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Segmentation of the skull in MRI volumes using deformable model
and taking the partial volume effect into account
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Abstract

Segmentation of the skull in medical imagery is an important stage in applications that require the construction of realistic models of
the head. Such models are used, for example, to simulate the behavior of electro-magnetic fields in the head and to model the electrical
activity of the cortex in EEG and MEG data. In this paper, we present a new approach for segmenting regions of bone in MRI volumes
using deformable models. Our method takes into account the partial volume effects that occur with MRI data, thus permitting a precise
segmentation of these bone regions. At each iteration of the propagation of the model, partial volume is estimated in a narrow band
around the deformable model. Our segmentation method begins with a pre-segmentation stage, in which a preliminary segmentation of the
skull is constructed using a region-growing method. The surface that bounds the pre-segmented skull region offers an automatic 3D
initialization of the deformable model. This surface is then propagated (in 3D) in the direction of its normal. This propagation is achieved
using level set method, thus permitting changes to occur in the topology of the surface as it evolves, an essential capability for our
problem. The speed at which the surface evolves is a function of the estimated partial volume. This provides a sub-voxel accuracy in the
resulting segmentation.  2000 Elsevier Science B.V. All rights reserved.
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1. Introduction such that any realistic model of the head must take bone
regions into account. Although simplified models of the

The segmentation of the skull in medical images is an head are sometimes used in these endeavors (e.g., nested
important step toward complete segmentation of the tissue spheres (Meijs et al., 1987)), the construction of more
in the human head, the latter being an indispensable step in realistic models is currently of growing importance. Medi-
the construction of a realistic model of the head. Such cal imagery can be exploited for this task, since such
models are used for numerical simulation of the behavior imagery reveals both the structure and the composition of
of electro-magnetic fields in tissues (Wiart and Mittra, the tissue in the region under study (Jensen and Rahmat-
1996) as well as for the study of electrical activity in the Samii, 1995). The segmentation of the skull is also
cerebral cortex in EEG (electroencephalography) and MEG important in approaches which study various neurological
(magnetoencephalography) data (Marin, 1997). In these disorders by aligning and normalizing a volumetric image
applications, each component of the model is characterized of the intracranial cavity with respect to size and shape.
by the electro-magnetic properties of the tissue being The segmented boundary of the skull can be exploited in
modeled. The electro-magnetic properties of the skull are this normalization process, since it directly defines the

shape and size of the intracranial cavity.
Of the currently available imaging modalities, CT data*Corresponding author. Tel.: 133-145-81-7069; fax: 133-145-81-

are the best suited to the problem of segmentation of the3794.
E-mail address: rifai@tsi.enst.fr (H. Rifai). skull (Subsol, 1995). Nevertheless, for the following
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reasons we address the problem of segmenting bone images. Held et al. (1997) define classes, including a
regions in MRI volumes rather than in CT data: scalp-bone class, and use a Markov random field (MRF)
• The acquisition of MRI data is not harmful to the approach to segment the classes in the MRI volume.

subject (Wehli et al., 1988) (unlike CT imaging). This Heinonen et al. (1997) use thresholding and region grow-
facilitates the acquisition of complete scans of the head ing to segment bone in MRI volumes.
at high resolution, without the risk of exposure to high The results of these previous methods have not always
doses of radiation. been satisfying. With MRF-based methods (e.g., Held et

• MRI data are well suited to the segmentation of soft al., 1997), it is not possible to guarantee that continuous
tissues, and of the cerebral cortex in particular. Accu- bounding contours will be obtained. For this reason, a
rately representing these tissues in the model is very stage in which contours are connected is proposed in
important due to their electro-magnetic properties (Soltanian-Zadeh and Windham, 1997), but for the case of
(Jensen and Rahmat-Samii, 1995). Thus, with MRI CT images. The case of MRI data is more complicated,
data, an individual model comprising all of the struc- since partial volume effects make the segmentation of
tures of the head may be constructed from data certain bone regions, for example the ocular globes, more
obtained by a single acquisition. difficult. This difficulty is mentioned in (Heinonen et al.,

A number of factors complicate the problem of segmenting 1997), where certain regions of the skull were not re-
the skull in MRI volumes. These include partial volume covered. To date, none of the methods that have been
effects, variable topology of the skull between individuals, proposed deal with partial volumes effects, consideration
regions of the skull with very high curvature, and regions of which is indispensable for a precise segmentation of the
of the skull whose thickness is small relative to voxel size. skull. We note, finally, that the choice of a multi-modal
In this paper, we describe a deformable model approach approach (CT/MRI) does not seem practical for the
that deals with these problems. We begin in Section 2 with reasons mentioned above.
a description of our problem and the motivations for using
deformable models. In Section 2 we also address issues 1.2. The proposed approach
related to the automatic initialization of the method. In
Section 3, we give a brief review of the level set formalism The originality of our approach lies in the use of a 3D
for front propagation, which we use to compute the deformable model with variable topology to segment the
evolution of the deformable model. In Section 4 we skull in MRI volumes, and in how we take into account
describe our new approach for taking into account partial partial volume effect to formulate the speed function of the
volume effects; we first review some related approaches, model.
and then describe how we estimate, and subsequently Deformable contour models (sometimes referred to as
incorporate into the surface evolution equations, the partial active contour models) were first introduced in the com-
volume information. Section 5 deals with a number of puter vision community in (Kass et al., 1988). The basic
implementation issues related to parameter selection. In approach when using deformable models for segmentation
Section 6, we present several experimental results and can be summarized as follows. First, an initial surface is
evaluations, for both simulated MRI data (so that we can computed; this can be done automatically or manually.
draw comparisons to known ground truth segmentations) This surface is then deformed subject to artificial forces
and for real MRI data. Section 7 presents conclusions and that are derived from the objectives of the segmentation
perspectives. process. In general, a combination of two forces is used:

We conclude this section by presenting some back- one force that constrains the final surface to have desired
ground on segmenting bone regions in MRI data, and then smoothness properties, and one force that constrains the
giving a brief overview of our approach. final surface to fit the observed data. The exact definition

of these forces, and their relative weighting, has been the
1.1. Background subject of much research (McInerney and Terzopoulos,

