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Abstract

In spatial reasoning, in particular for applications in image understanding, structure recognition
and computer vision, a lot of attention has to be paid to spatial relationships and to the imprecision
attached to information and knowledge to be handled. Two main components are knowledge repre-
sentation and reasoning. We show in this paper that the fuzzy set framework associated to the for-
malism provided by mathematical morphology and formal logics allows us to derive appropriate
representations and reasoning tools.
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1. Introduction

In this paper, we consider spatial reasoning from the point of view of mathematical
morphology. Spatial reasoning can be defined as the domain of spatial knowledge repre-
sentation, in particular spatial relations between spatial entities, and of reasoning on these
entities and relations. This field has been largely developed in artificial intelligence, in
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particular using qualitative representations based on logical formalisms. In image interpre-
tation and computer vision it is much less developed and is mainly based on quantitative
representations. A typical example in this domain concerns model-based structure recog-
nition in images, where the model represents spatial entities and relationships between
them. This paper extends the work presented in [1], where examples of model-based struc-
ture recognition in images are shown.

Two main components of this domain are spatial knowledge representation and reason-
ing. In particular spatial relationships constitute an important part of the knowledge we
have to handle. Imprecision is often attached to spatial reasoning in images, and can occur
at different levels, from knowledge to the type of question we want to answer. The reason-
ing component includes fusion of heterogeneous spatial knowledge, decision making,
inference, recognition. Two types of questions are raised when dealing with spatial
relationships:

(1) given two objects (possibly fuzzy), assess the degree to which a relation is satisfied;
(2) given one reference object, define the area of space in which a relation to this

reference is satisfied (to some degree).

In order to answer these questions and address both representation and reasoning
issues, we rely on three different frameworks and their combination:

• mathematical morphology, which is an algebraic theory that has extensions to fuzzy
sets and to logical formulas, and can elegantly unify the representation of several types
of relationships;

• fuzzy set theory, which has powerful features to represent imprecision at different levels,
to combine heterogeneous information and to make decisions;

• formal logics and the attached reasoning and inference power.

The association of these three frameworks for spatial reasoning is an original contribu-
tion of this paper. It allows us to match two important requirements: expressiveness and
completeness with respect to the types of spatial information we want to represent [2].
Complexity issues are not addressed in this paper.

In Section 2, we illustrate the importance of modeling imprecision by looking at some
other domains where spatial relationships play an important role, such as linguistics or
cognition. In Section 3, we address the question of spatial knowledge representation
and propose different types of representations in quantitative, semi-quantitative (fuzzy)
and qualitative settings, all based on mathematical morphology. In Section 4, we address
the question of reasoning on these representations.

2. Spatial relationships and imprecision

Spatial reasoning (in particular in images) has to deal with imprecision. Imprecision is
often inherent to images, and its causes can be found at several levels: observed phenom-
enon (imprecise limits between structures or objects), acquisition process (limited resolu-
tion, numerical reconstruction methods), image processing steps (imprecision induced
by a filtering for instance). This may induce imprecision on the objects to be recognized
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(due to the absence of strong contours or to a rough segmentation). But imprecision can
be found also in semantics of some relationships (such as ‘‘left of’’, ‘‘quite far’’, etc.), or in
the type of knowledge available about the structures (for instance anatomical textbooks
describe the caudate nucleus as ‘‘an internal brain structure which is very close to the lat-
eral ventricles’’) or even in the type of question we would like to answer (in mobile robotics
for instance, we may want a robot ‘‘go towards some object while remaining at some se-
cure distance of it’’). These examples show that even for relationships that are well defined
in a mathematical sense, such as distances, we may have to deal with them in an imprecise
way. This also becomes apparent when we are looking at other domains where spatial rela-
tionships are involved [3]. These domains constitute an important source of inspiration for
developing spatial reasoning models in computer science and image interpretation.

2.1. Linguistics

Natural languages usually offer a rich variety of lexical terms for describing spatial loca-
tion of entities. These terms are not only numerous, they also concern all lexical categories,
such as nouns, verbs, adjectives, adverbs, prepositions [4], with significant differences be-
tween languages [5].

The domain of linguistics is a source of inspiration of many works on qualitative spatial
information representation and qualitative spatial reasoning [6]. Modeling qualitative
spatial relations strongly relies on the way these relations are expressed verbally. Several
properties are exhibited, such as the asymmetry of some expressions, the non-bijective
relation between language and spatial concepts (in particular for prepositions [4,7]), the
interaction between distances and orientation, etc., [7,8].

A remarkable feature is that representation and communication are often achieved
without using numbers [4]. Conversely, apparently precise statements (for instance
containing crisp numbers) should not always be understood as really precise, but rather
as order of magnitudes. Let us consider for instance the sentence Paris and Toulouse are

at a distance of 700 km. The number 700 should not be considered as an exact value. It
gives an idea of the distance, and its interpretation is subject to some considerations such
as the areas of Paris and of Toulouse that are really concerned, the way to travel from one
city to the other, etc.

Too precise statements can even become inefficient if they make the message too
complex. This appears typically in the problem of route description for helping navigation
and path finding. The example of giving directions in Venice is particularly eloquent [9].

Moreover, the way to describe spatial situations, the vision and the representation of
space are not fixed and are likely to be modified depending on perceptual data and on dis-
course situation [4]. In linguistic statements about space and distance, the geometrical
terms of the language that are involved in these statements are usually not sufficient to
get a clear meaning. The statement context is also of prime importance, as well as func-
tional properties of the considered physical entities.

