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a b s t r a c t

In order to segment elongated structures, we propose a new approach for integrating an approximate
parallelism constraint in deformable models. The proposed Parallel Double Snakes evolve simulta-
neously two contours, in order to minimize an energy functional which attracts these contours towards
high image gradients and enforces the approximate parallelism between them by controlling their
distance to a centerline under regularity constraints of this line. The proposed approach is applied on
retina images, for segmenting retinal layers in optical coherence tomography images of pathological
subjects (and it applies to healthy subjects as well). Results are evaluated by comparing with manual
segmentations for three retinal layers, and provide a similarity index above 0.87, sensitivity between
0.85 and 0.93, and specificity between 0.84 and 0.94. These results are within the range of intra and
inter-expert variability. Moreover, quantitative studies demonstrate that, in our application, our Parallel
Double Snake (PDS) model outperforms other parametric active contour algorithms integrating
parallelism information.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The use of a priori information is an interesting way to overcome
usual difficulties inherent to the segmentation task and to increase
both accuracy and robustness in segmentation methods, by restrict-
ing the space of solutions. In the case of the segmentation of linear
structures, a strong assumption can be made regarding the local
parallelism of their boundaries. For example, such situations occur for
the detection of roads or rivers in aerial images, or for the delineation
of blood vessels in medical imaging. Therefore, several segmentation
approaches integrating a parallelism constraint have been developed,
such as statistical [1] or fuzzy [2,3] models, Kalman filters [4] and
parametric active contours [5–8].

In this paper, we address the problem of the segmentation of
retinal layers imaged with Optical Coherence Tomography (OCT),
in the foveal area. All these structures are characterized by the
approximate parallelism of their boundaries. We propose an
original segmentation method, based on parametric active contour
models, with a new energy term modeling this approximate
parallelism, as an extension of a preliminary work in [9].

Active contours were originally introduced by Kass et al. [10] in
order to detect the boundary of an object in an image. A curve V(s),
parametrized by the curvilinear abscissa s, evolves dynamically,
from its initial position towards the edges of the object to be
extracted, under the action of two main types of forces: internal
forces that control the regularity of the curve and image forces
that express the attraction towards contours. The curve evolution
derives from the minimization of an energy functional, which is, in
the most general case, composed of three terms:

EðVÞ ¼ EIntðVÞþEImageðVÞþEExtðVÞ ð1Þ
The image energy (EImage) attracts the curve towards the features
to be detected, such as edges or lines. The internal energy (EInt)
imposes regularity properties. Eqs. (2) and (3) give common
examples of such energy terms, as proposed in [10]:

EImageðVÞ ¼
Z 1

0
PImageðVðsÞÞ ds¼ �

Z 1

0
∇IðVðsÞÞ
�� ��2 ds; ð2Þ

EIntðVÞ ¼
1
2

Z
αðsÞ ∂V ðs; tÞ

∂s

����
����
2

þβðsÞ ∂
2Vðs; tÞ
∂s2

����
����
2

ds; ð3Þ

where ∇I denotes the image gradient.
The external energy (EExt) can express additional contextual

information. Usual limitations of this model are its sensitivity to
the initialization and the difficulty to converge towards the correct
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solution in the presence of high levels of noise. Thus, the addition
of contextual or shape information can help to gain in robustness
and accuracy. In the following review, we focus on the modeling
and integration of a parallelism constraint.

Parallelism has been modeled in several works [5–8]. The Twin
Snakes algorithm [5] is an extension of the traditional snake, designed
for the detection of two parallel contours simultaneously, in high-
resolution images. Traditional snakes cannot detect accurately close
edges, and the curve often jumps from one to the other. To overcome
this problem, a mutual attraction force (spring force) is introduced,
which is expressed at point s as EextðV ðsÞÞ ¼ δðsÞðdðsÞ�d0Þ2, where δðsÞ
is a weighting factor, d(s) the actual distance between the point s and
its twin partner and d0 the desired distance. This latter parameter has
to be initialized beforehand, which constitutes a strong limitation of
this model. Moreover, this formulation assumes that the distance is
constant all along the structure (strict parallelism), which is generally
not the case in real images.

