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Abstract

Estimation of distribution algorithms (EDAs) are a quite recent topic in optimization techniques. They combine two technical
disciplines of soft computing methodologies: probabilistic reasoning and evolutionary computing. Several algorithms and
approaches have already been proposed by di8erent authors, but up to now there are very few papers showing their potential
and comparing them to other evolutionary computational methods and algorithms such as genetic algorithms (GAs). This paper
focuses on the problem of inexact graph matching which is NP-hard and requires techniques to ;nd an approximate acceptable
solution. This problem arises when a nonbijective correspondence is searched between two graphs. A typical instance of this
problem corresponds to the case where graphs are used for structural pattern recognition in images. EDA algorithms are well
suited for this type of problems.

This paper proposes to use EDA algorithms as a new approach for inexact graph matching. Also, two adaptations of the
EDA approach to problems with constraints are described as two techniques to control the generation of individuals, and the
performance of EDAs for inexact graph matching is compared with the one of GAs. ? 2002 Pattern Recognition Society.
Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Graph representations are widely used for dealing with
structural information, in di8erent domains such as net-
works, psycho-sociology, image interpretation, pattern
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recognition, etc. One important problem to be solved when
using such representations is graph matching. In order
to achieve a good correspondence between two graphs,
the most used concept is the one of graph isomorphism
and a lot of work is dedicated to the search for the best
isomorphism between two graphs or subgraphs. How-
ever in a number of cases, the bijective condition is too
strong, and the problem is expressed rather as an inex-
act graph matching problem. For instance, inexact graph
matching appears as an important area of research in
the pattern recognition ;eld, where graph matching is
used when the recognition is based on comparison with
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a model: one graph represents the model, and another one
the image where recognition has to be performed. Because
of the schematic aspect of the model (atlas or map for
instance) and of the diEculty to segment accurately the
image into meaningful entities, no isomorphism can be ex-
pected between both graphs. Such problems call for inex-
act graph matching. Similar examples can be found in other
;elds.

When the number of features in the image increases the
size of graphs increases too, and the matching process be-
comes more complex. As this is a NP-hard problem, dif-
ferent combinatorial optimization methods have been tested
in order to ;nd the best matching. The optimization pro-
cess through learning and simulation of Bayesian networks
is the method proposed in this article. This approach is
known as estimation of distribution algorithms (EDAs). This
work also compares their performance in a particular graph
matching problem to each other and to broadly used genetic
algorithms (GAs).

The outline of the article is as follows: Section 2 de-
scribes the graph matching problem analyzed in this article,
expressing it as a combinatorial optimization problem with
constraints. Section 3 explains the theoretical background
behind the EDAs. Section 4 proposes some algorithms
within the EDAs that are used later on to test their poten-
tial in the graph matching problem. Section 5 describes
the experiment and the results obtained. Finally, Section 6
shows the conclusions obtained from the experiments and
proposes further work.

2. Graph matching as a combinational optimization
problem with constraints

Di8erent techniques have been applied to graph match-
ing: combinatorial optimization techniques [1,2], relaxation
techniques [3,4], and the EM algorithm [5,6]. We assume
here that we have to match the data graph and a model
graph, the ;rst one having more nodes than the second one,
as it is usual in model-based pattern recognition for image
interpretation [7–13].

We call GM =(VM ; EM ) the graph representing the model,
and GD = (VD; ED) the one representing the data that have
to be labelled according to the model, where Vi is the set of
nodes and Ei is the set of arcs of graph Gi (i =M;D).

2.1. Representation of individuals

EDAs require to de;ne the format of the individu-
als that will be used to represent possible solutions to
our problem in a similar way as in GAs. We have cho-
sen an individual representation of a size of |VD| genes
or variables, each one taking any value between 1 and
|VM |: {x=(x1; : : : ; xj; : : : ; x|VD|)}, where xj=i (16 i6 |VM |
and 16 j6 |VD|) means that the jth node of GD is matched
with the ith node of GM .

Usually inexact graph matching problems have con-
straints that have to be satis;ed by the ;nal solution in
order to be considered as acceptable. The following typical
constraints will be considered as examples to illustrate how
EDAs are able to take them into account:

• Every node in GD must have one and only one corre-
sponding match with a node in GM .

• All the nodes in GM must have at least a matched node
in GD.

With the chosen representation of individuals, only the last
condition needs to be checked as the other is inherent to
the representation itself. More formally, an individual will
be considered as correct when the following condition is
satis;ed:

∀i∈{1; : : : ; |VM |}; ∃j∈{1; : : : ; |VD|} | xj = i: (1)

2.2. De'nition of the 'tness function

The aim of this paper is not to test the goodness of the
;tness function, nor to give a comparison of di8erent ;tness
functions. Here we use the simple function proposed in [11],
which gives to every individual x = (x1; : : : ; x|VD|) a ;tness
value as follows:
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where if xi = j then cij = 1, otherwise cij = 0. uiM and eiM
are the ith node and lth edge of the graph GM , respectively,
and analogously ujD and ekD are the jth node and kth edge
of the graph GD. � is a parameter used to adapt the weight
of node and edge correspondences in f, and �
 measures
the similarity between the nodes of both graphs GM and
GD. In the same way, �� measures the similarity between
the arcs of both graphs GM and GD. Usually these similari-
ties are based on attributes of nodes and edges. The ;tness
function can be easily understood by having a look to the
two main terms: the ;rst one measures the correspondence
between nodes of the model and data graphs, and the sec-
ond the correspondence between edges of both graphs. The
valuef associated to each individual returns the goodness of
the matching it represents.
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3. Estimation of distribution algorithms (EDAs)

3.1. Introduction

Generally speaking, all the search strategy types can be
classi;ed as complete and heuristic strategies. The di8er-
ence between them is that complete strategies perform a
systematic examination of all possible solutions of the search
space whereas heuristic strategies only concentrate on a part
of them following a known algorithm.