2.2. Human perception

Let us consider for instance distances. A number of factors influence the perception of
distance, leading to different measures [6]:
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• purely spatial measures, in a geometric sense, give rise to ‘‘metric distances’’, and are
related to intrinsic properties of the objects (involving not only purely geometrical dis-
tances, but also topological, size, shape properties of the objects);

• temporal measures lead to distances expressed as travel time, and can be considered of
extrinsic type, as opposed to the previous class; this advocates for treating space and
time together;

• economic measures, in terms of costs to be invested (also of extrinsic type);
• perceptual measures lead to distance of deictic type; they are related to an external
point of view, which can be concrete or just a mental representation, which can be influ-
enced by environmental features, by subjective considerations, leading to distances that
are not necessarily symmetrical; the discourse situation also plays a role at this level, as
mentioned above.

As mentioned in [10,11], the perception of distance between objects also depends on the
presence or absence of other objects in the environment. If there are no other objects,
the perception and human reasoning are mainly of geometrical type and distances are
absolute. On the contrary when there are other objects, the perception of distance becomes
relative. The size of the area and the frame of reference also play a crucial role in the
perception of distances [6], in particular by defining the scale and the upper bound of
the perceived distances. Perception is therefore not scale-independent [12], while language
is to a large extent scale-independent [8]. Finally, attractiveness of the objects strongly
affects the perception of proximity [11].

2.3. Cognition

The cognitive understanding of a spatial environment, in particular in large-scale
spaces, is issued from two types of processes [6,13]:

• route knowledge acquisition, which consists in learning from sensori-motor experience
(i.e. actual navigation) and implies an order information between visited landmarks;

• survey knowledge acquisition, from symbolic sources such as maps, leading to a global
view (‘‘from above’’) including global features and relationships, which is independent
of the order of landmarks.

As for the internal representation of space in the brain, a distinction is usually made
between egocentric and allocentric representations [6,14]. Although the notion of ‘‘map
in the head’’ has recognized limitations as a cognitive theory, it is still quite popular,
and corresponds to the allocentric representations. It is important to note that the psycho-
logical space does not need to mirror the physical space.

Cognitive studies report that distance and direction are quite dissociated. On the
contrary, as mentioned for the perception, from a cognitive point of view, time and space
cannot be easily separated.

The importance of the frame of reference, highlighted in all domains, has also a cogni-
tive flavor: cognitive studies have shown that multiple frames of reference are usually used
and appear as necessary for understanding and navigating in a spatial environment [6,15].

These cognitive concepts have been intensively used in several works in the modeling
and conception of geographic information systems (GIS), where spatial information is
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the core [16,17]. Another field where cognitive aspects about space inspire the development
of frameworks and systems is the domain of mobile robotics. The work by Kuipers is
fundamental in this respect [15,18]. His spatial semantic hierarchy is a model of knowledge
of large-scale space including both qualitative and quantitative representations, and is
strongly inspired by the properties of the human cognitive map. It aims at providing
methods for robot exploration and map building. The hierarchy consists of sensory,
control, causal, topological and metrical levels. We are concerned in this paper mainly
by the last two levels. Finally, it is worth mentioning the new approach proposed in
[19], called Conceptual Spaces. These spaces can be considered as a representation of
cognitive systems, intermediate between the high level symbolic representations and the
subconceptual connectionist representations. They emphasize orders and measures, and
a key notion is distances between concepts, leading to geometrical representations, but
using quality dimensions.
3. Knowledge representation using mathematical morphology

In this section, we show that mathematical morphology constitutes an unifying frame-
work for spatial knowledge representation for several reasons: (i) the spatial imprecision
attached to objects can be conveniently modeled by morphological operations; (ii) several
relationships can be expressed based on morphological operators (in particular dilation);
(iii) the algebraic nature of this theory allows to convert these relations into algebraic
terms (including relations such as distances), which leads to an easy translation to the
fuzzy case (through fuzzy mathematical morphology) and to the qualitative case (through
morpho-logics).

3.1. Mathematical morphology in quantitative, semi-quantitative and qualitative settings

3.1.1. Classical morphology

Let us first recall the definitions of dilation and erosion of a set X by a structuring
element B in a space S (e.g. Rn, or Zn for discrete spaces like images), denoted respectively
by DB(X) and EB(X) [20]:

DBðX Þ ¼ fx 2SjBx \ X 6¼ ;g; ð1Þ

EBðX Þ ¼ fx 2SjBx � Xg; ð2Þ

where Bx denotes the translation of B at point x. In these equations, B defines a neighbor-
hood that is considered at each point. It can also be seen as a relationship between points.
From these two fundamental operations, a lot of others can be built [20].