The Ribbon Snakes [6] are modeled by a centerline
VðsÞ ¼ ðxðsÞ; yðsÞÞ associated with a half width w(s), defining the
left and right borders of the ribbon, VL(s) and VR(s). It has been
initially designed for automatic road extraction from aerial images.
The energy functional follows the traditional formulation but
applies to vðsÞ ¼ ðxðsÞ; vðsÞ;wðsÞÞ. Moreover, the authors proposed
to modify the image energy as:

EImageðVÞ ¼
Z 1

0
∇IðVLðsÞÞ�∇IðVRðsÞÞð Þ � nðsÞ ds; ð4Þ

where n(s) is the normal to the centerline, oriented from VL to VR

for bright structures. The internal energy is defined as in Eq. (3).
No additional term is added with respect to the standard model,
so, no specific control of the parallelism constraint is possible.

The Lateral Coupled Snakes [8] are designed for searching for
worms in 2D images and segmenting them. This model is composed
of two contours VL and VR whose points are paired in a one to one
correspondence. The line linking the two points of each pair is
supposed to be normal to both curves VL and VR. To ensure the
parallelism between VL and VR, a shear energy Es is introduced, and
expressed as Es VLðsÞð Þ ¼ nc � nc �nð Þn

Jnc �n J and Es VRðsÞð Þ ¼ �Es VLðsÞð Þ, where n
is the normal unit vector and nc the unit vector pointing from VL to
VR. This model requires a strict parallelism between both curves. In
case the two sides are not perfectly parallel, the authors propose to
use the mean normal direction instead of the unit normal vector, but
this suggestion has not been implemented in the experiments.

Finally, the Ribbon of Twins method [7] takes back the ideas
developed in the Twin Snakes [5] and Sandwich Snake models
[11]. It consists of four curves which evolve simultaneously: two of
them inside the contour, the two others outside. The two outside
contours are connected by pull forces to the corresponding inside
contours (similarly to the sandwich model), while the inside
contours are connected by push forces to each other (twin snakes).
This model is robust to high levels of noise and can locate
boundaries under difficult conditions such as lack of gradient or
occlusion. However, it requires a precise initialization, the prior
knowledge of the ribbon width, and it is computationally more
expensive than other models.

Some approaches have also been proposed within the frame-
work of implicit deformable models. For instance in [12], the
segmentation of the cortex in magnetic resonance images of the
brain is addressed using two coupled level sets. The coupling is
embedded in the evolution functions of the level sets, so as to keep
the surfaces within the normal range of distances. In [13], two
level sets are coupled to force the two contours to have a distance
close to a given value d (the distance between the epicardium and
the endocardium in this work, for the segmentation of the left
ventricle). Another application to heart imaging was proposed in
[14], for the segmentation of the heart in real-time 3D

echocardiography, where again a level set approach is adopted.
Region information is modeled using statistical distributions, and
the coupling is implicit in the joint probability model. Additionally,
an incompressibility constraint is added, which can be interpreted
as another coupling, but over time, between successive frames of
the sequence.

In the domain of the segmentation of OCT images of the retina,
several algorithms including parallelism information have been
also proposed. Yazdanpanah [15] presented an active contour
model, derived from the Chan and Vese energy functional [16],
where the interfaces are approximated by circles. The parallelism
results from this shape constraint, which is neither suitable for the
analysis of the foveal area of the retina nor for less constrained
applications. Finally, extending the prior work published in [17,18],
Chen et al. [19] proposed a method for the global and simulta-
neous segmentation of surfaces, in 3D OCT images. A cost function
includes surface terms, region terms, and interactions in the form
of a penalty function depending on a threshold on a vertical
distance, requiring many parameters to be set.

All these methods make a strong assumption about the usual
distance (or usual volume) between the evolving surfaces, which is
assumed to be constant or, at least, evolves within a range of
admissible values. In this paper, we consider only parametric deform-
able models, with the objective to avoid to have pre-fixed threshold
values, while controlling the strength of the parallelism constraint.

In the context of clinical studies in ophthalmology, we need
extracting thin, elongated structures that can be visualized in
several types of retina images, such as retinal layers in OCT images.
These structures are difficult to segment since they present varying
thicknesses and are generally weakly contrasted. In addition, the
parallelism between the main sides is more or less strict, requiring
to model and parameterize explicitly this kind of information.
Moreover, in some cases, diseases can affect the width or the grey
levels of the searched structures, increasing dramatically their
variability. The limitations of the existing models, as described
above, make them difficult to use for solving these issues.