Heuristic strategies are also divided between determinis-
tic and non-deterministic. The characteristic of deterministic
strategies is that under the same conditions the same solu-
tion is always obtained. Examples of this type are forward,
backward, stepwise, hill-climbing, threshold accepting, and
other well known algorithms, and their main drawback is
that they can always get stuck in local maximum values.
Non-deterministic search is able to escape from these lo-
cal maxima by means of the randomness and, due to their
stochasticity, di8erent executions might lead to di8erent so-
lutions under the same conditions.

Some of the stochastic heuristic searches such as simu-
lated annealing only store one solution in every iteration of
the algorithm. The stochastic heuristic searches that store
more than a solution every iteration (or every generation)
are grouped under the term of population-based heuristics,
an example of which is evolutionary computation. On these,
each of the solutions is called individual. The group of indi-
viduals (also known as population) evolves towards more
promising areas of the search space while the algorithm car-
ries on with the next generation. GAs are examples of evo-
lutionary computation [14,15].

The behaviour of GAs depends to a large extent on asso-
ciated parameters like operators of crossing and mutation,
probabilities of crossing and mutation, size of the popula-
tion, rate of generational reproduction, the number of gener-
ations, and so on. The researcher requires experience in the
resolution and use of these algorithms in order to choose the
suitable values for these parameters. Furthermore, the task
of selecting the best choice of values for all these parameters
can be considered itself as an optimization problem [16]. In
addition, GAs show a poor performance in some problems
(e.g. deceptive problems) in which the designed operators
of crossing and mutation do not guarantee that the building
block hypothesis is preserved.

All these reasons have motivated the creation of a new
approach classi;ed under the name of Estimation of Distri-
bution Algorithms (EDA) [17–19], trying to make easier to
predict the movements of the populations in the search space
as well as to avoid the need for so many parameters. These
algorithms are also based on populations that evolve as the
search progresses and, as well as GAs, they have a theoret-
ical foundation on the probability theory. In brief, EDA are
population-based search algorithms based on probabilistic
modelling of promising solutions in combination with the
simulation of the induced models to guide their search.

In EDA the new population of individuals is not gen-
erated by using crossover nor mutation operators. Instead,
the new individuals are sampled starting from a probability
distribution estimated from the database containing only
selected individuals from the previous generation. Also,
while in other heuristics from evolutionary computation the
interrelations between the di8erent variables representing
the individuals are kept in mind implicitly (e.g. building
block hypothesis), in EDA the interrelations are expressed
explicitly through the joint probability distribution asso-
ciated with the individuals selected in each iteration. In
fact, the task of estimating the joint probability distribution
associated with the database of the selected individuals
from the previous generation constitutes the hardest work
to perform. In particular, the latter requires the adaptation
of methods to learn models from data that have been devel-
oped by researchers in the domain of probabilistic graphical
models.

Fig. 1 illustrates the EDA approach.

(1) Firstly, the ;rst population D0 of N individuals is gen-
erated. The generation of these N individuals is usually
done by assuming a uniform distribution on each vari-
able, and next each individual is evaluated.

(2) Secondly, a number Se (Se6N ) of individuals are se-
lected following a criterion (usually the ones with the
best ;tness value are selected).

(3) Thirdly, the n-dimensional probabilistic model that bet-
ter reKects the interdependencies between the n vari-
ables is induced.

(4) Finally, the new population constituted by the N new
individuals is obtained by carrying out the simulation of
the probability distribution learnt in the previous step.

Steps 2–4 are repeated until a stopping condition is veri-
;ed. Examples of stopping conditions are: achieving a ;xed
number of populations or a ;xed number of di8erent evalu-
ated individuals, uniformity in the generated population, and
the fact of not obtaining an individual with a better ;tness
value after a certain number of generations.

3.2. Notations

This section introduces the notation that will be used to
describe EDAs through the rest of the paper.

Let Xi; i = 1; : : : ; n, be a random variable. A possible
instantiation of Xi will be denoted by xi. p(Xi = xi) (or
simply p(xi)) will denote the probability for the variable Xi

over the point xi. Similarly, X=(X1; : : : ; Xn) will represent a
n-dimensional random variable, and x=(x1; : : : ; xn) one of its
possible instantiations. The probability of X will be denoted
p(X = x) (or simply p(x)). The conditional probability of
the variable Xi given the value xj of the variable Xj will
be written as p(Xi = xi|Xj = xj) (or simply as p(xi|xj)). D
will denote a data set, i.e. a set of N instantiations of the
variables (X1; : : : ; Xn).
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X 1     X 2     X 3     ...     X n eval

1
2
...

N

3      3       4      ...      5
2      5       1      ...      4
...     ...      ...      ...     ...

4      2       1     ...      2

32.78
33.45

...

37.26

Dl

X 1     X 2     X 3     ...     X n

1
2
...

Se

4      1       5      ...      3
2      3       1      ...      6
...     ...      ...      ...     ...

1      5       4     ...      2

Dl-1
Se

.   .   .   .   .   .   .   .

X 1     X 2     X 3     ...     X n eval

1
2
...

N

4      5       2      ...      3
5      3       1      ...      6
...     ...      ...      ...     ...

1      5       4     ...      2

13.25
32.45

...

34.12

D0

Selection of Se<N individuals

Induction of the
probability model

Sampling from
p l(x )

Selection of
Se<N  individuals

p l (x ) = p (x |Dl-1  )

X1 X2

X3

Xn-1

Xn

Se

Fig. 1. Illustration of the EDA approach in the optimization process.