3.1.2. Fuzzy mathematical morphology

Several definitions of mathematical morphology on fuzzy sets with fuzzy structuring
elements have been proposed in the literature (see e.g. [21–23]). Here we use the approach
using t-norms and t-conorms as fuzzy intersection and fuzzy union. However, what
follows applies as well if other definitions are used. Erosion and dilation of a fuzzy set
l by a fuzzy structuring element m, both defined in a space S, are respectively defined as
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EmðlÞðxÞ ¼ inf
y2S
? ½cðmðy � xÞÞ; lðyÞ�; ð3Þ

DmðlÞðxÞ ¼ sup
y2S
>½mðy � xÞ; lðyÞ�; ð4Þ

where > is a t-norm, c a strong fuzzy negator (fuzzy complementation), and ? is the t-con-
orm associated to > with respect to c. These definitions guarantee that most properties of
morphological operators are preserved [21,24]. Note that in all these morphological defi-
nitions, we use the conventions of [20], which lead to dilations and erosions which are dual
from each other with respect to the complementation. Another approach, which is more
rigorous from an algebraic point of view, relies on the notion of adjunction [25], leading
to different conventions in cases where the structuring element is not symmetrical with re-
spect to the origin. This approach has been generalized to the case of fuzzy sets in [26], and
leads to strong algebraic properties of the derived operators. Here we mostly consider
symmetrical structuring elements.

3.1.3. Morpho-logics

Now, we express morphological operations in a symbolic framework, using logical
formulas. Let us consider a language generated by a finite set of propositional symbols
and the usual connectives. Kripke�s semantics is used. The set of all worlds is denoted
by X. The set of worlds where a formula u is satisfied is Mod(u) = {x 2 X jx � u}.
The underlying idea for constructing morphological operations on logical formulas is to
consider set interpretations of formulas and worlds. Since in classical propositional logics,
the set of formulas is isomorphic to the quotient space 2X/� (� denoting the logical equiv-
alence), we can identify u with Mod(u), and then apply set-theoretic morphological
operations. We recall that Mod(u _ w) = Mod(u) [Mod(w), Mod(u ^ w) = Mod(u) \
Mod(w), and Mod(u) �Mod(w) iff u � w.

Using these equivalences, dilation and erosion of a formula u are defined as [27]:

ModðDBðuÞÞ ¼ fx 2 XjBðxÞ \ModðuÞ 6¼ ;g; ð5Þ
ModðEBðuÞÞ ¼ fx 2 XjBðxÞ � ug; ð6Þ

where B(x) � u means "x 0 2 B(x), x 0 � u. The structuring element B represents a rela-
tionship between worlds and defines a ‘‘neighborhood’’ of worlds. It can be for instance
defined as a ball of a distance between worlds [28]. The condition for dilation expresses
that the set of worlds in relation to x should be consistent with u, i.e. $x 0 2 B(x), x 0 � u.
The condition for erosion is stronger and expresses that u should be satisfied in all worlds
in relation to x.

Now we consider the framework of normal modal logics [29] and use an accessibility
relation as relation between worlds. We define an accessibility relation from any structur-
ing element B (or the converse) as: R(x,x 0) iff x 0 2 B(x). Let us now consider the two
modal operators h and � defined from the accessibility relation as [29]

M;x � �u iff 8x0 2 X; Rðx;x0Þ ) M;x0 � u; ð7Þ
M;x � }u iff 9x0 2 X; Rðx;x0Þ and M;x0 � u; ð8Þ

where M denotes a standard model related to R (it will be skipped in the following).
Eq. (7) can be rewritten as

x � �u () BðxÞ � u; ð9Þ
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which exactly corresponds to the definition of erosion of a formula, and Eq. (8) can be
rewritten as

x � }u () BðxÞ \ModðuÞ 6¼ ;; ð10Þ
which exactly corresponds to a dilation. This shows that we can define modal operators
derived from an accessibility relation as erosion and dilation with a structuring element:

�u � EBðuÞ; ð11Þ
}u � DBðuÞ. ð12Þ

The modal logic constructed from erosion and dilation has a number of theorems and
rules of inference, detailed in [30], which increase its reasoning power.

All these definitions and properties extend to the fuzzy case, if we consider fuzzy formu-
las, for which Mod(u) is a fuzzy set of X. A fuzzy structuring element can be interpreted as
a fuzzy relation between worlds. Its usefulness will appear for expressing intrinsically va-
gue spatial relationships such as directional relative position.

3.2. Spatial objects

We consider the general case of a 3D space S, where objects can have any shape and
any topology. In the quantitative framework, an object is simply a subset of S.

If the objects are imprecise, as is often the case if they are extracted from images, then
the semi-quantitative framework of fuzzy sets proved to be useful for their representation,
as spatial fuzzy sets (i.e. fuzzy sets defined in the space S). The use of fuzzy sets may rep-
resent different types of imprecision, either on the boundary of the objects (due for
instance to partial volume effect, to the spatial resolution, or to a rough detection), or
on the variability of these structures, etc. Fuzzy mathematical morphology can be used
to make spatial imprecision explicit. For instance if an object is detected in an image
(as a set or a fuzzy set), imprecision on its limits can be introduced by computing the fuzzy
erosion and dilation of the object by a fuzzy structuring element modeling this impreci-
sion. The erosion–dilation pair can be interpreted as a necessity–possibility pair, as often
used in the fuzzy set community, as a rough set [31], or as a belief–plausibility pair [32].

In qualitative spatial reasoning based on logics, interpretations can represent spatial
entities, like regions of space. Formulas then represent combinations of such entities,
and define regions, objects, etc., which may be not connected. For instance, if a formula
u is a symbolic representation of a region X of space, it can be interpreted for instance as
‘‘the object we are looking at is in X’’. In an epistemic interpretation, it could represent the
belief of an agent that the object is in X. The interest of such representations is also to deal
with any kind of spatial entities, without referring to points, as highlighted also in the do-
main of mereotopology (see e.g. [33]). If u represents some knowledge or belief about a
region X of space, then hu represents a restriction of X. If we are looking at an object
in X, then hu is a necessary region for this object. Similarly, �u represents an extension
of X, and a possible region for the object.