1996).
Very little research has been devoted to the problem of In our approach, the use of a deformable model guaran-

segmentation of the skull in MRI data, since CT images tees that the resulting regions in the segmentation will be
are typically used for the purpose of segmenting bone enclosed by connected contours. The 3D initialization of
regions. Soltanian-Zadeh and Windham (1997) use a the model is made automatically using a region-growing
multi-scale approach to extract the internal and external technique. This allows us to forego manual initialization,
contours of the skull from a CT image, with the goal of which can be very difficult due to the topological complex-
registering this segmentation to an MRI volume. Another ity of the skull. Furthermore, we present a method for
approach, developed by Studholme et al. (1996), segments taking into account partial volume effect in a band
bone in the MRI data using a rigid registration of a CT surrounding the model at each iteration of its propagation.
volume with an MRI volume from the same subject. In The speed function of the model, which completely
other research, bone is segmented directly in the MRI determines the surface deformation, is then defined to be a
volumes in order to forego entirely the acquisition of CT function of this partial volume estimate; this enables a
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sub-voxel segmentation. We implement the surface de- segmentation of different anatomical organs (Lobregt
formation using level set method (Osher and Sethian, and Viergever, 1995).
1988). This permits changes in the topology of the surface • Control of the model parameters (e.g., elasticity and
as it evolves, a capability that is advantageous during curvature) can be local (as, for example, with snakes
segmentation of the skull, whose topology varies between (Kass et al., 1988)), or global (as, for example, with
individuals. Finally, we note that the level set formulation hyperquadrics (Cohen and Cohen, 1994)).
on which the propagation of our deformable surface is
based, in conjunction with our method for exploiting 2.2. Characteristics of the model
partial volume information, permits the realization of a
sub-voxel segmentation of bone regions. The choice of a model must take into account several

In what follows, Section 2 describes the deformable considerations. In this section, we briefly discuss a number
model formalism that we use for segmenting the skull, as of factors that motivated us in our selection of a specific
well as the preprocessing stages. Section 3 briefly reviews deformable model approach.
front propagation using level sets. In Section 4, we The skull is topologically complex, especially in the
describe the partial volume estimation and model speed temporal region. This implies that the deformable model
calculation. Section 5 describes the choice of several must be capable of representing complex shapes. Deform-
different parameters of our model. Section 6 presents able models with global shape control (as, for example,
results of the segmentation of the skull in simulated and with hyperquadrics (Cohen and Cohen, 1994)) are not
real MRI volumes. Section 7 presents conclusions and suitable for our problem. The deformable model that we
perspectives. use is deformed by local external and internal forces. This

choice offers local control on the shape of the model, thus
permitting more flexibility in the deformation process.

The topology of the skull is not fixed. In effect, the
2. Segmentation of the skull using deformable model inter-individual variations in certain regions (e.g., the fatty

regions in the upper part of the skull) necessitate the use of
2.1. Deformable models in medical image processing a deformable model that allows changes in topology. So,

the propagation of the model is carried out using level sets
Deformable models are frequently used in medical technique, which (unlike classical snakes approach) per-

image processing, and have been widely applied to prob- mits topology changes without parametrisation problems.
lems including segmentation, tracking and registration. For The complexity of the skull poses a problem for the 3D
example, Clarysse et al. (1997) use deformable surfaces to initialization of the model. Since manual initialization is
study the movement of the surface of the left ventricle of difficult for the user, it is necessary that the initialization
the heart. Davatzikos and Bryan (1996) use an active be automatic. We begin with a pre-segmentation of the
contour to obtain a mathematical representation of the skull using a region-growing technique. The external
cortex. Gee et al. (1993) use an elastic atlas to register surface of the pre-segmented region offers a 3D automatic
cerebral images. Fok et al. (1996) segment nerve cells initialization of the deformable model. The variation of
using active contours. These are just a few examples. A topology during the propagation of the model can elimi-
more detailed analysis of the use of deformable models in nate tunnels and holes which can appear with region
medical image processing can be found in (McInerney and growing segmentation.
Terzopoulos, 1996). Certain parts of the skull are thin compared to the

Deformable models offer several advantages for the resolution currently available in MRI data. This is the case
segmentation of anatomical organs, including the follow- for the ocular globes as well as for certain portions of the
ing. upper region of the skull. Such problems manifest them-
• Deformable models can be used to obtain closed and selves as partial volume effects (i.e., voxels will contain

smooth contours, even if the images are noisy (Ruec- more than a single type of material), and impose the
kert et al., 1997). requirement that the deformable model be capable of

• Certain deformable models are topology preserving providing a sub-voxel segmentation of bone regions. With
(e.g., Mangin, 1995), while others allow changes in the level sets technique, the deformable model is estimated as
topology without introducing difficulties related to the zero level of a hypersurface. This estimation, when
parameterization (Caselles et al., 1997). combined with partial volume estimation, offers a sub-

• Some deformable models (e.g., using Fourier descrip- voxel precision unlike discrete approaches used classically
tors (Staib and Duncan, 1992)) allow to obtain an in deformable models (Lobregt and Viergever, 1995).
analytic mathematical description of the segmented There exist various interfering contours in the bone
contour rather than a set of points. regions. These contours are essentially due to noise and to

• Deformable models can be used for the 3D reconstruc- partial volume effects. As we will describe below, we have
tion of anatomical organs (Bardinet et al., 1994). chosen to define the forces that determine the model

• Specific models exist that can be adapted to the deformation to be a function of (i) the information
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contained in the regions to be segmented (Cohen et al., repelled by the region corresponding to the segmented
1993) (based on the partial volume of bone in each voxel) brain, thus preventing the model from penetrating into the
and (ii) on the shape of the contours themselves (which is cortex folds.
a classical approach used with deformable models (Kass et
al., 1988)). This choice provides the advantages of better 2.3.2. Pre-segmentation of the skull
taking into account the composition of the voxels, and of The goal of the pre-segmentation is to furnish a 3D
providing a sub-voxel segmentation of the bone regions. automatic initialization of the deformable model as well as