In this paper, we propose a new parametric active contour
model, that allows the simultaneous evolution of two curves,
under a parallelism constraint. The advantages of our method are
as follows:

(i) The distance between both contours has not to be known
accurately as prerequisite. On the contrary, it is adjusted during
the evolution process and can vary along the boundaries.

(ii) The parallelism constraint can be strengthened or relaxed
locally by changing a weighting parameter.

(iii) All these interesting features are obtained without increasing
the computational cost of the algorithm. Consequently, this
model is well adapted to a large range of applications,
including the ones mentioned above.

The novel Parallel Double Snake (PDS) method is presented in
Section 2, and discussed in Section 3. Its application for the
segmentation of retinal layers is presented in Section 4, along
with quantitative evaluation and comparison with other methods
integrating a parallelism constraint.

2. Parallel Double Snake model (PDS)

2.1. The model

The proposed Parallel Double Snake model is dedicated to the
automatic extraction of two almost approximate parallel curves. It
consists of a centerline, VðsÞ ¼ ðxðsÞ; yðsÞÞ, parametrized by s and a
local half-thickness b(s). It implicitly defines two approximate parallel

F. Rossant et al. / Pattern Recognition 48 (2015) 3857–38703858



curves, V1 and V2, representing the boundaries of the structure. Let us
denote by nðsÞ ¼ ðnxðsÞ;nyðsÞÞt the normal vector to the curve V(s)

(Fig. 1), with nxðsÞ ¼ � y0 ðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0 ðsÞ2 þy0 ðsÞ2

p and nyðsÞ ¼ x0 ðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0 ðsÞ2 þy0 ðsÞ2

p . Then,

points of the curves V1 and V2 are given by

V1ðsÞ ¼ VðsÞþbðsÞnðsÞ; V2ðsÞ ¼ VðsÞ�bðsÞnðsÞ: ð5Þ

Our aim is to find the centerline V(s) and the associated half-
thickness b(s), so that the curves V1 and V2 match the searched
image contours, which are assumed to be approximately parallel.
For this, we introduce a new energy functional, defined as

EðV ;V1;V2; bÞ ¼ EImageðV1ÞþEImageðV2ÞþEIntðVÞþRðV1;V2; bÞ ð6Þ

In this equation, EImage and EInt are defined as in the “classical”
snakes (Eqs. (2) and (3)), in order to attract the curves V1 and V2

towards the high image gradients while preserving the regularity
of V. In Eq. (3), the weighting factors αðsÞ and βðsÞ control the
tension and rigidity of the centerline, respectively. Thus, EInt
ensures the global regularity of the structure to be segmented
while EImage allows for a precise delineation of its boundaries. The
last term RðV1;V2; bÞ in Eq. (6) controls the smoothness of the
thickness variation and prevents it from sharp changes. It is thus
defined as a function of the derivative of b:

RðV1;V2; bÞ ¼
1
2

Z 1

0
φðsÞðb0ðsÞÞ2 ds ð7Þ

For strictly parallel curves, b(s) is constant and the related energy
is zero. The more general formulation where b depends on s allows
for thickness changes along the structures, which is required in
several applications (see Section 4). φðsÞ is a weighting parameter
which may vary depending on s, to locally strengthen or relax the
parallelism constraint.

Although the formalism used to define the curves is identical to
the one proposed in [6], the definition of the energy functional is
very different. First, the image energy terms, EImageðV1Þ and
EImageðV2Þ, are not explicitly related to the normal n(s) to the
centerline. On the contrary, the classical formulation is kept, which
makes the model simpler and more general (especially, no
assumption is made on the relative intensity of the structure to
be segmented). Moreover, the coupled term RðV1;V2; bÞ allows
evolving and controlling the half-thickness independently, accord-
ing to both image and regularization forces. Theses features make
the Parallel Double Snakes model very general and adaptable, as
discussed in Sections 3 and 4.4.2.

In the following, we assume that the two weighting para-
meters, αðsÞ and βðsÞ, are set to constant values. Let us denote by
PTot the potential so that EðV ;V1;V2; bÞ ¼

R 1
0 PTotðs;V ;V1;V2; bÞ ds.