3.3. Spatial relations

In this section we consider the problem of defining and computing spatial relationships.
We consider both topological and metric relationships [18,34]. We distinguish also
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between relationships that are mathematically well defined (such as set relationships, adja-
cency, distances) and relationships that are intrinsically vague, like relative directional po-
sition, for which fuzzy definitions are appropriate. If the objects are imprecise, both types
of relations have then to be extended to the fuzzy case. Results can also be semi-quanti-
tative, and provided in the form of intervals or fuzzy numbers. Symbolic representations
in the context of modal logics will be introduced as well. A synthesis of the main fuzzy
spatial relations can be found in [35].

3.3.1. Quantitative and semi-quantitative settings

We first address question (1) raised in the introduction, i.e. given two objects or two
fuzzy objects, assess the relations between them (or the degree to which some relation is
satisfied).

Computing set relationships, like inclusion, intersection, etc., if the objects are precisely
defined does not call for specific developments. If the objects are imprecise, stating whether
they intersect or not, or whether one is included in the other, becomes a matter of degree.
A degree of inclusion can be defined as the infimum of the membership values of the union
(defined as a t-conorm) of one set and the complement of the other (as for erosion). A de-
gree of intersection lint can be defined using the supremum of the membership values of
the intersection (defined as a t-norm) between both fuzzy sets (as for fuzzy dilation) or
using the fuzzy volume of the t-norm in order to take more spatial information into ac-
count. The degree of non-intersection is then simply defined by l�int = 1 � lint. The inter-
pretations in terms of erosion and dilation allow us to include set relationships in the same
mathematical morphology framework as the other relations.

Adjacency has a large interest in spatial reasoning, since it denotes an important rela-
tion between objects or regions. For any two subsets X and Y in the digital space Zn,
the adjacency of X and Y can be expressed in terms of morphological dilation, as

X \ Y ¼ ; and DBðX Þ \ Y 6¼ ;; DBðY Þ \ X 6¼ ;; ð13Þ
where B denotes the elementary structuring element associated to the chosen digital con-
nectivity. This structuring element is usually symmetrical, which means that the two con-
ditions DB(X) \ Y5 ; and DB(Y) \ X 5 ; are equivalent, so only one needs to be
checked. Adjacency between fuzzy sets can be defined by translating this expression into
fuzzy terms, by using fuzzy dilation [36]. The binary concept becomes then a degree of
adjacency between fuzzy sets l and m:

ladjðl; mÞ ¼ >½l:intðl; mÞ; lint½DBðlÞ; m�; lint½DBðmÞ; l��. ð14Þ

This definition represents a conjunctive combination (through a t-norm >) of a degree of
non-intersection l�int between l and m and degrees of intersection lint between each fuzzy
set and the dilation of the other. This definition is symmetrical, reduces to the binary
definition if l, m and B are binary, and is invariant under geometrical transformations.

The importance of distances in spatial reasoning is well established. Mathematical
morphology allows us to define distances between fuzzy sets that combine spatial informa-
tion and membership comparison [3,37]. In the binary case, there exist strong links
between mathematical morphology (in particular dilation) and distances (from a point
to a set, and several distances between two sets), and this can also be exploited in the fuzzy
case. The advantage is that distances are then expressed in set theoretical terms, and are
therefore easier to extend with nice properties than usual analytical expressions. Here
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we only present the case of Hausdorff distance, which has the advantage of being a true
distance in the crisp case. The binary equation defining the Hausdorff distance:

dHðX ; Y Þ ¼ max sup
x2X

dðx; Y Þ; sup
y2Y

dðy;X Þ
� �

ð15Þ

can be expressed in morphological terms as

dHðX ; Y Þ ¼ inffn;X � DnðY Þ and Y � DnðX Þg. ð16Þ

A distance distribution, expressing the degree to which the distance between l and l 0 is less
than n, is obtained by translating this equation into fuzzy terms:

DHðl; l0ÞðnÞ ¼ > inf
x2S
? ½Dn

mðlÞðxÞ; cðl0ðxÞÞ�; infx2S
? ½Dn

mðl0ÞðxÞ; cðlðxÞÞ�
� �

; ð17Þ

where c is a complementation, > a t-norm and ? a t-conorm.
A distance density, expressing the degree to which the distance is equal to n, can be

derived implicitly from this distance distribution. A direct definition of a distance density
can be obtained from dH(X,Y) = 0 () X = Y, and for n > 0:

dHðX ; Y Þ ¼ n () X � DnðY Þ and Y � DnðX Þ
and X 6�Dn�1ðY Þ or Y 6�Dn�1ðX Þ

� �
. ð18Þ

Translating these equations leads to a definition of the Hausdorff distance between two
fuzzy sets l and l 0 as a fuzzy number:

dHðl; l0Þð0Þ ¼ > inf
x2S
? ½lðxÞ; cðl0ðxÞÞ�; inf

x2S
? ½l0ðxÞ; cðlðxÞÞ�

� �
; ð19Þ

dHðl; l0ÞðnÞ ¼ > inf
x2S
? ½Dn

mðlÞðxÞ; cðl0ðxÞÞ�; infx2S
? ½Dn

mðl0ÞðxÞ; cðlðxÞÞ�;
�

? sup
x2S
>½lðxÞ; cðDn�1

m ðl0ÞðxÞÞ�; sup
x2S
>½l0ðxÞ; cðDn�1

m ðlÞðxÞÞ�
� ��

. ð20Þ

The obtained distance is positive (the support of this fuzzy number is included in Rþ). It is
symmetrical with respect to l and l 0. The separability property (i.e. d(l,m) = 0 () l = m)
is not always satisfied. However, we have dH(l,l 0)(0) = 1 implies l = l 0 for ? being the
bounded sum ð?ða; bÞ ¼ minð1; aþ bÞÞ, while it implies l and l 0 crisp and equal for
?¼ max. The triangular inequality is not satisfied in general.