In T1-weighted MRI, the CSF (cerebro-spinal fluid) and to determine the statistics for the bone regions. The pre-
the bone are connected regions with comparable grey segmentation is achieved by a region growing, as follows.
levels (Wehli et al., 1988). To isolate the CSF and to The region is initialized to contain those voxels that are
initialize the model, we begin with a preprocessing stage, adjacent to the segmented brain, and that have grey value
which we now describe. less than s . This region is grown by successively addinginf

26-connected voxels whose grey level is less than the
2.3. Initializing the deformable model threshold value s (described above). Using the resultinginf

region, we calculate the mean m , and the standardbone

The deformable model is initialized during a preproces- deviation s , of the pre-segmented skull region. Thesebone

sing step. This preprocessing comprises two stages: a two parameters will be used during the calculation of the
morphological segmentation of the brain followed by a speed of the deformable model (described in Section 4).
pre-segmentation of the skull. Fig. 2 shows the pre-segmentation of the skull in one slice

of MRI data. We note that the quality of the pre-segmenta-
2.3.1. Morphological segmentation of the brain tion is not satisfying because of the discontinuities of the

We begin by performing a morphological segmentation contours and of the non-segmented regions (particularly
´of the brain (Geraud et al., 1995a,b). The goal of this stage those in the vicinity of the brain). These artifacts are due in

is to identify the CSF that exists in the cortex folds, part to the coarse thresholding introduced by using s inf

subsequently preventing the deformable model from seg- during the region growing, and in part by not taking into
menting the CSF as bone regions of the head. This process account the partial volume effects that occur at the
consists of the following main steps: interfaces between bone and other tissues. These problems
1. Two thresholds, s and s , are selected, to isolate the are resolved by the use of the deformable model (describedinf sup

brain from the non-signal region that corresponds to in more detail below).
bone and the high-signal regions that correspond to The surface of the pre-segmented region constitutes the
blood vessels.

2. Binary erosion of radius 4 mm is used to separate the
brain from the skin.

3. The largest connected component, which corresponds to
the brain, is extracted.

4. Binary dilation of radius 4 mm is used to reconstruct
the brain.

5. Binary closure of radius 2 mm is used to close the
cortex folds and thus to isolate the CSF.
Fig. 1 shows an example of a slice of MRI volume and

the result of the segmentation of the brain. The deformable
model that we use for the segmentation of the skull will be

Fig. 2. Pre-segmentation of the skull: a slice of the MRI volume (top
left). Result of the region growing (top right) with s 520. The contourinf

Fig. 1. An MRI slice and the result of the morphological segmentation of of the pre-segmented region taken as an initialization of the deformable
the brain. The thresholds s 520 and s 5125 have been used. model (bottom). Obtained statistics are: m 58.40 and s 56.02.inf sup bone bone
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automatic initialization of the deformable model. This dimensional hypersurface g(t 5 0), the goal is to produce
surface is deformed by an outward propagation, in the an Eulerian formulation for the motion of g(t) propagating
direction of its normal. The modeling of the surface along its normal direction with speed F. The main idea of
propagation must respond to the needs of our problem: the the level set methodology is to embed this propagating

Ncapability to effect large deformations, sub-voxel seg- interface as the zero level set of a function c : R 3

mentation, the ability to change topology to eliminate R → R defined by
holes and tunnels that may occur in the pre-segmented

c(x, t) 5 dist(x, g ), (1)
surface (these correspond to the partial volume regions that
are not segmented during region growing), as well as to where dist(x, g(t)) represents the signed distance from the
respond to variations between individuals. Front propaga- point x to the front g(t). By definition, points inside the
tion using level set method, originally proposed by Osher initial front are assigned negative distance.
and Sethian (1988), responds to these requirements. Sec- The condition that moving front is the zero level set of
tion 3 describes this method. the function c is expressed by the equation

g(t) 5 hxuc(x, t) 5 0j. (2)2.4. General scheme for segmentation of the skull

The propagation of c is calculated by the equation
Fig. 3 presents the stages of the method that we propose (Sethian, 1996)

for segmenting the skull. In what follows, we present the
c 1 F u=c(x, t)u 5 0 given c(x, t 5 0), (3)method of front propagation using level sets, our method t

for estimating partial volumes, and our choices for various
where c is the derivative of c w.r.t. t, and u=c u is the normtparameters of the model.
of the spatial gradient of c. Eq. (3) is the Hamilton–Jacobi
level set equation introduced by Osher and Sethian (1988).
During the propagation of c, the front can always be3. Model propagation using level set method
detected using Eq. (2).

Among the several desirable aspects of this EulerianAs mentioned above, we find the boundary of the skull
Hamilton–Jacobi formulation, we cite:by using a deformable model. The surface of the pre-
• The evolving function c(x, t) remains a function assegmented region, taken as the model initialization, is

long as F is smooth. However, the propagating hyper-propagated along its normal direction using level set
surface g(t) may change topology, break, merge, andmethod.
form sharp corners as the function c evolves. In our
case, this property is very important for two reasons:3.1. Level set formulation
(i) the skull has variable topology which means that the
deformable model used to segment the skull must beTo present briefly the level set method, we follow the
able to change topology; (ii) the skull presents sharppresentation in (Sethian, 1996). Given a closed (N 2 1)
corners and complex shapes which must be segmented
by the deformable model.

• Intrinsic geometric properties of the front are easily
determined from the level set function c. Thus, at any
point of the front, the normal vector is given by

=c
]]n 5 (4)
u=c u

and the curvature is obtained by

=c
]]k 5= . (5)
u=c u

These geometric properties are used in the propagation
process as shown in Section 4.