Fig. 2 shows the pseudocode of EDA in combinatorial
optimization problems using the notations introduced, where
x=(x1; : : : ; xn) represents the individuals of n genes, and Dl

denotes the population ofN individuals in the lth generation.
Similarly, DSe

l represents the population of the selected Se
individuals from Dl. In EDA the main task is to estimate
p(x |DSe

l ), that is, the probability for one individual x to
be among the selected individuals. This probability must
be estimated in every generation. We will denote pl(x) =
p(x|DSe

l−1) the probability of the lth generation.
The most diEcult step for EDA is actually to estimate

satisfactorily the probability distribution pl(x), as the com-
putation of all the parameters needed to specify the under-
lying probability model becomes impractical. That is why
several approximations propose to factorize the probability
distribution according to a probability model.

3.3. Bayesian networks

This section introduces the probabilistic graphical model
paradigm [20–22] that has been used during the last
decade as a popular representation for encoding uncer-
tainty knowledge in expert systems [23]. Only probabilis-
tic graphical models whose structural part is a directed

acyclic graph will be considered, as these adapt properly
to EDAs.

Let X =(X1; : : : ; Xn) be a set of random variables, and let
xi be a value of Xi, the ith component of X . Then, a proba-
bilistic graphical model for X is a graphical factorization of
the joint generalized probability density function, �(X = x)
(or simply �(x)). The representation of this model is given
by two components: a structure and a set of local general-
ized probability densities.

With regard to the structure of the model, the structure
S for X is a directed acyclic graph (DAG) that describes a
set of conditional (in)dependencies [24] about the variables
on X . PaSi represents the set of parents—variables from
which an arrow is coming out in S—of the variable Xi in the
probabilistic graphical model whose structure is given by S.
The structure S for X assumes that Xi and {X1; : : : ; Xi−1} \
{PaSi } are independent given PaSi ; i = 2; : : : ; n. Therefore,
the factorization can be written as follows:

�(x) = �(x1; : : : ; xn) =
n∏
i=1

�(xi | paSi ): (3)

A representation of the models of the characteristics de-
scribed above assumes that the local generalized probability
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Fig. 2. Pseudocode for EDA approach.

densities depend on a ;nite set of parameters �S ∈�S , and
as a result the previous equation can be rewritten as follows:

�(x | �S) =
n∏
i=1

�(xi | paSi ; �i); (4)

where �S = (�1; : : : ; �n).
After having de;ned both components of the probabilistic

graphical model, and taking them into account, the model
itself will be represented by M = (S; �S).
In the particular case of every variable Xi ∈X being dis-

crete, the probabilistic graphical model is called Bayesian
network. If the variable Xi has ri possible values, x1i ; : : : ; x

ri
i ,

the local distribution, p(xi pa
j; S
i ; �i) is an unrestricted

discrete distribution:

p(xki | paj; Si ; �i) = �xki |pa
j
i
≡ �ijk (5)

where pa1; Si ; : : : ; paqi ; Si denotes the values of PaSi , and qi is
the number of di8erent possible instantiations of the parent
variables of Xi. Thus, qi =

∏
Xg∈Pai rg. The local parameters

are given by �i =((�ijk)
ri
k=1)

qi
j=1). In other words, the param-

eter �ijk represents the conditional probability of variable Xi

to take its kth value xki , knowing that the set of its parent
variables take their jth combination of values. We assume
that every �ijk is strictly greater than zero.

3.4. Existent EDA in combinatorial optimization

In this subsection some EDA approaches for combina-
torial optimization problems that can be found in the liter-
ature are commented. All the algorithms and methods are
classi;ed depending on the maximum number of dependen-
cies between variables that they accept (maximum number
of parents that a variable Xi can have in the probabilistic
graphical model). The reader can ;nd in [18] a more com-
plete review of this topic.

3.4.1. Without interdependencies
All the papers belonging to this category assume that the

n-dimensional joint probability distribution factorizes like
a product of n univariate and independent probability dis-
tributions. This assumption appears to be inexact from the
nature of any diEcult optimization problem, where interde-
pendencies between the variables will exist to some degree.

Nevertheless, this approximation can lead to a good enough
behavior in EDAs in some problems.

Several approaches that correspond to this category can be
found in the literature, such as bit-based simulated crossover
(BSC) [25], population-based incremental learning (PBIL)
[26], the compact genetic algorithm [27], and the univariate
marginal distribution algorithm (UMDA) [28]. Section 4.2.1
explains this algorithm in more detail.

3.4.2. Pairwise dependencies
In an attempt to express the simplest possible interdepen-

dencies between variables, all the papers in this category
propose that the joint probability distribution can be esti-
mated well and fast enough by only taking into account de-
pendencies between pairs of variables.

Algorithms in this category require therefore an additional
step that was not required in the previous class, which is
the construction of a structure that best represents the prob-
abilistic model. In other words, the parametric learning of
the previous category—where the structure of the model re-
mains ;xed—is extended to structural learning.

An example of this second category is the greedy algo-
rithm called MIMIC (mutual information maximization for
input clustering) proposed in Ref. [29]. Later on in Section
4.2.2 the algorithm MIMIC will be explained in more de-
tail. Other approaches in this group are the ones proposed
in Ref. [30] and the one called BMDA (bivariate marginal
distribution algorithm) [31].

3.4.3. Multiple interdependencies
Several other EDA approaches in the literature propose

the factorization of the joint probability distribution to be
done by statistics of order greater than two. As the number
of dependencies between variables is greater than in the pre-
vious categories, the complexity of the probabilistic struc-
ture as well as the task of ;nding the best structure that suits
the model is higher. Therefore, these approaches require a
more complex learning process.

The most important EDA approaches that can be found
in the literature within this category are as follows: FDA
(factorized distribution algorithm) introduced in Ref. [32],
EBNA (estimation of Bayesian networks algorithm) [33],
BOA (Bayesian optimization algorithm) [34], LFDA (learn-
ing factorized distribution algorithm) introduced in Ref. [35]
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that follows essentially the same approach as in EBNA, and
the extend compact genetic algorithm (EcGA) proposed in
Ref. [36].