The minima of EðV ;V1;V2; bÞ are found by solving two coupled
Euler–Lagrange equations. The first one expresses the minimiza-
tion of EðV ;V1;V2;bÞ with respect to the centerline V(s):
∂PTot
∂V � d

ds
∂PTot
∂V 0 þ d2

ds2
∂PTot

∂V ″ ¼ 0, or

�αV ″ðsÞþβV⁗ðsÞþ∇PImage V1 sð Þð Þþ∇PImage V2 sð Þð Þ ¼ 0 ð8Þ

Let us denote by Fðx; yÞ ¼ �∇PImageðx; yÞ the image force at (x,y). Eq.
(8) is very similar to the traditional formulation. The external force
applied on each point of the centerline is defined as the sum of the
forces applied on the corresponding border points V1ðsÞ and V2ðsÞ.
Thus, the curve moves globally towards the searched position.

The second Euler–Lagrange equation expresses the minimiza-
tion of EðV ;V1;V2;bÞ with respect to the half-thickness b(s):
∂PTot
∂b � d

ds
∂PTot
∂b0 ¼ 0, which leads to

nðsÞ; FðV2ðsÞÞ�FðV1ðsÞÞ
� �� φðsÞb″ðsÞþφ0ðsÞb0ðsÞ

h i
¼ 0 ð9Þ

Consequently, the local distance between V1 and V2 is driven by
the difference of the image forces applied respectively on V1 and
V2 and projected on the normal to the centerline V. Let us take a
simple example as illustration. Here we assume that φðsÞ is
constant and the centerline is at the correct position, but that
b(s) is locally too high or too low. The local forces FðV2ðsÞÞ and
FðV1ðsÞÞ point globally towards opposite directions (Fig. 2), and the
projection of their difference on the normal is negative or positive.
Thus, b(s) increases or decreases so that V1 and V2 move toward
the correct position. The last term in Eq. (9), related to b0ðsÞ and
b″ðsÞ, imposes the curves V1 and V2 to be regular. The chosen
weighting parameter controls the strength of the parallelism
constraint. A very high value leads to a strict parallelism with b
constant along the curves, while a very small value allows high
variations of b(s). Hence, our coupled energy term allows adjusting
locally the half-thickness under forces derived from image infor-
mation, while imposing a parallelism constraint whose strength
can be explicitly modulated according to contextual information.

To solve these equations, we classically introduce the time
variable t:

γ
∂Vðs; tÞ

∂t
�αV ″ðs; tÞþβV⁗ðs; tÞ�F V1ðs; tÞð Þ�F V2ðs; tÞð Þ ¼ 0 ð10Þ

γb
∂bðs; tÞ

∂t
þ nðsÞ; F V2ðs; tÞð Þ�F V1ðs; tÞð Þ� ��φ0ðsÞb0ðs; tÞ�φðsÞb″ðs; tÞ ¼ 0

ð11Þ
where γ and γb are viscosity parameters. Eqs. (10) and (11) are then
discretized by using classical numerical approximations of deriva-
tives: central difference in space and backward difference in time.
The minimization is realized by updating sequentially V(s), V1ðsÞ
and V2ðsÞ, b(s), V1ðsÞ and V2ðsÞ, and repeating these four steps until
convergence. The initialization of the curve V and the parameter
setting are specific for each type of application. They will be
detailed in Section 4.

2.2. Derived models

This general model can be modified in order to handle specific
applications where the central curve is fixed and known in
advance. In the case where there are still two moving curves V1

Fig. 1. Parametric representation of the Parallel Double Snakes.

Fig. 2. Variations of the half-thickness b(s) given by the second Euler–Lagrange Eq.
(9): (a) the obtained forces on each contour (green and blue arrows) and (b) the
variation of b(s). (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this paper.)
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and V2 evolving with respect to a fixed central curve V, the energy
functional reduces to EðV1;V2; bÞ ¼ EImageðV1ÞþEImageðV2ÞþRðV1;

V2; bÞ, and this energy is minimized only with respect to b,
according to Eq. (9).