3.2. Numerical implementation

Because c(x, t) remains a function as it evolves,
numerical simulations of c propagation may be developed.
Using a spatial uniform mesh with grid nodes (i, j, k) and

nnoting that c is the value of c at point (i, j, k) at timeijk

Fig. 3. Stages of the skull segmentation method. nDt, Eq. (3) becomes
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2 n 2 1 n 2n11 n a 5 ((max(D c , 0)) 1 (min(D c , 0))1 x xc 2 cijk ijk n]]]] 1 (F )u= c u 5 0, (6) 2 n 2 1 n 2ijk ijkDt 1 (max(D c , 0)) 1 (min(D c , 0))y y

2 n 2 1 n 2 1 / 2n 1 (max(D c , 0)) 1 (min(D c , 0)) ) (12)where u= c u represents some appropriate finite differ- z zijk ijk

ence operator for the spatial derivative. Sethian (1996)
andpresents an extensive study about the construction of an

1 n 2 2 n 2appropriate numerical approximation of c spatial deriva- a 5 ((max(D c , 0)) 1 (min(D c , 0))2 x x
tive in order to allow the formation and propagation of

1 n 2 2 n 2
1 (max(D c , 0)) 1 (min(D c , 0))y ysingularities in the front. In the one-dimensional case, it is

1 n 2 2 n 2 1 / 2shown in (Sethian, 1996) that an effective approximation 1 (max(D c , 0)) 1 (min(D c , 0)) ) . (13)z z
to the gradient is given by

2 2 1 2 1 / 2
= c 5 ((max(D c, 0)) 1 (min(D c, 0)) ) , (7)i i i i 4. Partial volume estimation
where

The surface of the pre-segmented region is taken as the
c 2 c initialization of the deformable model. Our goal is toi i212 ]]]D c 5 (8)i Di propagate the model until it detects the contour of the

skull. Due to partial volume effects, a voxel may contain
and bone and tissue simultaneously. A precise segmentation

implies that the deformable model must be capable ofc 2 ci11 i1 ]]]D c 5 , (9) segmenting the bone part in a partial volume voxel. Thisi Di
means that the evolution of the model must stop when the
interface between bone and tissues is reached. To achievewhere Di is the spatial step along direction i. The
this goal, we calculate the speed of the model in eachextensions to two- and three-dimensional cases are
voxel as a function of the bone partial volume in thatstraightforward.
voxel. Thus, the model stops when the segmented part of a
voxel is equal to its bone partial volume.

3.3. The propagation equation of our model

4.1. BackgroundIn our approach to segment the skull, g(t) evolves in 3D.
n

c (x, y, z) denotes the value of c at the point (x, y, z) of
Partial volume effects present a problem that exists forthe space at time nDt. The surface of the pre-segmented

all medical imaging modalities. If a voxel corresponds toskull region (described in Section 2.3) is used to define the
the interface between two (or several) tissues, the discreteinitial surface g(0). At each time instant nDt, the surface
nature of medical imaging implies that the grey level ofg(nDt) is calculated as the zero crossing level of the

n this voxel will be the combination of the grey levels thatsurface c .
correspond to those distinct tissues. Several approachesThe propagation of our model is given by
have been proposed in the literature for estimating the

n11 n partial volume. This estimation means the determination ofc (x, y, z) 5 c (x, y, z) 1 Dt
types and proportions of materials in each voxel of the

? (2(a ? max(F (x, y, z), 0) 1 a1 c 2 image.
Santago and Gage (1993) calculate probability densities? min(F (x, y, z), 0)) 1 ´ ? k(x, y, z)), (10)c

for the materials in the image. These probabilities are
in which k is the mean curvature. The term ´k in this modeled with Gaussian laws fitted to the histogram of the
equation is a smoothing term of the type classically used in entire volume. Materials amounts are then quantified. Once
deformable models. The curvature, k, is given by these distributions have been calculated, the proportion of

each material in the partial volume voxels can be esti-
2 2

k(x, y, z) 5 ((c 1 c )c 1 (c 1 c )cyy zz x xx zz y mated.
Laidlaw et al. (1998) use a similar approach as Santago2

1 (c 1 c )c 2 2c c c 2 2c c cxx yy z x y xy x z xz and Gage (1993) since material characterization is based
2 2 2 3 / 2 on histograms. But in this approach, histograms are2 2c c c ) /(c 1 c 1 c ) , (11)y z yz x y z

computed over small regions surrounding studied voxels.
in which c denotes the partial derivative of c with respect From these local histograms, characteristics of the classesx

to x, and c denotes the second partial derivative of c present in each voxel are estimated by fitting Gaussians toxy

with respect to x and y. The remaining notation is defined local histograms. The local aspect of this approach better
analogously. The terms a and a are given by takes into account the variability of tissues in the volume.1 2
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Choi et al. (1991) use multi-channel MR images to • The global tissue characterization in the image, as
estimate tissue proportions in each voxel of the image. In proposed in (Santago and Gage, 1993), does not seem
this approach, voxels are considered as a mixture of adequate in our case. In fact, several tissue types
multiple tissue types and a Markov random field model is surround the skull. A local partial volume estimation,
used for the classification. as proposed in (Laidlaw et al., 1998), is much more

Another multi-channel approach is proposed by Bonar et adapted to our problem: class characteristics are esti-
al. (1995). This approach uses two MRI acquisitions to mated in small regions around studied voxels. How-
segment the CSF, grey matter and white matter. Grey ever, two main difficulties remain. First is the big
levels of pure tissues are determined manually in each MR variability of tissue grey level around the skull. This
image, then the proportions of pure tissues are calculated implies that grey levels of partial volume voxels
in a voxel by resolving a system of three linear equations. between bone and tissues can cover a wide range of

´Geraud et al. (1995a,b) use the fact that partial volume image grey values. This range may overlap pure tissue
effect exists at interfaces between pure tissues. The grey levels and makes the estimation of local pure
proposed approach begins with a classification of the classes characteristics difficult. The second difficulty is
image, then tissue-labeled distance maps are calculated. the existence of thin bone parts in the skull. A voxel of
These maps are used to estimate the class mean values as these parts is essentially surrounded by tissue and
well as partial volume voxels. For each of these voxels, the partial volume voxels. Pure bone class is not strongly
two classes to which the voxel is closest are determined. present in the neighborhood of thin bone parts and it
The voxel is considered as the combination of these two will not be detected by local class detection as pro-
classes and the voxel grey level is used to estimate its posed in (Laidlaw et al., 1998). This implies the risk of
composition. not estimating the pure bone proportion in voxels

