contrary that the combination of two
(uncertain) identical data reinforces or weakens the
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global confidence in the considered event. This is
formalized as the archimedian property. For T-norms,
it expresses that the confidence decreases if we have
twice the same uncertain information. This behaviour
is close to the probabilistic logic where when multi-
plying probabilities, probability decreases. On the
contrary for T-conorms, the archimedian property
expresses that the confidence in an information is
reinforced if this information occurs twice. As opposed
to T-norms and T-conorms, mean operators (in between
the “min” and the “max”) always satisfy the idempo-
tence property. The kind of stability expressed by these
compromise operators is incompatible with the archi-
median property. The only idempotent T-norm and
T-conorm are “min” and “max”, respectively. Examples
of archimedian T-norm and T-conorm are the product
and the algebraic sum, respectively. All archimedian
strictly monotonous T-norms have the following general
form:3%

Vi y)el0, 1% ix.y) =1 "'[Ax)+ 1],

where [ is a continuous decreasing bijection from
[0, 1] into [0, + o] such that f(0) = +oc and f(1) =0.
The corresponding T-conorms have the following
general form:

Yix. vel0, 115 ulx,y)=¢ To(x) + o())),

with ¢ a continuous increasing bijection from [0, 1]
into [0, + oo ] such that ¢(0) = 0 and ¢(1) = + cc.

Every additive generating function f of an archi-
median strictly monotonous T-norm i has an equivalent
multiplicative generating function h**? and thus i can
also be expressed as:

v(x,»)el0, 117, i(x,y)=h""[h(x)h(»)]

where his a strictly increasing function [0, 1] into [0, 1]
such that #(0) = 0 and h(1) = 1 (h may be deduced from
fhyvh=e )

The nilpotence property means that the accumulation
of n information leads to the null element (0 for T-
norms and 1 for T-conorms). For instance, for T-
conorms, a total certainty about an event is gained if
we obtain a sufficient number of non-null measures
supporting that event, even if uncertain. The operators
i(x,y)=max(0,x + y — 1) and u(x, y) = min(1, x + y) are
examples of nilpotent T-norm and T-conorm. Any

nilpotent T-norm has the following general form:*%

Vix.1el0, 1% ilx,y) = f*[f(x)+ fin],

where f is a decreasing bijection from [0, | ] into [0, 1]
such that f(0)=1and f(1)=0, and f*(x)=f " '(x) if
xe[0, 1], f*(x) = 0if x > 1. The general form of nilpotent
T-conorms can be deduced by duality. Again we have
an equivalence between additive generating functions
and multiplicative ones.

The rules of excluded middle and non-contradiction
have an interpretation in terms of reasoning in parti-
cular in the domain of artificial intelligence and ap-
proximate reasoning. They are not necessarily imposed
and may or may not be in conflict with other properties.
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For instance, the satisfaction of these principles and
the idempotence property are mutually exclusive. On
the contrary, nilpotent operators always satisfy these
two principles.

T-norms can also be constructed from another T-
norm. Let i be a T-norm and h a continuous strictly
increasing function from [0, 1] into [a, 1] such that
h(0) = a and k(1) = 1. Then the operator i’ defined by:

Y(x. »)e[0, 112, 7(x,y) = h*[i(h(x), h(v)}].

with h*(x) =0 if x <« and h*(x)=h""(x) else is a T-
norm.**?' Note that the “min” and i, are invariant by
this construction, for any function h. Archimedian
T-norms, for instance, can be obtained by this cons-
truction for i(x, y) = xy.

The generating functions of T-norms and T-conorms
(functions f, ¢, h introduced above) can be interpreted
as functions which modify the inittal data, for instance,
by reinforcing or decreasing uncertainty or imprecision.
The inverse function used after combination (f ',
¢~ '.h™ 1) or “pseudo-inverse” (f*.h*) can be inter-
preted as reverse modification of the result in order to
recover the initial interpretation of the membership
scale. The generating functions have thus an interpre-
tation very similar to that already mentioned for the 4
function involved in definition 5. The combination of
the T-norm max(0, x + y — 1) with the function h(x) =
1 — A(x) provides the weak T-norm max(0, 1 — i(x) —
4(¥)). This construction is similar to the one given
above (h*[i(h(x), h(y))], except that function h* is not
used (the obtained value is not reversely transformed).
This is why the result is only a weak T-norm. Moreover,
this leads to a different interpretation as 2 acts only on
the individual values and not on their combination, as
opposed to h.