Another interesting model is the one where only one curve V1

evolves with respect to a fixed one V. This time, the energy
functional is defined as EðV1; bÞ ¼ EImageðV1ÞþRðV ;V1; bÞ, and the
evolution of b, and consequently V1, is given by nðsÞ; FðV1ðsÞÞ

� �þ
φðsÞb″ðsÞþφ0ðsÞb0ðsÞ
h i

¼ 0.
The double snake model could be easily extended to the

simultaneous segmentation of any number of approximately
parallel curves. In our application, instead of such a global
approach, we prefer a sequential method, where retinal layers
that are easier to segment are processed first, while more difficult
ones are handled later in the sequence. This allows us to benefit
from previous steps to have a good initialization for the difficult
layers, and thus compensates for the noise, lack of contrast or low
signal to noise ratio.

3. Discussion

In this section, we propose to compare the performances of our
Parallel Double Snake (PDS) model with those of other parametric
active contour models: the classical model of Kass and the main
other approaches including a parallelism constraint, already intro-
duced and discussed in Section 1: the Twin Snakes [5], the Ribbon
of Twins (ROT) [7] and the Ribbon Snakes [6]. We have re-
implemented the algorithms according to the information pro-
vided by the authors, except the publicly available standard model.
The segmentation of the Hyper Reflective Complex in OCT images
of the retina (Fig. 9) is an interesting case study since it consists in
the detection of two almost parallel curves, with a slowly varying
distance between them (from 6 to 22 pixels). Moreover, although
the interfaces are relatively well contrasted, high gradients in the
choroid may disturb the movement of the curve towards the outer
interface (Fig. 9), justifying the introduction of structural
information.

Our evaluation is about the following criteria: the convergence
and the accuracy of the segmentation results, the sensitivity to
initialization, the number of parameters to set and the sensitivity
to parametrization.

Table 1 summarizes the energy functionals and the specific
parameters of each approach. All weighting parameters, in our
experiments, are fixed to a constant value over the entire curve.
The ones that are common to all algorithms are the weighting
parameters of the internal energy, α and β. The image forces are
derived from the Gradient Vector Flow [20], calculated with fixed
parameters (Gaussian filter with σ¼2, regularization parameter
μ¼0.1, 5 iterations), except in the Ribbon Snakes since image
forces derive from a specific image potential in this case. Note that
the image forces are always weighted by 1. Also, we fixed the
viscosity parameter γ¼10 in the evolution equations ([10, Eq.
(10)], which, in this study case, ensures a correct convergence
speed without any oscillations around the local minimum reached
by the algorithm.

3.1. Comparison with the classical active contour model

We first studied the behavior of the standard snake according to
the parameter settings, given two different initializations, one mostly
inside the structure and the other one outside (Fig. 3). We found no
parametrization ðα;βÞ leading to a correct segmentation for both
initializations. Moreover, the outer border (in blue) of the HRC is
never correctly detected all along it, when the lower curve is

initialized out of the structure, inside the choroid (second column
in Fig. 3). On the opposite, the Parallel Double Snakes converge
perfectly towards the interfaces, for a large range of initializations
and parametrizations, as it will be shown in Section 3.3.

In order to illustrate the contribution of the parallelism energy
term, we applied the standard active contour and our method with
the same initialization and the same common parameters (Fig. 3)
(α¼10, β¼0, γ¼10). Here, a maximal number of iterations
nbiter ¼ 500 ensures convergence. The results in Fig. 3 show that
in the case of an initialization inside the searched area (a), the
standard active contour algorithm is unable to find the right
contour. This under-segmentation is clearly visible near the foveal
area (indicated by a red line). Our method overcomes this problem
thanks to the new energy term modeling the approximate paral-
lelism. Furthermore, with an initialization outside the HRC area
(b), our algorithm manages to avoid local extrema of the gradient
and converges towards the right position. In the case of standard
active contours, we obtain an over-segmentation of the HRC area
(see in particular the periphery of the HRC).

These examples illustrate how the parallelism information
embedded in the PDS model enables the contours to avoid being
trapped in local maxima, leading to the robustness and the
accuracy mentioned above.