As a last example, Vincken et al. (1994) use a multi- corresponding to these thin parts. In order to resolve
scale approach in which each voxel, at a scale, is divided, these two difficulties, we estimate the partial volume in
at a finer scale, into four sub-voxels. Information propaga- the neighborhoods of voxels which surround the de-
tion use voxel values as well as their neighborhood to formable model. Tissue variability around the skull is
analyze voxels at sub-voxel precision. detected by the spatial variability of studied neigh-

borhoods. On the other hand, the fact that the deform-
4.2. Characteristics of our method able model presents the bone region in MRI volume, it

is very probable that voxels in the neighborhood of the
The method that we propose for partial volume estima- model contain bone. The presence of bone class in a

tion has to be adapted to the segmentation problem we voxel is then induced by the fact that the voxel is a
consider. Thus, the characteristics of our method can be neighbor of the model. This spatial information intro-
presented by the following points: duces the pure bone class in the partial volume
• The results of partial volume estimation methods show estimation even if this class is not strongly present in

that, in many cases, materials gradually degrade from the voxel neighborhood.
´one to another over many samples. However, because • We share the suggestions of (Geraud et al., 1995a,b)

our aim is to detect the contour of the skull, we have to about the variation of image grey level when crossing
place the deformable model ‘somewhere’ in the transi- from one pure tissue region to another. This idea is
tion region between bone and tissues. We chose to push presented in detail in Section 4.3.1.
the deformable model towards the region where pro- • We assume that the value of a partial volume voxel is a
portions of bone and tissues are equal. linear combination of pure class values present in the

• We share the approach of Laidlaw et al. (1998) which voxel. This assumption is classical in partial volume
considers a voxel as a region of the image. This estimation approaches (Pham and Prince, 1998).
consideration permits to propagate the model inside a Taking these points into account, we present in what
voxel achieving a sub-voxel segmentation. In this follows the partial volume estimation in voxels surround-
work, we consider that a voxel is a cubic region whose ing the deformable model. We then present the calculation
volume is equal to one. of the model speed.

• When the deformable model propagates inside a voxel,
it divides it into two zones. Our aim is to detect the 4.3. Partial volume estimation in the neighborhood of
zone which belongs to bone. Voxel sub-division was the model
already proposed in (Vincken et al., 1994). However,
in our approach, the direction of voxel sub-division is 4.3.1. Local estimation of tissue mean value
implied by the direction of propagation of the deform- Consider a zone containing two regions: tissue (T) and
able model. This approach is different from (Vincken bone (B) (see Fig. 4). We mean by ‘tissue’ all tissue other
et al., 1994) where a voxel is always divided into four than bone in the neighborhood of bone. Grey level values
equal cubic parts. of tissue and bone are M and M , respectively. Thetissue bone
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G(d) situated after the transition zone. However, in real
images, pure material zones are not totally homogeneous.
In fact, grey level variations are caused by noise and
imperfections of imagery techniques. Estimating Mtissue

along one direction D becomes insufficient and it is
necessary to use several directions in order to obtain a
more robust estimation.

Consider the case of a front located in bone region as
Fig. 4. Left: zone with bone (B) and tissue (T) regions. Right: grey level shown in Fig. 6. We can use the distance map to the front
variation along direction D. (using chamfer distance for example) to calculate the mean

grey level variation of iso-distance voxels. We obtain the
variation of grey level along the direction D is shown by curve of Fig. 6. We find two stable zones corresponding to
the curve G(d) in Fig. 4, where d is the signed distance to (T) and (B) and a transition region. The mean M oftissue

the interface between the regions (T) and (B). The curve tissue class is estimated by
G(d) has two stable regions whose values are equal to 1

]M and M , respectively. These regions correspond M 5 Og(V ), where d(V ) . S , (17)tissue bone tissue i i hNh ito zones (T) and (B). The sharp transition between the two
stable regions of G(d) indicates the position of the where d(V ) is the distance of voxel V to the front, S is thei i h

interface. distance threshold shown in Fig. 6 and N is the number ofh

If the region of Fig. 4 is sampled (see Fig. 5). Some voxels V .i
voxels of Fig. 5 contain bone and tissue simultaneously. In Suppose that the front evolves in bone region towards
this case, the variation of grey level along D becomes as tissue region. Front propagation is made along its normal
shown in Fig. 5. G(d) has always two stable regions, direction. The composition in bone a in a region of thebone

however the transition between these regions is no longer image reflects the probability that this region belongs to
sharp. The transition region corresponds to partial volume bone. When the transition region between the bone and
voxels. The interface between (T) and (B) is situated tissue spread over several voxels, the propagating front
inside the transition zone. will be attracted by the region where the interface has the

In Fig. 5, a partial volume voxel V is divided by the biggest probability to exist. It is the region where com-
interface into two regions R (V ) and R (V ). The positions in bone and tissue are equal.bone tissue

volumes of these regions are proportional to the com- Let x be the position along the normal vector n whereT

position a (V ) and a (V ) in bone and tissue of the compositions in bone and tissue are equal. The speedbone tissue

voxel V. The grey level of V is calculated by function must attract the model toward that position. Thus
the speed is calculated by

g(V ) 5 a (V ) ? M 1 a (V ) ? M . (14)bone bone tissue tissue x
]F(V ) 5 2 1 1. (18)Knowing that xT

The integration of partial volume estimation and speeda (V ) 1 a (V ) 5 1, (15)bone tissue

calculation is discussed in the next section.
the bone composition a (V ) of voxel V is calculated bybone

4.3.2. Integration of partial volume estimation in theM 2 g(V )tissue
]]]]a (V ) 5 . (16) model propagation processbone M 2 Mtissue bone

4.3.2.1. Narrow band propagation. The propagation ofConsider now that the grey value M of tissue zone istissue

function c using Eq. (3) causes a speed definition prob-not known. It can be estimated over the stable region of
lem. In fact, the speed in which we are interested and that
we can calculate is the speed of the front g. However, this