®MM inherits-all these interpretations of T-norms
and T-conorms. Since properties are directly used
(duality, for instance) and lead to morphological pro-
perties. Others are addtional properties for morpholo-
gical operators, of another kind, no more strictly
morphological. For example, the idempotent T-norm
and T-conorm provide a particular definition for DMM
transformation (definition 2). Then going from these
extreme combination operators to archimedian or nil-
potent ones, the information is progressively weakened
(respectively, reinforced) by these operators and we
obtain definitions for ®MM dilations (respectively.
erosions) which reflect this behaviour, and which have
progressively less effect on the initial fuzzy sets. This
leads to the important property of spatial ordering of
®MM operators (see the last results of Section 5).
Thus, this is an example where properties of fuzzy
combination operators are inherited by ®MM and can
be used in a morphological way.

6.3.2. Relationship with approximate reasoning. One
important feature of approximate reasoning using fuzzy
sets is the generalization of implication. Fuzzy impli-
cation is often defined as:"*®’

Imp{a,b) = u[c(a), b].

I. BLOCH and H. MAITRE

Fuzzy inclusion is related to implication by means of
the following equation:

Imp(v, ) = inf Imp[v(x), u(x)],

which leads to the definition of the inclusion operator
used in this paper:

Iv,p) = ";g ule(v(x)), u(x)].

A second definition for fuzzy implication is the follow-
ing:
Imp(a,b) = sup{ee[0, 1]/i(a,e) < b},

which would provide the following expression for the
inclusion indicator:

I(v, ) = inf sup{ee[0, 11/i[v(x),e] < u(x)}.
xe8

These second definitions coincide with the ones if i is
an archimedian T-norm with nilpotent elements.

By using for the T-conorm u is the first implication
definition the operators max({x, y), min(l,x + y), x +
y — xy. we obtain, respectively, Kleene—Diene’s impli-
cation, Lukasiewicz’s implication and Reichenbach’s
implication; by using for the T-norm i in the second
implication definition the operators min(x,y),
max(0,x + y — 1), xy, we obtain, respectively, Brower—
Godel's implication, Lukasiewicz’s implication and
Goguen’s implication.®*” Thus, direct relationships
are established with the implications commonly used
in approximate reasoning. Then from the implication,
a complete set of entailment operators can be deduced
(fuzzy equivalence, etc.) and thus related to fuzzy inclu-
sion. An example of expressing an entailment scheme
by means of fuzzy inclusion indicator can be found in
Sinha.?®

6.3.3. Decision making with uncertain and imprecise
spatial information. This section is dedicated to a few
examples showing how features or properties of PMM
can be interpreted in terms of decision making in the
context of image processing.

The basic information in image processing has an
important spatial nature, which is affected by impreci-
sion and/or uncertainty. We distinguish two kinds of
fuzziness in image processing. The first deals with
crisp objects whose observation is corrupted by noise.
Thus, fuzziness represents the imprecision and uncer-
tainity due to that noise. This is the approach considered
by Dougherty.®” Based on it, the authors require
commutativity of operators with decision thresholding
*as most as possible” (since exact commutativity is
impossible in general, but for very particular definitions
as proved in Section 5). In this context, fuzzy morphology
1s of important use since fuzzy operators are less sensi-
tive to small changes in shapes. From a crisp point of
view, two slightly different objects X and X’ may
provide drastically different results when set relation-
ships like intersection or incluston are considered. On
the contrary, fuzzy set operators would provide degrees



Fuzzy mathematical morphologies

of inclusion or intersection which are slightly different
for slightly different shapes and thus fit better the
intuitive idea of small changes in objects corrupted by
noise.