Relationships between objects can be partly described in terms of directional relative
position, like ‘‘to the left of’’. Because of the inherent vagueness of such expressions, they
may find a better understanding in the framework of fuzzy sets, as fuzzy relationships,
even for crisp objects. A few works propose fuzzy approaches for assessing the directional
relative position between objects, which is an intrinsically vague relation (see [38] for a
comparative review).

The approach used here relies on a fuzzy dilation that provides a map (or fuzzy land-
scape) where the membership value of each point represents the degree of the satisfaction
of the relation to the reference object. This approach has interesting features: it works
directly in the spatial domain, without reducing the objects to points or histograms, and
it takes the object shape into account.
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We consider a (possibly fuzzy) object R in the s of S, and denote by la(R) the fuzzy
subset of S such that points of areas which satisfy to a high degree the relation ‘‘to be
in the direction ~ua with respect to object R’’ have high membership values, where ~ua is a
vector making an angle a with respect to a reference axis. We express la(R) as the fuzzy
dilation of lR by m, where m is a fuzzy structuring element depending on a: la(R) = Dm(lR)
where lR is the membership function of the reference object R. This definition applies both
to crisp and fuzzy objects and behaves well even in case of objects with highly concave
shape. In polar coordinates (but this extends to 3D as well), m is defined by:1 m(q,h) =
f(h � a) and m(0,h) = 1, where h � a is defined modulo p and f is a decreasing function,
e.g. f(b) = max[0, cosb]2 for b 2 [�p/2,p/2].

Once we have defined la(R), we define the degree to which a given object A is in direc-
tion ~ua with respect to R. Let us denote by lA the membership function of the object A.
The evaluation of relative position of A with respect to R is given by a function of la(R)(x)
and lA(x) for all x in S. The histogram of la(R) conditionally to lA is such a function. A
summary of the contained information could be more useful in practice, and an appropri-
ate tool for this is the fuzzy pattern matching approach [39]: the matching between two
possibility distributions is summarized by two numbers, a necessity degree N (a pessimistic
evaluation) and a possibility degree P (an optimistic evaluation), as often used in the fuzzy
set community. The possibility corresponds to a degree of intersection between the fuzzy
sets A and la(R), while the necessity corresponds to a degree of inclusion of A in la(R).
These operations can also be interpreted in terms of fuzzy mathematical morphology,
since P corresponds to a dilation, while N corresponds to an erosion.

3.3.2. Spatial representations

Now we address question (2) raised in the introduction: given a reference object, we
define a spatial fuzzy set that represents the area of space where some relationship to this
reference object is satisfied (to some degree). The advantage of these representations is that
they map all types of spatial knowledge in the same space, which allows for their fusion
and for spatial reasoning. This constitutes a new way to represent spatial knowledge in
the spatial domain [40].

For each piece of knowledge, we consider its ‘‘natural expression’’, i.e. the usual form in
which it is given or available, and translate it into a spatial fuzzy set in S having different
semantics depending on the type of information (on objects, spatial imprecision, relation-
ships to other objects, etc.). The numerical representation of membership values assumes
that we can assign numbers that represent degrees of satisfaction of a relationship for in-
stance. These numbers can be derived from prior knowledge or learned from examples, but
usually there remain some quite arbitrary choices. However, we have to keep in mind that
mostly the ranking is important, not the individual numerical values.

Set relationships specify whether areas where other objects can be localized are forbid-
den or possible. The corresponding region of interest is: lsetðxÞ ¼ >½lOinðxÞ; 1� lOoutðxÞ�,
where > is a t-norm, which expresses a conjunction between inclusion constraint in the
objects Oin and exclusion constraint from the objects Oout. The properties of t-norms guar-
antee that good properties are satisfied.
1 This definition of m is discontinuous at the origin. A continuous function could be obtained by modeling the
fact that the direction of a point or of an object closed to the origin is imprecise.
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Other topological relations (adjacency, etc.) can be treated in a similar way. For
instance, an object that is a non tangential proper part of l has to be searched in Em(l)
where m is an elementary structuring element.