Fig. 5. Left: zone with bone (B) and tissue (T) regions. Right: grey level Fig. 6. Left: a front in the bone region. Right: mean grey level variation
variation along direction D. in function of the distance to the front.
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speed is defined only in the domain in which g evolves is not on the model, we chose n(V ) as the normal at thei

(the segmented image for example). Knowing that c has a closest model point to V . In q(V ), the variation of greyi i

higher dimensional domain than g, the speed definition level in function of the distance to the front is calculated.
problem for all c levels becomes obvious. The extension Using the definition of function c (Eq. (1)), the value of c

of F over the entire c domain is necessary in order to at a point is equal to the distance from this point to the
define a speed for non zero levels of c. This problem was front. Thus, the mean grey level at a distance d from the
studied in detail in (Malladi et al., 1995) and two types of model is equal to
solutions are proposed: (i) the speed of a point in a

1non-zero level is considered as equal to the speed of the ]G(d) 5 O viNd iclosest point in the zero level; (ii) the speed of a point in a
non-zero level is equal to the speed of the projection of where v [ q(V ) and c(v ) 5 d, (21)i i i

that point on the domain of g. As indicated in (Malladi et
where N is the number of voxels v . The height of theal., 1995), the first solution permits to propagate all c d i

cylindrical neighborhood is equal to d . This heightlevels without inter-level collisions. However, searching 2

depends on the width of tissue regions which surrounds thefor the closest point in zero level is time consuming. The
skull because our aim is that q(V ) reaches homogeneoussecond solution may cause some levels to stop and i

tissue regions. We used a value between 7 and 9 voxels fornecessitate to restrict the computation of c to a narrow
images having about 1 mm resolution. The radius of q(V )band around the front g. A re-initialization of c (using Eq. i

is selected by the user. A small radius implies that tissue(1)) every N iterations of Eq. (10) becomes necessary.iter
mean estimation becomes sensitive to noise, while a bigAll these problems are discussed in (Malladi et al., 1995).
radius makes the estimation less local. A value of 5 voxelsWe chose the second solution consisting in projecting
seems adequate for our application.each point of c in the domain of g. Thus we obtain

The mean value of tissues M (V ) in q(V ) is esti-tissue i i
F(c(x, y, z)) 5 F(x, y, z), (19) mated over the stable region of G(d). The bone com-

position of voxel V is calculated byiwhere F(c(x, y, z)) is the speed term in Eq. (10). We define
two narrow bands B and B around g of width 2d and1 2 1 M (V ) 2 g(V )tissue i i

]]]]]a (V ) 5 max , 0 , (22)2d , respectively, where d , d (see Fig. 7). Partial S Dbone i2 1 2 M (V ) 2 mtissue i bonevolume estimation uses the band B and the model2

propagation is achieved in the band B . where m is the mean of pre-segmented region in1 bone

Section 2.3. This bone composition value is used to
calculate the speed of the model in voxel V .i4.3.2.2. Partial volume estimation. The partial volume

estimation is integrated in the model propagation process.
At each iteration, partial volume is estimated in all voxels 4.3.2.3. Calculation of the model speed. For each point P
V , wherei of the deformable model, we calculate the bone com-

position variation a (P) in band B along the normal inbone 1c(V ) < d . (20)i 1
P at the front (see Fig. 8). We then estimate the interface
position along the normal where bone proportion is equalFor each V , a cylindrical neighborhood q(V ) is defined.i i

to 0.5. This means that bone and tissue proportions areThe cylinder axis is the normal n(V ) to the front. Since Vi i

equal and the interface is reached. The position x whereT

the model is thus determined and the speed of the model in
band B is calculated using Eq. (5). However, for a good1

estimation of model parameters (Section 5), it is desirable

Fig. 7. Two narrow bands B and B of width 2d and 2d are defined Fig. 8. The variation of bone composition along a normal vector of the1 2 1 2

around the propagating front. model.
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to have a limited speed value. We chose to limit the speed teristics. This definition is not adapted for the skull
F of Eq. (5) in the interval [21,1] by using the expression, segmentation where several tissue types surround the skull.

The image shown in Fig. 9 is a synthetic image where
sign(F ) ? min(uF u,1), (23)

the region (A) to segment presents sharp corners and a thin
part. Region (A) is surrounded by two regions (B) and (C)where sign( ? ) is the sign function. The model propagation
of different grey values. Grey levels of the three regionsstops when, for each point of the model, the point position

and its corresponding estimated interface position x are chosen such that partial volume voxels between (A)T

become stable. and (B) (respectively (A) and (C)) may have the same
value as region (C) (respectively (B)). Fig. 9 shows

4.3.3. Discussion segmentation results of blurred and noised images using
When deformable models are used for segmentation gradient information, grey level values and our partial

tasks, the image gradient is often used in order to calculate volume estimation approach. Segmentation was always
external forces which attract the deformable model. Kass et achieved using our deformable model based on level set

2al. (1988) use the term 2 u=I(V )u as external potential technique, with partial volume estimation step switched off
value, where I(V ) is the grey level of a voxel V. In this when the two other approaches (gradient and grey level)
approach, attraction force of a point of the image depends are used. The segmentation result using partial volume
on the gradient value in that point. In order to give the
same attraction potential for all gradient points of the
image, Cohen et al. detect the image contours and then use
chamfer distance to calculate the attraction potential
(Cohen et al., 1993). Klein et al. (1997) use a bank of even
and odd S-Gabor filter pairs of different orientations in
order to create an external snake energy field. Lachaud and
Montanvert (1996) use a tri-linear interpolation of image
gradient in order to obtain a continuous potential field over
the image domain and achieve a precise segmentation
using deformable model. Chakraborty et al. (1996) com-
bine image gradient with region information. The authors
start with a region-based segmentation of the image. The
segmentation result is introduced as an added prior into the
gradient-based deformable boundary finding framework.
The searched contour is defined as the curve which lies on
high gradient image points and encloses a homogeneous
image region. Zeng et al. (1998) use voxel grey level
directly in order to attract the deformable model. In this
work, class characteristics are globally defined using
Gaussian laws, then the interface direction between image
regions is estimated in each voxel using the membership of
the voxel neighborhood to image classes. The deformable
model is then attracted along the interface direction.