4. Proposed EDA approaches for inexact graph
matching

4.1. Notation of EDAs applied to graph matching

We will de;ne more formally the inexact graph matching
problem and the way of facing it in an EDA approach.

LetGM=(VM ; EM ) be the model graph, andGD=(VD; ED)
the data graph to be matched. The individuals have n= |VD|
(that is, X = (X1; : : : ; X|VD|)) variables, each of them taking
|VM | possible values. We denote by x1i ; : : : ; x

|VM |
i the possible

values that the ith variable, Xi, can take.
In the same way, applying the notation of Section 3.3 for

this problem, we have that the number of possible values for
each variable i = 1; : : : ; |VD| is ri = |VM |. Therefore, for the
unrestricted discrete distribution �ijk the range of i, j and k
is as follows: i=1; : : : ; |VD|, k=1; : : : ; |VM |, and j=1; : : : ; qi,
where qi= |VM |npai and npai denotes the number of parents
of Xi.

4.2. Estimating the probability distribution

We propose three di8erent EDAs to be used in inexact
graph matching. Due to the fact that the di8erent behav-
iors of the algorithms are to a large extent due to the com-
plexity of the probabilistic structure that they have to build,
these algorithms can be seen therefore as representatives of
the three categories of EDA introduced in Section 3.4: (1)
UMDA [28] as an example of an EDA that considers no
interdependencies between the variables (i.e. the learning
is only parametrical, not structural); (2) MIMIC [29] as an
example of algorithms that consider pairwise dependencies
and (3) EBNA [33] as an example of the category of EDAs
where multiple interdependencies are allowed between the
variables, and for which the structural learning is even more
complex than in the previous algorithm.

4.2.1. UMDA—univariate marginal distribution
algorithm

This algorithm assumes all the variables to be indepen-
dent in order to estimate the probability distribution. More
formally, the UMDA approach can be written as

pl(x; �
l) =

n∏
i=1

pl(xi; �) (6)

where �l = {�lijk} is recalculated every generation by its

maximum likelihood estimation, i.e. �̂
l
ijk=Nl−1

ijk =N l−1
ij . Nl−1

ijk
is the number of cases in which the variable Xi takes the
value xki when its parents take their jth combination of values
for the l− 1th generation, and Nl−1

ij =
∑

k N
l−1
ijk .

4.2.2. MIMIC—mutual information maximization
for input clustering

The main idea in MIMIC [29] is to describe the true prob-
ability as closely as possible by using only one univariate
marginal probability and n− 1 pairwise conditional proba-
bility functions.

Given a permutation  = (i1; : : : ; in),

p (x) = p(xi1 |xi2 ) · p(xi2 |xi3 ) · : : : · p(xin−1 |xin) · p(xin);
(7)

where p(xin) and p(xij |xij+1), j=1; : : : ; n− 1, are estimated
by the marginal and conditional relative frequencies of the
correspondent variables within the subset of selected indi-
viduals DSe

l−1 in the lth generation. The goal for MIMIC is
to choose the appropriate permutation  ∗ such that p ∗(x)
minimizes the Kullback–Leibler information divergence be-
tween the true probability function, p(x), and the probabil-
ity functions, p (x).

This Kullback–Leibler information divergence can be ex-
pressed by means of the Shanon entropy of a probability
function, h(p(x)), in the following way:

DK−L(p(x); p (x)) =
∑
x

p(x) log
p(x)
p (x)

=−h(p(x)) + h(Xi1 |Xi2 ) + h(Xi2 |Xi3 )

+ · · ·+ h(Xin−1 |Xin) + h(Xin) (8)

where h(X |Y ) denotes the mean uncertainty in X given Y ,
that is h(X |Y )=∑

y h(X |Y =y)pY (y) and h(X |Y =y)=
−∑

x h(X = x|Y = y) logpX |Y (x|y) expresses the uncer-
tainty in X given that Y = y.
The latter equation can be rewritten considering that

DK−L(p(x); p (x)) does not depend on  . Therefore, the
task to accomplish is to ;nd the sequence  ∗ that minimizes
the expression

J (x) = h(Xi1 |Xi2 ) + · · ·+ h(Xin−1 |Xin) + h(Xin): (9)

In Ref. [29] the authors prove that it is possible to ;nd an
approximation of  ∗ avoiding the need to search over all n!
permutations by using a straightforward greedy algorithm.
The idea consists in selecting ;rstly Xin as the variable with
the smallest estimated entropy, and then in successive steps
to pick up the variable—from the set of variables not chosen
so far—whose average conditional entropy with respect to
the previous is the smallest.

4.2.3. EBNA—estimation of Bayesian network algorithm
EBNA is an EDA proposed in Ref. [33] that belongs to

the category of algorithms that take into account multiple in-
terdependencies between variables. This algorithm proposes
the construction of a probabilistic graphical model with no
restriction in the number of parents that variables can have.

EBNA is based on the penalized maximum likelihood
score. In this algorithm, given a database D with N cases,
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D = {x1; : : : ; xN}, a measure of the success of any struc-
ture S to describe the observed data D is proposed. This
measure is obtained by computing the maximum likelihood
estimate �̂ for the parameters � and the associated maxi-
mized log likelihood, logp(D|S; �̂). The main idea in EBNA
is to search for the structure that maximizes logp(D|S; �)
using an appropriate search strategy. This is done by scor-
ing each structure by means of its associated maximized
log likelihood. The theoretical foundations of this intuitively
appealing approach are based on the consistency and the
asymptotic eEciency properties of the maximum likelihood
estimates. Using the notations introduced in Section 3.3, we
obtain

logp(D | S; �)

=log
N∏

w=1

p(xw | S; �) = log
N∏

w=1

n∏
i=1

p(xw; i|paSi ; �i)

=
n∑
i=1

qi∑
j=1

ri∑
k=1

log(�ijk)
Nijk ; (10)

where Nijk denotes the number of cases in D in which the
variable Xi has the value xki and Pai is instantiated as its jth
value, and Nij =

∑ri
k=1 Nijk .