On the other hand, imprecision may be inherent to
the observed objects and 10 the images, as mentioned
in the Introduction. This Jeads to the second kind of
fuzziness, which cannot be modelized by a noise com-
bined with a crisp object. For dealing with such intrinsi-
cally fuzzy objects, the requirement of commutativity
with decision thresholding is no longer justified and
would even be inadequate. Moreover, the fuzzy results
obtained on such objects by fuzzy transformations
provide degrees of recognition, of detection, or confi-
dence In the decision, etther directly or through measures
like fuzzy entropy.'*®

An example of this approach is described in refer-
ence (21). The application concerns a data fusion
problem in medical imaging. The aim was to combine
several magnetic resonance images to improve the
detection of spatial information (edges, structure loca-
tion, etc.). Taking the example of edges in such images.
imprecision is due to both fuzziness of contours in each
image, and to imperfect registration between images.
The first type is taken into account by representing
edges in each image by a fuzzy set y,. depending on
their strength. The second type is modelled as a fuzzy
structuring element vy representing the registration
imprecision. The fuzzy dilated edge set D, (1)
then provides the location of edges with gradations
which represent both sources of imprecision. The fusion
of such dilated fuzzy sets obtained from several
images then allows us to actually take a decision
with all the information about the problem and thus
avoids the contractions or conflicts obtained from the
fusion of crisp edges. This simple example shows how
imprecision in spatial data can be introduced and
managed in a fusion and decision process by means of
OMM.

Another example is described in references (48, 49)
and concerns three-dimensional reconstruction of blood
vessels by a data fusion approach. The three-dimen-
sional reconstruction of vessels has a great medical
interest for understanding and interpreting vessel
morphology and atheromateous vascular lesions. To
avoid the limitations of reconstruction methods based
on angiographic images only, an original approach
has been proposed for three-dimensional reconstruc-
tion based on fusion of digital angiography and endo-
vascular echography data, without any geometrical ¢
priori knowledge of the vessel model. A geometrical
fusion step leads to the determination of the unknown
rotation and translation parameters, which allows one
to align all data in a common reference frame, leading
to a binary reconstruction from the echographic slices.
Another binary reconstruction is obtained from the
angiographies using a probabilistic approach. A method
is then proposed for a reconstruction integrating both
angtographic and echographic data. where imprecision
on the geometrical parameters is taken into account
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in an original process which associates fuzzy number
modelling and ®MM for the reconstruction. The ob-
tained fuzzy reconstructions are combined by a fuzzy
operator before a binary decision is taken. Taking into
account all information about the problem, along with
its imprecision, the method avoids ambiguities of a
reconstruction based only on one modality and solves
the possible contradictions between both acquisitions.
For this application, ®MM proved to be very useful
for introducing the imprecision on the geometrical
parameters in an efficient way: the different positions
of a point in three-dimensional space, along with their
possibility degrees (depending on the imprecision on
the geometrical parameters) are represented through
a fuzzy structuring element, and included in the re-
construction through a fuzzy dilation. This application
shows also how a fuzzy structuring element can be
built directly from the data, without any arbitrary
choice.

Using a fuzzy structuring element v such that v(0) < 1
also has an interpretation for decision making. As
dilation is no more extensive and erosion no more
anti-extensive for such a structuring element, almost
certain values of u become less certain in D (u), zero
value (certainty about the absence of the considered
event at such points) become fuzzy values (see Fig. 16).
Thus, in general the certainty about the presence of an
event expressed by u decreases as the result of a mor-
phological operation which contains more fuzziness
than the initial fuzzy set . It is obvious that this will
have some influence on the deciston we can make from
the result. Such an effect can be used to model an
additional imprecision or uncertainty with respect to
the initial data. Let us consider again a fuzzy set
expressing the strength of edges in an image (high
membership values represent high confidence in the
presence of an edge and low membership values represent
high confidence in the absence of an edge). For repre-
senting uncertainty or imprecision in the location of
the edges in the image, we can use a fuzzy structuring
element, possibly with v(0) < | expressing that even
points with certain values (very low or very high)
should be reconsidered for decision.