Our approach to calculate the model speed differs from
the approaches listed above. In our problem, using image
gradient to attract the model is not efficient because this
technique is very sensitive to false contours caused by
partial volume effect and noise. In fact, when the region to
segment presents thin parts, partial volume voxels make
the image gradient spread over and prevent the model from
penetrating these thin parts (see Fig. 9). In addition, the
gradient approach is very local and does not take into
account classes which exist around the partial volume
voxels. On the other hand, partial volume voxels may have
the same grey level as pure tissue in the image. Calculating

Fig. 9. From top to bottom: original image, blurred image, imagethe speed value using voxel grey level will not be accurate
gradient, contour detection using image gradient, contour detection using

in a partial volume voxel because no consideration of pixels grey levels, contour detection using partial volume estimation,
presented classes in the voxel is made. Moreover, this blurred image with Gaussian noise added (s 5 4) and contour detection
approach necessitates a global definition of class charac- result using partial volume estimation.



H. Rifai et al. / Medical Image Analysis 4 (2000) 219 –233 229

estimation correctly succeeded to detect region (A) contour
especially the contour of the thin part. The result of the
gradient-based segmentation is not satisfactory in the thin
part because partial volume pixels stop the model evolu-
tion. Grey level-based segmentation considers some partial
volume regions (between (A) and (C)) as a part of region 1Fig. 11. Computation of a and a : at point x, D c 5 c(x 1 1) 2 c(x) .1 2 x

2(B). These regions are not segmented by the deformable 0 and D c 5 c(x) 2 c(x 2 1) . 0. We show (right) the values of cx
1 2model. A global characterization of classes is insufficient around g(t). We have: max(D c) 5 max(D c) 5 1. The expressions ofx x]Œa and a lead to: max(a ) 5 max(a ) 5 3.is this case. 1 2 1 2

n11 n
c 5 c 2 Dt ? (a ? max(F(x, y, z),0)1

5. Determination of the model parameters
1 a ? min(F(x, y, z), 0)). (24)2

The extension of the speed function F over the domain The front does not come out of the band during the Niter
of c requires the calculation of c in a narrow band, of iterations if
width 2d around g(t) (see Section 3). The choice of the1

N ? max(Dt ? (a ? max(F(x, y, z), 0)width for the band is important. This choice depends on iter 1

the width of the regions in which the speed is zero (regions
1 a ? min(F(x, y, z), 0))) , d . (25)2 1of tissues that surround the skull). In effect, if the width of

]the band is important, interfering contours may appear ŒSince we have max(uF u) 5 1 and max(a ) 5 max(a ) 5 31 2outside of the region to be segmented because c may cross (see Fig. 11), we obtain
zero inside and outside the segmented region (see Fig. 10).

This is due to the fact that as the width of the band d1
]]N , . (26)increases the extension of F to points not lying on g ]iter Œ3Dtbecomes less significant. The width of the band must then

be about the minimum width of the areas in which speed is In addition, the choice of the time step Dt depends on the
zero. In our case, we used a width 2d 5 4 since the width precision with which we wish to propagate the model.1

of the skin and muscles around the skull exceeds 2 voxels According to Eq. (1), we note that at each time step Dt, the
in MRI. The function c is recomputed from g(t) every N front spatial step along its normal isiter

iterations (see Section 3). The choice of N depends oniter

P 5 Dt ? max(a ? max(F(x, y, z), 0)the values of d and the time step Dt. Due to the 11

complexity of the skull, the term which corresponds to ]Œ1 a ? min(F(x, y, z),0)) 5 3Dt. (27)2curvature in the propagation Eq. (10) is chosen to be
negligible in order to give the model the ability to develop The spatial step P corresponds to the minimal fraction of
sharp shapes. To choose these parameters, we consider that the size of the voxel which we want to segment. This
´ 5 0. The function c is calculated in the narrow band of analysis resembles to that made by Cohen (1991) in the
width 2d , which implies that during the N iterations of1 iter case of traditional snakes. The parameter P is fixed in
calculation, the front should not come out of the narrow advance and presents the desired precision of the seg-
band. According to Eq. (6) (for ´ 5 0), we have mentation.

6. Results

We tested our segmentation method on synthetic data as
well as real MRI acquisitions. Synthetic data consist of
simulated MRI volumes obtained by McGill University

1MRI simulator. The simulator uses a database of 10 fuzzy
volumes, each representing a class of tissues (skull, grey
matter, white matter, fat, etc.) (Collins et al., 1998). The
simulated MRI volume is obtained by combining these 10

Fig. 10. In this example, the width of the narrow band is important volumes using different noise levels.
comparing to the width of the zone in which speed is zero. In this latter
zone, the function c does not change: c(n 1 k) 5 c(n). The computation

1of c in the narrow band makes that c crosses zero outside of the region Simulated MRI volumes can be downloaded from
to be segmented. This leads to the creation of interfering contours. http: / /www.bic.mni.mcgill.ca /brainweb/selection normal.html

]
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6.1. Segmentation of synthetic volumes to segment the skull in the fuzzy volume without estimat-
ing the partial volume (with Eq. (9)) during model

In order to validate the results of our method, we chose propagation. We used voxel values directly as bone com-
to segment the skull from simulated MRI volumes and position. The segmentation result is considered as the
compare the segmentation results with the skull volume in ground truth for estimating the performance of skull
the simulator database. However, this skull volume is segmentation in simulated data.
fuzzy, making the direct comparison with our method We used our method to segment the skull in three
results (consisted of the model surface) difficult. Knowing simulated MRI-T1 weighted volumes having 0, 3 and 9%
that a voxel value in fuzzy volume is equal to the bone of noise level. Each volume has a size of 18132173181
composition of the voxel, we used our deformable model voxels where a voxel has a size of 13131 mm. The

segmentation result is compared with ground truth as
follows: for each point of the segmentation result, we
calculate the distance to the closest point of the ground
truth. The error is equal to the mean of distances calculated
for all points of the segmentation result.