Morphological expressions of distances, directly lead to spatial representations of
knowledge about distances. Let us assume that we want to determine B, subject to satisfy
some distance relationship with an object A. According to the algebraic expressions of
distances, dilation of A is an adequate tool for this. For example, if knowledge expresses
that d(A,B) P n, then B should be looked for in Dn�1(A)C. Or, if knowledge expresses that
B should lie between a distance n1 and a distance n2 of A, i.e. the minimum distance should
be greater than n1 and the maximum distance should be less than n2, then the possible
domain for B is reduced to Dn2ðAÞ n Dn1�1ðAÞ. In cases where imprecision has to be taken
into account, fuzzy dilations are used, with the corresponding equivalences with fuzzy dis-
tances. The extension to approximate distances calls for fuzzy structuring elements. Let us
consider the generalization to the fuzzy case of the previous example (minimum distance of
at least n1 and maximum distance of at most n2 to a fuzzy set l). Instead of defining an
interval [n1,n2], we consider a fuzzy interval, defined as a fuzzy set on Rþ having a core
equal to the interval [n1,n2]. The membership function ln is increasing between 0 and n1
and decreasing after n2 (this is but one example). Then we define two structuring elements,
as

m1ðxÞ ¼
1� lnðdEðx; 0ÞÞ; if dEðx; 0Þ 6 n1;

0; otherwise;

�
ð21Þ

m2ðxÞ ¼
1; if dEðx; 0Þ 6 n2;

lnðdEðx; 0ÞÞ; otherwise.

�
ð22Þ

where dE is the Euclidean distance in S and 0 the origin. The spatial fuzzy set expressing
the approximate relationship about distance to l is then defined as

ldistance ¼ >½Dm2ðlÞ; 1� Dm1ðlÞ� ð23Þ
if n1 5 0, and ldistance ¼ Dm2ðlÞ if n1 = 0. The increasingness of fuzzy dilation with respect
to both the set to be dilated and the structuring element [21] guarantees that these expres-
sions do not lead to inconsistencies: we have m1 � m2, m1(0) = m2(0) = 1, and therefore
l � Dm1ðlÞ � Dm2ðlÞ. In the case where n1 = 0, we do not have m1(0) = 1 any longer, but
in this case, only the dilation by m2 is considered. This case corresponds actually to a dis-
tance to l less than ‘‘about n2’’. These properties are indeed expected for representations
of distance knowledge.

The definition of directional position between two sets described above relies on a spatial
representation of the degree of satisfaction of the relation to the reference object. There-
fore the first step of the proposed approach directly provides the desired representation as
the fuzzy set la(R) in S.

3.3.3. Symbolic representations

Now, we use the logical framework presented in Section 3.1. Let us first consider topo-
logical relationships, and two formulas u and w representing two regions X and Y of space.
Note that all what follows holds in both crisp and fuzzy cases. Simple topological relations
such as inclusion, exclusion, intersection do not call for more operators than the standard
ones of propositional logic. But other relations such that X is a tangential part of Y (one of
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the basic relations of Region Connection Calculus (RCC)) can benefit from the morpho-
logical modal operators. Such a relationship can be expressed as

u! w and }u ^ :w consistent. ð24Þ

Indeed, if X is a tangential part of Y, it is included in Y but its dilation is not. If we also
want X to be a proper part, we have to add the condition:

:u ^ w consistent. ð25Þ
Let us now consider adjacency. Saying that X is adjacent to Y means that they do not
intersect and as soon as one region is dilated, it intersects the other. In symbolic terms, this
relation can be expressed as

u ^ / inconsistent and }u ^ w consistent and u ^ }w consistent. ð26Þ
Similarly, external connection in RCC (which implies some common boundary in contrary
to our digital definition) can be expressed as

u ^ / consistent and �u ^ w inconsistent and u ^�w inconsistent. ð27Þ
It could be interesting to link these types of representations with the ones developed in the
community of mereotopology and RCC, where such relations are defined respectively
from parthood and connection predicates [33,41]. Interestingly enough, erosion is defined
from inclusion (i.e. a parthood relationship) and dilation from intersection (i.e. a connec-
tion relationship). Some axioms of these domains could be expressed in terms of dilation.
For instance from a parthood postulate P(X,Y) between two spatial entities X and Y and
from dilation, the tangential proper part could be defined as

TPPðX ; Y Þ ¼ P ðX ; Y Þ ^ :PðY ;X Þ ^ :P ðDðX Þ; Y Þ. ð28Þ
Let us consider again expressions of distances in terms of morphological dilations. The
translation into a logical formalism is straightforward. Expressions like dH(X,Y) = n

translate into:

ðð8m;m < nÞ; ðw ^ :}mu consistent or u ^ :}mw consistentÞÞ and
ðw! }nu and u! }nwÞ. ð29Þ

The first condition corresponds to dH(X,Y) P n and the second one to dH(X,Y) 6 n.
Let us consider an example of possible use of these representations for spatial reason-

ing. If we are looking at an object represented by w in an area which is at a distance in
[n1,n2] of a region represented by u, this corresponds to a minimum distance greater than
n1 and to a Hausdorff distance less than n2. Then we have to check the following relation:

w! :}n1u ^ }n2u. ð30Þ
This expresses in a symbolic way an imprecise knowledge about distances represented as
an interval. If we consider a fuzzy interval, this extends directly using fuzzy dilation.

These expressions show how we can convert distance information, which is usually
defined in an analytical way, into algebraic expressions through mathematical morphol-
ogy, and then into logical ones through morphological expressions of modal operators.

For directional relative position we rely again on the approach where the reference
object is dilated with a particular structuring element defined according to the direction
of interest. Let us denote by Dd the dilation corresponding to a directional information
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in the direction d, and by �
d the associated modal operator. Expressing that an object rep-

resented by w has to be in direction d with respect to a region represented by u amounts to
check the following relation: w! �

du. In the fuzzy case, this relation can hold to some
degree.