®MM provides operators which are useful for pattern
recognition from a morphological point of view (see
Section 6.1.4). In an imprecise or uncertain spatial con-
text ®MM can be moreover interpreted in terms of
fuzzy pattern recognition. Let us take example of fuzzy
pattern matching, which is used for reasoning by
analogy and taking decision in that way. Fuzzy erosion
provides a degree to which a fuzzy structuring element
(a fuzzy pattern) matches a fuzzy shape of interest, at
all possible space locations. In terms of possibility
theory,?®-3% fuzzy erosion corresponds exactly to the
necessity that some given data p satisfy a filter v.°1
For instance, the definition of this necessity described
by Salotti**? corresponds to the fuzzy erosion obtained
with the T-conorm “max” (i.e. definition 2). In the same
way, fuzzy dilation represents the degree of intersection
between the fuzzy pattern v and the fuzzy shape p. It
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corresponds to the possibility that the data u satisfy a
filter v.

In a similar way. ®MM can be interpreted in terms
of evidence theory:'** fuzzy erosion corresponds to
a belief function and fuzzy dilation to a plausibility
function.

These results about the interpretation of ®MM for
deciston problems in image processing under impre-
cision and uncertainty are clearly not exhausitive.
Future works aim at developing these ideas and apply-
ing them in satellite and medical image processing, for
data fuston problems. In particular, the advantages of
®MM concerning morphological properties (Section
6.1) and fuzzy properties (Section 6.2) may be combined
in the framework of decision making (Section 6.3).

7. CONCLUSION

In this communiation, we made a review of the
requirements which have to be fulfilled when creating

a morphology able to manipulate fuzzy set membership
functions. We have shown that some constraints arise
from morphological considerations, when others are
dictated by fuzzy set or decision theory. Under this
light, we examined the six existing definitions, and
compared their properties. We first demonstrated that
no definition was able to fulfill all the demands. We
have then shown that the methodological framework
of T-norms and T-conorms is the most general and
leads to the construction of an infinity of ®MM (this
general definition contains four other definitions as
special cases). These fuzzy mathematical morphologies
are structured in families with specific properties. From
an adequate choice of their free parameters (the T-norm,
the complementation and the associated T-conorm),
they may be adapted to a broad variety of problems
with specific constraints. Furthermore, the use of T-
norms as a key feature makes ®MM inherit all the
properties of these operators from a data fusion and
decision theory point of view. In order to guide the user
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the selection of the most adapted fuzzy mathemtical

morphology with respect to its own will, we discussed

in
of
ca

detail the interpretation of the requirements in terms
fuzzy set and in terms of decision theory. We advo-
ted for a coherent information processing framework

for picture processing which takes into account infor-
mation representation by fuzzy sets, spatial processing
via ®MM and decision making.

—
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APPENDIX 1: PROPERTIES SUGGESTED BY
CLASSICAL MORPHOLOGY

This appendix refers to Section 3.1. It provides precise
definitions of the properties summarized in this Section, as
well as some interpretations. For each property, the operations
(dilation, erosion, morphological opening and morphological
closing) for which they are required. in order that ®MM
inherits this property, are also specified.

Four fundamental principles

In the framework of mathematical morphology, four funda-
mental principles are assumed.'?” Here, we translate them in
terms of fuzzy sets.

Property 1. Translation invariance. A transformation ¥ on
fuzzy sets is translation invariant iff:

YueM. VieS, Ywu+0)={WYw]+1t.
where g+t is the fuzzy set with membership function g
translated by ((Vx€eS, (1 + 1)(x) = p(x + 1))

This property means that transformations like erosion or
dilation do not depend on the origin of the space S. It is
satisfied by the four basic operations (erosion, dilation, opening,
closing) in BMM., GMM and FMM.

Property 2. Compatibility with homotheties. A transfor-
mation ¥ on fuzzy sets satisfies this principle iff:

VueM. Vie]O. 1], Wi = 2P (u).