Knowing that the maximum likelihood estimate for �ijk
is given by �̂ijk = Nijk =Nij , the maximum of the previous
equation can be rewritten as

logp(D | S; �̂) =
n∑
i=1

qi∑
j=1

ri∑
k=1

Nijk log
Nijk

Nij
: (11)

For the case of complex models, the sampling error associ-
ated with the maximum likelihood estimator might turn out
to be too big to consider the maximum likelihood estimate
as a reliable value for the parameter—even for a large sam-
ple. A common response to this diEculty is to incorporate
some form of penalty depending on the complexity of the
model into the maximized likelihood. Several penalty func-
tions have been proposed. A general formula for a penalized
maximum likelihood score can be the following:
n∑
i=1

qi∑
j=1

ri∑
k=1

Nijk log
Nijk

Nij
− f(N )dim(S) (12)

where dim(S) is the dimension—number of param-
eters needed to specify the model—of the Bayesian
network with structure given by S. It is computed as
dim(S) =

∏n
i=1 qi(ri − 1). This penalization function

f(N ) is a non negative one. Some examples for f(N )
are the Akaike’s information criterion (AIC) [37] —where
f(N )=1—, and the Je8reys–Schwarz criterion, sometimes
called the Bayesian information criterion (BIC) [38]—
where f(N ) = 1

2 logN .
Following the latter criterion, the corresponding BIC

score—BIC(S; D)—for a Bayesian network structure S
constructed from a database D and containing N cases is as

follows:

BIC(S; D)

=
n∑
i=1

qi∑
j=1

ri∑
k=1

Nijk log
Nijk

Nij
− logN

2

n∑
i=1

(ri − 1)qi (13)

where Nijk and Nij and qi are de;ned as above.
On the other hand, the local probability distributions �ijk in

EBNA are calculated every generation using their expected
values as obtained in [39]:

E[�lijk | S; DSe
l−1] =

Nl−1
ijk + 1

Nl−1
ij + ri

: (14)

Unfortunately, to obtain the best model all possible struc-
tures must be searched through, which has been proved to
be NP-hard [40]. Even if promising results have been ob-
tained through global search techniques [41–43], their com-
putation cost makes them impractical for our problem. As
the aim is to ;nd a model as good as possible—even if not
the optimal—in a reasonable period of time, a simpler algo-
rithm is preferred. An example of the latter is the so-called
Algorithm B [44].

Local search strategies are another way of obtaining good
models. These start from a given structure, and every step the
addition or deletion of an arc that improves most the scoring
measure is performed. Local search strategies stop when
no modi;cation of the structure improves the scoring mea-
sure. The main drawback of local search strategies is their
heavy dependence on the initial structure. Nevertheless, as
Ref. [45] showed that local search strategies perform quite
well when the initial structure is reasonably good, the
model of the previous generation could be used as the initial-
break structure when the search is based on the assumption
that p(x |DSe

l ) will not di8er very much from p(x|DSe
l−1).

The initial model M0 in EBNA is formed by its structure
S0—an arc-less DAG— and the local probability distribu-
tions given by the n unidimensional marginal probabilities
p(Xi = xi)= 1

|VM | , i=1; : : : ; n—that is, M0 assigns the same
probability for all individuals. The model of the ;rst gen-
eration −M1− is learned using Algorithm B, while the rest
of the models are learnt by means of a local search strategy
that received the model of the previous generation as initial
structure.

4.3. Adapting the simulation scheme

The simulation of Bayesian networks can be regarded as
an alternative to exact propagation methods that were de-
veloped to reason with networks. This method creates a
database with the probabilistic relations between the di8er-
ent variables previous to other procedures. In our particular
case, the simulation of Bayesian networks is used merely as
a tool to generate new individuals for the next population
based on the structure learned previously.

The method used in this paper is the probabilistic logic
sampling (PLS) [46]. Following this method, the instantia-



2874 E. Bengoetxea et al. / Pattern Recognition 35 (2002) 2867–2880

tions are done one variable at a time in a forward way, that
is, a variable is not sampled until all its parents have already
been so. This requires previously to order all the variables
from parents to children —any ordering of the variables sat-
isfying such a property is known as ancestral ordering. We
will denote �= ( (1); : : : ;  (|VD|)) an ancestral order com-
patible with the structure to be simulated. The concept of
forward means that the variables are instantiated from par-
ents to children. Once the values of the parent variables of
a variable Xi − pai— have been assigned, the values for Xi

will be simulated using the distribution p(xi|pai).

4.3.1. Techniques to obtain correct individuals
Ensuring that the ;nal solution is a correct individual is

important, as it is necessary to return a solution that satis-
;es Eq. (1). For this, four techniques are introduced in this
section: two techniques that control directly the simulation
step, a technique that corrects automatically incorrect indi-
viduals, and a technique of changing the ;tness value in or-
der to penalize incorrect individuals. GAs need also to face
the same problem as EDAs when using the same represen-
tation, but from these four techniques only the last two can
be applied to GAs.

4.3.2. Controlling directly the simulation step
Up to now in most of the problems where EDAs have

been applied no constraints had to be taken into account.
This is the reason why very few articles about modifying
the simulation step for this purpose can be found [47]. Two
di8erent ways of modifying the simulation step are intro-
duced in this paper. It is important to note that altering the
probabilities at the simulation step, whichever the way, im-
plies that the learning of the algorithm is also denatured
somehow. It is therefore very important to make sure that
the manipulation is only performed to guide the generation
of potentially incorrect individuals towards correct ones.