4. Reasoning on spatial relationships

In this section, we address the second important issue in spatial reasoning, namely rea-
soning. This includes fusion, since heterogeneous information has often to be combined in
spatial reasoning, decision making and recognition (with a special focus of model-based
recognition), and inference and logical reasoning.

4.1. Fusion

Spatial reasoning aiming for instance at recognizing structures in an image has to deal
with the combination of knowledge and information represented and modeled as de-
scribed in Section 3. Usually, to achieve recognition, several spatial relationships to one
or several spatial entities have to be combined, as well as information extracted from
the image itself. For this combination step, the advantages of fuzzy sets lie in the variety
of combination operators, which may deal with heterogeneous information [42–44] ex-
pressed in a semi-quantitative framework. We proposed a classification of these operators
with respect to their behavior (in terms of conjunctive, disjunctive, and compromise), the
possible control of this behavior, their properties and their decisiveness, which proved to
be useful for choosing an operator [45].

Operators such as t-norms, t-conorms and mean operators always behave respectively
in a conjunctive, disjunctive and compromise way. Within each class, some operators are
more severe or more indulgent, some are more or less discriminating, etc. Operators such
as symmetrical sums behave differently depending on the values to be combined. Other
operators depend on additional information such as conflict, reliability, context, and
can be adapted to the situation at hand. Indeed, one often has to deal with situations
where a piece of information is reliable only for some structures, or is not able to discrim-
inate between two objects while another piece of information does. In this context, some
operators are particularly powerful, like operators that behave differently depending on
whether the values to be combined are of the same order of magnitude or not, whether
they are small or high, and operators that depend on some global knowledge.

Let us give a few examples. If we have different constraints about an object (for instance
concerning the relations it should have with respect to another object) which have all to be
satisfied, these constraints can be combined using a t-norm (a conjunction). This is
typically the case when an object is described using relations to several objects or several
relations of different types to the same object. If one object has to satisfy one relation or
another one then a disjunction represented by a t-conorm has to be used. This occurs for
instance when two symmetrical structures with respect to the reference object can be
found. Mean operators can be used to combine several estimations and try to find a com-
promise between them. Such operators have a compensation effect which is interesting in
cases where both under-estimation and over-estimation occur. Operators with a variable
behavior may also be of great interest. For instance associative symmetrical sums can
be used for reinforcing the dynamics between high and low membership degrees, which
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has advantages for the decision step (since a better discrimination between different situ-
ations is achieved). Importance of a constraint or reliabilities can be easily introduced in
adaptive operators. Several other examples can be found in different types of applications.

In the qualitative setting, logical tools for fusion have been proposed, in particular
based on distances between worlds or between formulas [28,46,47]. Interestingly enough,
several fusion rules can be expressed in terms of mathematical morphology [27]. For in-
stance, merging two pieces of information represented by logical formulas can be per-
formed by dilating both formulas until they become consistent. The conjunction of the
results is a formula which is the closest one to both initial formulas. In possibilistic logic,
a lot of work has been done for fusion of prioritized knowledge bases expressed as a set of
(ui,ai) where ui is a formula and ai its degree of certainty or priority. Possibility distribu-
tions can be generated from such knowledge bases, and their fusion directly inherits the
flexibility offered by fuzzy fusion operators [48]. If the possibility distribution is defined
as a function of the distance of a world to a knowledge base, then the previous approach
of distance-based fusion is recovered.

4.2. Decision making and recognition

Let us now consider the introduction of fusion in model-based recognition procedures.
We summarize here two distinct approaches. Examples are illustrated in [49,50].

A first recognition approach, called global, uses the first type of question (1) raised in
the introduction. The idea is to represent all available knowledge about the objects to be
recognized. A typical example consists of graph-based representations. The model is then
represented as a graph where nodes are objects and edges represent links between these
objects. Both nodes and edges are attributed. Node attributes are characteristics of the ob-
jects, while edge attributes quantify spatial relationships between the objects. A data graph
is then constructed from each image where the recognition has to be performed. Each
region of the image (obtained after some processing) constitutes a node of this data graph,
and edges represent spatial relationships between regions, as for the model graph. The
comparison between representations is performed through the computation of similarities
between model graph attributes and data graph attributes. The fusion takes mainly place
at this level, in order to combine the similarity values for different relationships. The fusion
results constitute an objective function to be optimized by a matching procedure. This
approach can benefit from the huge literature on fuzzy comparison tools (see e.g. [51])
and from recent developments on fuzzy morphisms [52]. It has been used in facial feature
recognition based on a rough model of a face [53] and brain structure recognition based on
an anatomical atlas [54,55]. Mainly weighted average operators are used for the fusion.
Such operators allow to weight differently node attributes and edge attributes, or to give
more importance to some relationships than to other ones. This is particularly useful when
characteristics of objects or of relations have not the same level of stability and variability.
The similarity is located at an intermediate level, in the sense that it does not apply directly
to the considered objects but to some global feature extracted from these objects. In order
to cope with the summarization aspect of such a feature, it may be interesting to incorpo-
rate in the similarity measure a weight representing the quality of the relation. Typically a
low confidence should be attached to a relation (like adjacency) between two objects that
concerns only a few points. Such confidence values are easy to introduce in weighted oper-
ators. But other operators could be used as well, in order to exploit further the flexibility of
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the fuzzy set theory. Another aspect is that some relations are more sensitive than others to
the definition of the regions to which they apply. For instance adjacency is very sensitive
and may depend on only one point. It is then interesting to have a measure that is high
only if both values are high. Indeed, the fact that two objects are adjacent like in the model
is more relevant to recognition than the fact that they are not adjacent like in the model
[36].