We ran two tests to quantify the impact of partial
volume estimation during the model propagation. In the
first test, the bone composition a (V ) is estimatedbone

locally at each iteration as presented in Section 4. In the
second test, we use the statistics calculated on the pre-
segmented region (Section 2) to globally calculate the
bone composition in each voxel using the function

a (V ) 5 1 if g(V ) < M ,bone bone
2( g(V ) 2 M )bone

]]]]]a (V ) 5 exp if g(V ) . M .S Dbone 2 bone
s bone

(28)

No local partial volume estimation during model propaga-
tion is realized in this test.

Fig. 12 shows segmentation results of the three synthetic
volumes. In these results, partial volume is estimated
during model propagation. Fig. 13 shows the error in
function of iteration number for the two tests. We notice
that the error is significantly less important when partial
volume is locally estimated during model propagation. On
the other hand, when noise level is important, error after
convergence corresponds essentially to thin fatty regions in
the higher parts of the skull. These regions become very
hard to segment when noise is high and makes the error
value increase. The segmentation differences of fatty
regions among the three used volumes can be visually seen
in Fig. 12.

6.2. Segmentation of real MRI volumes

We present the results of the skull segmentation in three
MRI volumes, A, B and C, of different resolutions (see
Table 1). The thresholds s and s used for theinf sup

morphological segmentation of the brain are selected
manually. This choice is not necessarily precise and can be
made easily with an interactive thresholding tool. The
width of the two narrow bands are 2d 5 4 and 2d 5 14,1 2

respectively, for the three segmented volumes. The value
of the time step Dt depends on the precision with which
we want to segment the bone. We used a spatial stepFig. 12. Skull segmentation results in the three simulated MRI volumes:

0% noise (left), 3% noise (middle) and 9% noise (right). P 5 0.03 for the three volumes. The time step Dt is
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Fig. 13. Error in function of iteration number. Up: with partial volume
estimation. Down: without partial volume estimation.

calculated from P and is equal to 0.02 for the three
volumes. The iteration number is calculated from Dt and d1

(see Section 5). We used an iteration number N 5 25.iter

Figs. 14–16 show the results of segmentation of the
skull of volumes A, B and C, respectively. We notice that
the result of segmentation using deformable model is much
better than the segmentation using region-growing tech-
nique, taken as an initialization of the deformable model
(see Fig. 2). In fact, the iterative estimation of the partial
volume during the propagation of the model makes it
possible to carry out a precise segmentation while taking
into account the local tissue variability around the skull.
The deformable model is thus able to segment thin areas
such as ocular globes, the higher parts of the skull as well
as the jaw. Moreover, the variable topology of the deform-
able model enables it to segment the fatty parts of the skull
and to cross them over in order to reach internal and
external contours of the skull. The interindividual vari-
ability of the skull is no more a problem because no a
priori topology is imposed on the model. Finally let us
note that for the 3D representations, isotropic volumes
were calculated by linear interpolation of the result of the
segmentation. We preferred to segment original anisotropic

Table 1
Resolutions of the 3 MRI volumes: nx, ny and nz are the voxels numbers
in the coronal, sagittal and axial directions, respectively. dx, dy and dz are
the voxels dimensions (in mm) in the x, y and z directions

nx ny nz dx dy dz Fig. 14. The result of the skull segmentation of the volume A. d 5 2,1

Dt 5 0.02, ´ 5 0.001. In the 3D representation, the brain is obtained by
Volume A 120 256 256 1.6 1 1

morphological segmentation, the skull is segmented using the deformable
Volume B 256 256 124 1 1 1.35

model and the remainder of the head is obtained from the original MRI
Volume C 168 256 256 1 1 1

volume.
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Fig. 16. Coronal view of the result of the skull segmentation of the
volume C. d 5 2, Dt 5 0.02, ´ 5 0.0001.1

tion time and the precision of the segmentation. It is to the
user to choose it. In the results presented, the iteration
number varies between 3 and 4, with an execution time
from 35 to 40 minutes per iteration according to the size of
the skull to segment. Calculation is made on a Sun Sparc,
Ultra-2.

Fig. 15. The result of the skull segmentation of the volume B. d 5 2,1

7. ConclusionsDt 5 0.02, ´ 5 0.001.

We presented a method of segmentation of the skull
volumes to avoid introducing an artificial partial volume using a deformable model. The pre-segmentation using
effect due to the interpolation. The calculation time region-growing technique provides statistics on the bone in
depends on the iteration number of the propagation algo- MRI volume as well as an automatic initialization of the
rithm, the size of the surface to be propagated and the time deformable model. The use of level set technique makes it
step Dt. The iteration number is strongly reduced thanks to possible to carry out a sub-voxelic segmentation and not to
the use of the pre-segmentation result as an initialization of impose an a priori topology on the model. The propagation
the model. The region growing technique makes it possible speed of the model is a function of partial volume of bone
to segment large homogeneous areas very quickly where which contains each voxel. The generality of the proposed
the propagation of the deformable model takes much more approach makes it possible to adapt it to the segmentation
time. In addition, the calculation of the surface c requires of other anatomical structures in medical images. The
the calculation of distances from 3D points to the prop- method has the advantage of associating a model with high
agated surface. The calculation time is reduced by using capacity of deformation with the precise calculation of the
narrow band propagation of the model. This implies that c speed of the model thanks to the estimation, at each
is calculated only for the points belonging to the narrow iteration, of partial volume around the model. Let us note
bands around the propagated surface. Moreover, the calcu- finally that the segmentation of the skull can contribute to
lation of the distances from these points to the surface is the automatic segmentation of other tissue of the head
accelerated by the use of hashing tables. Finally, the choice (skin, muscles, eyes, inner ear (Rifai et al., 1998)) by using
of the time step Dt is a compromise between the calcula- a priori anatomical knowledge concerning the relative
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