4.3.2.1. Last time manipulation (LTM) This method
consists in altering the simulation step during the genera-
tion of the individual. This alteration is not performed until
the number of nodes of GM remaining to be matched and
the number of variables to be simulated in the individual
are equal. For instance, this could happen when three nodes
of GM have not been matched yet and the value of the last
three variables is to be calculated for an individual. In this
case, we will force the simulation step so that only these
three values could be sampled in the next variable.

In order to force the next variable of the individual to
take only one of the values not still appeared, the value of
the probabilities that are used to perform the simulation is
changed. In this way, the probability of all the values already
appeared in the individual is set to 0 and the probabilities
of the values not still appeared are normalized accordingly.
More formally, the procedure to generate an individual will
follow the ancestral ordering � = ( (1);  (2); : : : ;  (|VD|)),

that is, all the variables will be instantiated in the follow-
ing order: (X (1); X (2); : : : ; X (|VD|)). If we are instantiating
the mth variable (we are sampling X (m)), we ;rstly de-
;ne NNO(VM )m = {uiM ∈VM |Xj ∈Xj∈{ (1); : : : ;  (m −
1)}; Xj = i} the set that contains all the nodes uiM of GM not
yet matched in the individual in the previous m − 1 steps
(NNO stands for nodes not obtained), and secondly we con-
sider vnsm = |VD| − m (which is the number of variables
still to be simulated). According to Eq. (5), � (m)lk is the
probability of the variable X (m) to take the value k knowing
that its parents have already taken their lth possible com-
bination of values —as � follows an ancestral ordering, we
know that the parent variables of X (m) have already been
instantiated in one of the previous m − 1 steps. Therefore,
Pm
Indiv =

∑
k|ukM∈VM\NNO(VM )m � (m)lk will be the sum of all

the probabilities of variable Xm to take any value already
instantiated in one of the previously simulated variables.

Having these de;nitions, following the LTM method
the � (m)lk values will be modi;ed while the condition
|NNO(VM )m| = vnsm is satis;ed. When this is the case, the
probability of the variable X (m) to take the value k knowing
that its parents take their lth combination of values, �∗ (m)lk ,
will be modi;ed as follows:

�∗ (m)lk =




� (m)lk · 1
1− Pm

Indiv
if u (m)M ∈NNO(VM )

m;

0 otherwise:
(15)

Once the probabilities have been modi;ed, it is guaranteed
that the only values assigned to X (m) will be one of the
nodes of VM not still obtained (a node from NNO(VM )m),
as the probability to obtain any node from VM \NNO(VM )m

has been set to 0. This modi;cation of the � (m)lk has to
be repeated for the rest of the variables that remain to be
instantiated in the individual (X (m+1); : : : ; X (|VD|)), but for
the successive steps there are more values whose proba-
bilities have to be set to 0 and Pm

Indiv must be recomputed.
Following this method, when instantiating the last variable
X (|VD|), if v is the only value that is missing in the individ-
ual, then the probability to take this value v will have its
probability set to �∗ (|VD|)lv=1, and for the rest of the values
�∗ (|VD|)lw = 0 ∀w �= v. Therefore, the only value that can be
assigned to the variable X (|VD|) will be v.

With this technique the probabilities of the variables are
not modi;ed until the condition |NNO(VM )m|= vnsm is sat-
is;ed. Therefore, the simulation step will behave as in the
PLS simulation procedure, without any external manipula-
tion unless the latter condition is not satis;ed.

4.3.2.2. All time manipulation (ATM) This second tech-
nique is another way of manipulating the probabilities of
the values for each variable, but this time the manipulation
takes place from the beginning of the generation of the in-
dividual. The value of the probabilities remains unaltered
only after all the possible values of the variables have al-
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ready appeared in the individual (that is, when the condition
NNO(VM ) = ∅ is satis;ed).
For this, again the order of sampling the variables �

will be followed, instantiating them in the same order
(X (1); X (2); : : : ; X (|VD|)). At each step the probabilities of
a variable will be modi;ed before its instantiation. The
required de;nitions for the mth step (the sampling of the
variable X (m)) are as follows: let |VD| be the number of
variables of each individual, let also be NNO(VM )m, vnsm,
and � (m)lk as de;ned before. The latter probability will
be modi;ed with this method obtaining the new �∗ (m)lk as
follows:

�∗ (m)lk =




� (m)lk · K−PmIndiv
K·(1−PmIndiv)

if uiM ∈NNO(VM )
m and

|NNO(VM )
m| �= vnsm

� (m)lk
K if uiM �∈ NNO(VM )

m and

|NNO(VM )
m| �= vnsm

� (m)lk · 1
1−PmIndiv

if uiM ∈NNO(VM )
m and

|NNO(VM )
m|= vnsm

0 if uiM �∈ NNO(VM )
m and

|NNO(VM )
m|= vnsm;

(16)

where K = � N−vnsm

vnsm−|NNO(VM )m|�,
and Pm

Indiv =
∑

ukm∈VM\NNO(VM )m

� (m)lk :

The reason to modify the probabilities in this way is that,
at the beginning, the probability for all the values to appear
in at least a variable of the individual is higher (as vnsm is
usually bigger than |NNO(VM )m|), and therefore the method
does not have to modify the probabilities very much. Only
when |NNO(VM )m| starts to be very close to vnsm will the
e8ect of the manipulation in the probabilities be stronger,
meaning that there are less variables to instantiate and there-
fore the possibility for all the missing values to appear is
also smaller. Finally, when |NNO(VM )m| = vnsm, only the
values not appeared yet have to be selected. For this, the
probabilities of the values already appeared are set to 0, and
the other ones are modi;ed in the same way as in the pre-
vious method.

This second technique modi;es the probabilities nearly
from the beginning, giving more chance to the values not
already appeared, but it also takes into account the prob-
abilities learned by the Bayesian network in the learning
step. It does not modify the probabilities in any way when
|NNO(VM )m| = 0, that is, when all the values have already
appeared in the individual.