A second type of approach relies on the second type of question (2) raised in the intro-
duction and is called here progressive. In such a progressive approach, objects are recog-
nized sequentially and their recognition makes use of knowledge about their relations with
respect to other objects. Relations with respect to previously obtained objects can be com-
bined at two different levels of the procedure. First, fusion can occur in the spatial domain,
using spatial fuzzy sets [49]. The result of this fusion allows to build a fuzzy region of inter-
est in which the search of a new object will take place, in a process similar to focalization
of attention. In a sequential procedure, the amount of available spatial relations increases
with the number of processed objects. Therefore, the recognition of the most difficult
structures, usually treated in the last steps, will be focused in a more restricted area. This
approach has been used in medical imaging [49,56], as well as in mobile robotics to reason
about the spatial position of the robot and the structure of its environment [57]. Another
fusion level occurs during the final decision step, i.e. segmentation and recognition of a
structure. For this purpose, it was suggested in [56] to introduce relations in the evolution
scheme of a deformable model, in which they are fusioned with other types of numerical
information, usually edge and regularity constraints.

4.3. Logical reasoning and inference

One of the advantages of logical representations is their inference and reasoning power.
Rule-based systems can make use of the proposed representations in a quite straightfor-
ward way. But it is also interesting to note that several spatial logics contain ingredients
that can be expressed equivalently in morphological terms. We show here some of these
links but do not pretend to be exhaustive.

Some links with mereotopology and region connection calculus have already been men-
tioned in Section 3. They allow us to combine the expressive power of mathematical mor-
phology and the reasoning power of RCC and mereotopology.

The ‘‘egg-yolk’’ structures, as developed e.g. in [58], can also lead to interpretations in
terms of mathematical morphology. For instance in this model, establishing whether a
yolk can be a mobile part (in translation) of its egg is based on the notion of congruence.
This characterization can be expressed in a very simple way using morphological opening
(erosion followed by a dilation): the opening of the egg by the yolk considered as the struc-
turing element should be connected.

Let us now consider two examples of logics of distances. The first one defines a modal-
ity A6a by [59]:

ðx � A6auÞ iff ðð8u; dðx; uÞ 6 aÞ; ðu � uÞÞ; ð31Þ
where d is a distance between worlds. It is straightforward to show that A6au is equivalent
to the erosion of u by a ball of the distance d of radius a. The dual of A6a is equivalent to a
dilation. Then we have direct correspondences between the axioms of this distance logics
and the axioms of our modal morpho-logics as presented in [30]. Some theorems can be
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also directly deduced from properties of dilation or erosion. For instance, the following is
proved to be a theorem:

ðA6bu! A6auÞ for a 6 b. ð32Þ
Using the morphological equivalence, this theorem is directly deduced from the decreas-
ingness of erosion with respect to the size of the structuring element.

The second example concerns nearness logics [60], where the notion of ‘‘closer to’’ is
modeled as

ðx � hNiu;wÞ iff ð9y; zÞ; ððy � uÞ ^ ðz � wÞ ^ Nðx; y; zÞÞ; ð33Þ
where N(x,y,z) means that y is closer to x than z is. The meaning of this expression is that
the nearest point distance of x to u is less than the nearest point distance of x to w. An
equivalent expression is therefore

x � DnðwÞ ! x � DnðuÞ; ð34Þ
which expresses that x is reached faster from u than from w by dilations of these formulas.

Other links between linear logics or arrow logics and mathematical morphology exist,
as already established in [60].

Finally, let us consider logics of convexity [60]:

ðx � CuÞ iff ð9y; zÞ; ððy � uÞ ^ ðz � uÞ ^ ðx 2 ½y; z�ÞÞ; ð35Þ
which expresses a linear closure, the iteration of which provides convexity. This iterative
closure is clearly equivalent to morphological closing, where structuring elements are seg-
ments in all directions of infinite length (in practice, larger than the largest diameter of the
considered spatial entities). All these examples show interesting links between different
spatial logics which have not been exhibited before for most of them. They can be
exploited in two ways: the properties of morphological operators can provide additional
theorems to these logics; conversely spatial logics endow mathematical morphology with
powerful inference and reasoning tools.

5. Conclusion

In this paper we considered spatial reasoning under the light of mathematical morphol-
ogy. Due to its algebraic nature, it provides a unifying framework for representing differ-
ent types of spatial relationships in quantitative, fuzzy or semi-quantitative, and symbolic
or qualitative settings. Based on these knowledge representations, reasoning can be
addressed in a numerical or in a logical way. In particular, we have exhibited some links
between morphological representations and several spatial logics that can be of interest for
reasoning. These links certainly deserve to be further developed.

Another interesting direction for further research is inference of relations from known
ones, applying a sort of transitivity of relations. This has been addressed in a probabilistic
framework in [61,62]. A lot remains to be done in an algebraic framework and for
extended spatial entities.

Other relations could be modeled as well, such as ‘‘between’’ for instance, and intro-
duced in a reasoning process. Modal logics of betweenness have been proposed [2] but less
work has been done in quantitative and semi-qualitative frameworks [63].

Finally, complexity issues could be addressed.
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