Compatibility with homotheties guarantees that the trans-
formations do not depend on a scale parameter. In the case of
fuzzy sets, this scale parameter is limited to ]0, 1] in order for
the result to remain a fuzzy set (homotheties act here on the
membership values: (£p)(x) = 2u(x)).

Property 3. Local knowledge. W satisfies to this principle iff
the knowledge of i in a mask Z is sufficient to know W(u) in
a mask Z'. It is satisfied by the four operations in BMM,
GMM and FMM.

Property 4. Semi-continuity. An increasing operation ¥ on
fuzzy sets is upper semi-continuous iff, for any decreasing
SETICS (f4;);cx SUCh that:

lm ;= n

ivtox

I. BLOCH and H. MAITRE

the series (W(y;)),cy 18 decreasing with limit W(y), or, equival-
ently:

lim ¥(g) = Y,

where lim;_ , . ‘V(y;) denotes the upper limit of P(u,), ie.
union of adherent points.

Lower semi-continuity is defined in a similar way and
involves the lower limit of W(g,). An operator is continuous
iff it is upper semi-continuous and lower semi-continuous.

This principle governs the robustness of the transformations.
In the set theory, it is related to the hit or miss topology, which
is adapted to mathematical morphology. This property is
fundamental from a theoretical point of view to assure a good
analytical context. However, from a practical point of view,
this property is no longer mentioned when working in a
discrete space.

Algebraic properties

In addition to these basic properties, classical mathematical
morphology operations have important algebraic properties
which are effectively used for the applications. They are given
below.

Property 5. Duality with respect to complementation. This
means that transforming a set or function with a given opera-
tion ¥ or transforming the complementary set with the dual
operation ® and taking the complementary of the result are
equivalent, i.e. W(u) = [®(u)]¢. Duality must hold between
erosion and dilation and between opening and closing.

Property 6. Increasingness. An operation ¥ is increasing iff:

Vi )eM?, p<u =) <Y,

where “ <" denotes the inclusion on fuzzy sets. Dilation and
closing have to be increasing with respect to both set and
structuring element, while erosion and opening have to be
increasing with respect to the set and decreasing with respect
to the structuring element.

Property 7. Extensivity or anti-extensivity. An operation ¥
is extensive iff:

YueM, W)=y,

and anti-extensive iff the converse inclusion holds.

Opening has to be anti-extensive, closing has to be extensive.
As well as in BMM, on fuzzy sets we can concede that erosion
and dilation may have this property under some limiting
conditions {for example, for a binary structuring element B,
it holds for the origin 0 of S belonging to B).

Property 8. Idempotence. An idempotent transformation ¥
verifies:

VueM, W[¥u)]="P(.

Morphological opening D, [ E;()] (respectively, morphological
closing E [D (1)]) has to be idempotent to be an algebraic
opening, i.e. an anti-extensive, increasing and idempotent
mapping (respectively, algebraic closing, ie. an extensive,
increasing and idempotent mapping). The notation v stands
for the symmetrical of v with respect to the origin of the space
S(i.e. v,(x) = v,(— x). where — x denotes the symmetrical of x
with respect to the origin of S].

Property 9. Pseudo-commutativity of dilation. Dilation verfies,
for X being a set or more generally a function:

Dy(X) = Dy(B) = Dy(B).

Pseudo-commutativity reduces to commutativity if B and X
are symmetrical. For erosion, we have the following relation:

Eg(X) = Exc(B°).

Property 10. Fitting characterization. This property means
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that it is possible to find for the fuzzy erosion a relation similar
to the following fitting characterization for binary erosion:

xeEyg(X)=B, cX

where B, denotes the structuring element B centred at x.