4.3.3. Correction of individuals after the simulation step
This technique is completely di8erent from the ones pro-

posed before, as it is not based on modifying the probabili-
ties generated by the algorithm at all: the idea is to correct

the individuals that do not contain an acceptable solution
to the problem after they have been completely generated.
In order to do this correction, once the individual has been
completely generated and has been identi;ed as not correct
(|NNO(VM )|VD||¿ 0), a variable which contains a value that
appears more than once in the individual is chosen randomly
and substituted by one of the missing values. This task is
performed |NNO(VM )|VD|| times, that is, until the individual
is correct.

The fact that no modi;cation is done at all in the learned
probabilities means that this method does not demerit the
learning process, and thus the learning process is respected
as when using PLS. As the generation of the individuals is
not modi;ed at all with respect to PLS, the onlymanipulation
occurs on the wrong individuals, and the algorithm can be
supposed to require less generations to converge to the ;nal
solution. Furthermore, this method can also be used with
other evolutionary computation techniques such as GAs.

4.3.4. Penalization of wrong individuals
Finally, this last method is not based on modi;cation of

the probabilities during the process of the generation of the
new individuals either. The idea is completely di8erent and
consists in applying a penalization on the ;tness value of
each individual.

For the experiments explained in Section 5, the pe-
nalization has been performed as follows: if f(x) is the
value obtained by the ;tness function for the individual
x = (x1; : : : ; x|VD|), and if |NNO(VM )|VD|| is the number of
nodes of GM not present in the individual, the modi;ed
;tness value, f∗(x) will be changed as follows:

f∗(x) =
f(x)

|NNO(VM )|VD||+ 1
: (17)

Another important di8erence with respect to the other meth-
ods to control the generation of individuals explained so far,
the penalization does allow the generation of incorrect indi-
viduals, and therefore these will still appear in the succes-
sive generations. This aspect has to be analyzed for every
problem, and so it is in this paper. Nevertheless, as these
incorrect individuals will be given a lower ;tness value it is
expected that their number will be reduced in future genera-
tions. It is therefore important to ensure that the penalization
applied to the problem is strong enough. On the other hand,
the existence of these individuals can be regarded as a way
to avoid local maxima and to increase the search space, ex-
pecting that, starting from them, ;ttest correct individuals
would be found.

5. Description of the experiment

An experiment was carried out in order to test the per-
formance of the three EDAs introduced in Section 4.2 for
inexact graph matching. As the main di8erence between
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these three algorithms is the number of dependencies be-
tween variables that they take into account, the size of the
graphs used inKuences on parameters such as the best solu-
tion obtained after a number of generations, the time to com-
pute the algorithm, and the evolution of the algorithm itself
through the search. This section describes the experiments
and the results obtained. The three EDA algorithms are also
compared to three broadly known GAs: basic (cGA) [15],
elitist (eGA) [48] and steady state (ssGA) [49].

Both graphs GM and GD were generated at random. GM

contains 30 nodes and 39 arcs, and GD 100 nodes and 247
arcs. The number of arcs chosen for all these graphs in our
experiments was selected knowing that the ;tness function
will not return a di8erent value depending on |EM | and |ED|.
Following the classi;cation of graphs between sparse and
dense introduced in [50], the number of arcs have been cho-
sen to be the median of the sparse graphs of that size. The
;tness function selected is the one shown in Eq. (2) in Sec-
tion 2.2.

The experiment was executed in a two processor Silicon
Graphics machine SGI-Origin200 under IRIX OS version
64-Release 6.5 with 500 Mb of RAM.

5.1. The need to obtain correct individuals

All the EDAs and GAs were executed 20 times for the
randomly generated graphs without applying any technique
to correct the wrong individuals, and this showed that
UMDA, MIMIC, EBNA, and the three GAs (cGA, eGA and
ssGA) did not contain practically any correct individuals in
the last generation (the 100th one). The mean proportion
of correct individuals are as follows from a population of
2000 individuals: UMDA, MIMIC and EBNA contained a
mean percentage of 9.84%, 8.89% and 9.66%, respectively,
whereas for cGA, eGA and ssGA are of 34.06%, 33.49% and
22.04%. From these results we can conclude that some kind
of correction or manipulation is required for the problem
of inexact graph matching under constraints for both EDAs
and GAs.

5.2. Combining correction methods and algorithms

Once proved the need to control the generation of the
individuals in each population, the four methods described in
Section 4.3.1 were combined with the three EDA algorithms.
In the case of the GAs, the last two methods described in the
same section were used for cGA eGA and ssGA, as the ones
based on the modi;cation of the probability in the simulation
step do not apply in GAs which do not perform such a step.

All the programs were designed to ;nish the search when
all the populations contained the same individuals or when
a maximum of 100 generations was reached. None of EDAs
;nished before the 100th generation. GAs were programmed
to generate the same number of individuals as with EDAs,
and therefore 100 generations were executed for all the al-
gorithms. The ssGA algorithm was also programmed in or-

der to generate the same number of individuals by allowing
the appropriated number of iterations. The initial population
for all the algorithms was generated using the same random
generation procedure based on a uniform distribution for all
the possible values.

In EDAs, the following parameters were used: a popula-
tion of 2000 individuals (N = 2000), from which the best
1000 are selected (Se = 1000) to estimate the probability,
and the elitist approach was selected (that is, always the
best individual is included for the next population and 1999
individuals are simulated). In GAs a population of 2000 in-
dividuals was also selected, with a mutation probability of
1:0=|VD| and a crossover probability of 1.

5.3. Experimental results

The results obtained are shown in Fig. 3 and Tables 1
and 2. Fig. 3 shows the mean evolution of 20 executions
for all the algorithms. The reader is reminded that in the
case of PLS only (when applying only the PLS simulation
method alone) and penalization (when applying the penal-
ization technique) methods do not ensure a population of
only correct individuals.