Property 1. Compatibility with union and intersection, or
with “max” and “min” on functions. This means that following
equalities or inequalities hold:

P.ALL Duup) =D ()u D),
P.11.2: D, (1) = D (u)yw D 1),
PIL3: Dy(unu) <D (p)n D),
P114: D~ (@) < DLOND (1)
P15 E(uup)>E () E (1)
P.11.6: E. (1) =E () E (1)
P11.7: Efunu)=E (WnE (&)
P18 E~ )= Euyu E ()

Property 12. Iteration and combination. From dilation and
erosion, other operations can be constructed by iteration and
combination. For example, dilation with a larger structuring
element can result by iterating dilation with a given structur-
ing element. Mathematical morphology with binary structur-
ing element (BMM and GMM) verifies:

Dp[Dy(f)] = Dpeu(f)= Dy f). (P.12.1)
Eg[Eg()] = Epgu(f). (P.12.2)

where @ denotes Minkowski addition, and
Dy [Eg( /)] <(=)Eg[ Dy (] (P.12.3)

APPENDIX 2: TRIANGULAR NORMS AND CONORMS

This appendix refers to Section 4.2.2., where T-norms and
T-conorms constitute the basis for constructing ®MM
operators. It provides the definitions and main properties of
T-norms and T-conorms.

In the context of stochastic geometry.*!**2) a triangular
norm (or T-norm) i is defined as a function of two variables
from [0, 1] x [0, 1] to [0, 1] satisfying several properties:

T1: commutativity.

T2: associativity,

T3: 1is unit element,

T4: increasingness with respect to the two variables.

From these properties, limit conditions can be derived (TO):
i(0, 1) = i(0,0) = i(1,0) = 0 and i(1, 1) = |, and it is easily shown
that O is null element (Vxe[0,1]. i(x,00=0). A continuity
property (T5) is often added to these properties.
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The similarity of these properties with the properties of
binary intersection allows to define a fuzzy intersection as a
T-norm.(38:39:45

In this framework, a complementation is defined as an
operation c¢ from [0, 1] to [0, ] such that:

CO: ¢(0)=1,¢(1)=0,
C1: ¢ is decreasing,
C2: cis involutive.

The most used complementation is ¢(x) = I — x. In parti-
cular, it is commonly used as fuzzy complementation.*:5%
Other ones are described by Dubois®® and Yager.®

From a T-norm i and a complementation ¢, another function
u can be constructed which satisfies the de Morgan law:

u(x, y) = c[i{c(x), c(¥)]. (D)

uis called the T-conorm associated with i with respect to c. Any
T-conorm is commutative (T'1), associative (T'2), monotonic
(T'4), admits 0 as unit element (T'3), verifies limit conditions
[14(0.1) = u(1,1) = u(1,0) = 1 and u(0,0) = 0] (T'0), and admits
1 as null element. Thus, a fuzzy union can be defined as a
T-conorm.

Adding some properties like continuity, idempotence, dis-
tributivity, Archimedian property, or existence of nilpotent
elements, gives rise to different families of T-norms and T-
conorms. For example, it can be shown that the “min” and
“max" operators are the only T-norm and T-conorm, which
are idempotent and distributive over each other. These
operators play a particular role because the “min” is the
greatest T-norm and the “max™ is the smallest T-conorm. On
the other end. the smallest T-norm and the greatest T-conorm
are defined by:

x ify=1, x if y=0,
ilev) =<y if x=1, uylx,y)=9y if x=0
0 else. 1 else.

Thesc additional properties can guide the choice of a parti-
cular T-norm, according to the application at hand and the
properties it requires.

Figure 3illustrates the most used T-norms and T-conorms.

Another property, which will be important for ®MM, is
the distributivity over “min” and “max™ any T-norm i and
T-conorm u distribute over “min” and “max” (but, in general,
*min™ and “max” are not distributive over i and u) and we
have:

Yix, v.o)e[0, 113  i[x,min(y,z)] = min[i(x, y).i(x,2)]
Vix, 1, 21e[0,17°,  i[x,max(y,z)] = max[i(x, p),i(x,2)]
Y(x, y,2)e[0,17%,  u[x,min(y,z)] = min[u(x, v),u(x,2)]
vix,y.2)e[0. 117, u[x,max(y.z)] = max[u(x,y), u(x,z)]
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