Tables 1 and 2 show the evaluation of the best individual
at the last generation, the number of generations to reach the
;nal solution, and the computation time. The null hypothesis
of the same distribution densities was also tested for each
of the di8erent algorithms and for each of the correction
methods to control the generation of new individuals. The
non-parametric tests of Kruskal–Wallis (for more than two
populations) andMann–Whitney (for two populations) were
used. This task was carried out with the statistical package
S.P.S.S. release 9.00. The results of applying the Kruskal–
Wallis test to the di8erent parameters (;tness value and
execution time) are also shown in both the tables. Similarly
the Kruskal–Wallis test was also applied to the correction
methods between EDAs alone, with a result of p=0:164 for
;tness values and p¡ 0:001 for the time, to the correction
between GAs alone, p¡ 0:001 was obtained for both ;tness
and time values, to the penalization method between EDAs
only, p=0:471 for the ;tness value and p¡ 0:001 for time,
and to penalization between GAs only, again p¡ 0:001 for
both ;tness and time values.

The computation time is given in CPU time of the process,
and therefore it is not dependent on the multiprogramming
level of the instant of the execution. This computation time is
presented as a measure to illustrate the di8erent computation
complexity of all the algorithms.

The penalization method itself showed to require a
stronger penalization when using graphs of sizes such as
the ones for our experiments. Therefore, the penalization
introduced in Section 4.3.4 should be stronger by reduc-
ing even more the ;tness value in case the condition
|NNO(VM )|VD||¿ 0 is satis;ed.

At the light of the results we can conclude that from
the three GAs used, ssGA appears clearly as the one that
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Fig. 3. Graphs showing the best individual at each generation of the searching process for the algorithms UMDA, MIMIC, EBNA, cGA,
eGA, and ssGA for the case of the 30 & 100 node graphs. Note the di8erent scales in axis y between the algorithms. (a) UMDA;
(b) MIMIC; (c) EBNA; (d) cGA; (e) eGA; (f) ssGA.

Table 1
Mean ;tness value results of 20 executions for the experiment

LTM ATM Correction Penalization Statistical signi;cance

UMDA 0.940502 0.874684 0.892806 0.825850 p¡ 0:001
MIMIC 0.936400 0.859538 0.898960 0.824063 p¡ 0:001
EBNA 0.936739 0.875429 0.905114 0.823836 p¡ 0:001
cGA — — 0.674490 0.687297 p = 0:004
eGA — — 0.706609 0.712994 p = 0:160
ssGA — — 0.932318 0.911038 p¡ 0:001
Statistical p = 0:773 p¡ 0:001 p¡ 0:001 p¡ 0:001
signi;cance



2878 E. Bengoetxea et al. / Pattern Recognition 35 (2002) 2867–2880

Table 2
Mean time to compute each of the 20 executions of the experiment (hh:mm:ss)

LTM ATM Correction Penalization Statistical
signi;cance

UMDA 00:11:50 00:12:56 00:11:59 00:13:05 p¡ 0:001
MIMIC 00:17:19 00:18:24 00:17:29 00:18:50 p¡ 0:001
EBNA 03:18:06 03:19:06 03:18:13 03:19:16 p¡ 0:001
cGA — — 00:09:07 00:09:08 p¡ 0:001
eGA — — 00:09:07 00:09:07 p = 1:000
ssGA — — 00:09:03 00:09:04 p = 0:317
Statistical p¡ 0:001 p¡ 0:001 p¡ 0:001 p¡ 0:001
signi;cance

obtains the best results. Furthermore, the computation time
to generate the ;nal solution is also less than the one required
by the other two GAs.

The best individuals obtained using the di8erent EDAs are
very similar: even if with some correction methods EBNA
obtains the best results, in some cases such as in LTM and
penalization UMDA performs better. As explained before,
EBNA is expected to return better results due to its abil-
ity to estimate more accurately the probability distribution
every generation, in spite of a higher computational cost.
Nevertheless, the small di8erences between EDAs do not
appear to be signi;cant for this example and no signi;cant
results are obtained. This e8ect can be explained by the fact
that both graphs have been created at random and that they
should not reKect any dependence between variables, and
as a result EBNA cannot ;nd more dependencies than other
simpler EDAs. On the other hand, when comparing EDAs
and GAs, it appears clearly that EDAs obtain better results
using any of the correction methods applied to the individ-
uals. It is important to note however that only ssGA obtains
nearly as good results as EDAs.

When penalization was used, the proportion of incorrect
individuals for this method for UMDA, MIMIC, EBNA,
cGA, eGA and ssGA were of 33.66%, 33.69%, 33.69%,
66.81%, 68.32% and 100%, respectively. A stronger penal-
ization could improve these values, but it would never en-
sure a 100% of correct individuals in the population. Note
that the higher percentage in GAs does not imply obtaining
better results.

6. Conclusions and further work

This paper introduces EDA algorithms as a new approach
to inexact graph matching. Its foundations are based on an
evolutionary computation paradigm that applies learning and
simulation of Bayesian networks as an important part of
the search process. Two adaptations of the PLS simulation
schema on Bayesian networks have been introduced for the
;rst time, allowing EDAs to take into account the constraints
of the problem.

In experiments with simulated graphs the robustness of
this approach has been proved against searches based on
GAs. It remains to the future to test the same algorithms for
graphs generated from real data (e.g. images). Additionally,
other ;tness functions should be tested.

Looking at the time required to execute algorithms that
make use of complex structures of Bayesian networks such
as EBNA (which required more than 3 h), it appears clearly
that in the future parallelism techniques should be applied
in order to obtain shorter execution times. Some parallel
algorithms have already been proposed for similar purposes
[51–53].
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