3.2. Comparison with other parametric models with parallelism
information

Keeping α¼10, β¼0 and γ¼10, we applied then the Twin Snakes
[5] with different values for d0, ranging from 6 pixels, the minimal
thickness of the HRC at the periphery, to 22 pixels, the maximal
thickness at the foveola. The initialization outside the HRC was used
(Fig. 3(b)). Three values were tested for the weighting of the
parallelism information. No correct segmentation was obtained,
whatever the parameter settings. Fig. 4 illustrates the behavior of
the model. For δ¼0.5 (Fig. 4(a)), the parallelism constraint is not
strong enough and the lower curve (in blue) is trapped by the local
high gradients in the choroid. Increasing the parallelism weight, with
δ¼1, is not a solution, as illustrated in Fig. 4(c) and (d), since it is not
possible to set a value for d0 that is adequate all along the HRC: the
segmentation is correct only on the part of the HRC whose thickness is
close to d0. The value δ¼2 imposes a strict parallelism between both
curves, which is obviously not suitable (Fig. 4(b)). These experiments
show that the Twin Snakes model is valuable for the extraction of
curves featured by a strong parallelism, and whose distance is
accurately known beforehand. It is not adapted to the extraction of
elongated features with variable thickness.

The Ribbon of Twins (ROT) model provides a solution to this
limitation of the Twin Snakes, by adding two other curves so that
each searched interface is sandwiched between two curves. The
main drawbacks of this approach are its additional complexity (4
curves instead of 2) and the difficulty to automatically initialize
the curves in a real application context. We started from the
initialization illustrated in Fig. 5(a), with two curves inside the
HRC and 2 curves outside, as required. We performed exhaustive
parametrization tests with d0Af6;7;…;21;22g and δAf0:5;1;2g,
as previously. For δ¼ 0:5 the algorithm does not converge (the
curves of the sandwich model do not meet fully) or the segmenta-
tion results are as bad as the ones obtained with the Twin Snakes
alone. For δ¼1, convergence is achieved for d0Z12, but the
segmentation is inaccurate at the right side of the HRC (Fig. 5
(b)). δ¼2 imposes again too strong a parallelism, whatever the
choice for d0. Extending the parametrization proposed in [7], we
defined then two different weighting values for the twin model
ðδtwin ¼ 1Þ and the sandwich model ðδsandÞ, so as to accelerate the
movement of the sandwich curves toward each other. Good
segmentation results were then obtained for δtwin ¼ 1, δsand ¼ 3
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and d0 ¼ 8. However, they were slightly less accurate at the right
hand extremity of the HRC (Fig. 5(c)), compared to the Parallel
Double Snake result (Fig. 3(b)).

Finally the Ribbon Snakes were also evaluated, taking back the
initialization of Fig. 3(b). The main feature of this model is that the
half thickness parameter is constrained by the same “tension” and
“rigidity” forces as the two coordinate components. Thus, no
additional weighting parameter has to be set. However, the
algorithm does not converge to the solution (Fig. 6(a)), whatever
the parameter setting (α, β, γ), probably because the central curve
and the half thickness have different properties and cannot be
processed in the same way in a general case. Without changing the
definition of the energy functional, we set a different viscosity
parameter γwaγ in the evolution equation of the half thickness

w(s). We found the best results for γw ¼ 1 (Fig. 6(b)). A similar
result is obtained starting from an initialization inside the HRC.

3.3. Parametrization

The previous experiments show that the ROT model, the
Ribbon Snakes and the PDS model can all segment the HRC, with
a slightly more accurate result however for the Parallel Double
Snakes. Moreover, the last two models can converge towards the
solution from a large range of initializations, contrary to the
Ribbon of Twins which requires an accurate initialization. We
now study the robustness of the algorithms with respect to
parametrization, which is important in our application, given the
variability of the structures to be segmented. In the following

Table 1
Energy functional and specific parameters of the studied active contour models. The notation ðÞn refers to a specific parametrization used in our experiments, as a variant of
the one proposed by the authors.

Method Model Specific parameters

Standard [10] v¼ ðx; yÞ
EðvÞ ¼ EInt ðvÞþEImageðvÞ
EInt ðvÞ ¼

R 1
0 α v0ðsÞ

�� ��2þβ v″ðsÞ
�� ��2ds; EImageðVÞ ¼

R 1
0 PðvðsÞÞ ds

Twin snakes [5] vi ¼ ðxi ; yiÞ, i¼ f1;2g δ, d0

ET ðviÞ ¼ EInt ðviÞþEImageðviÞþ
R 1
0 δ v1ðsÞ�v2ðsÞ

�� ���d0
� �2 ds

Ribbon of twins (ROT) [7] vi ¼ ðxi ; yiÞ, iAf�2; �1;1;2g δtwin ¼ δsand ¼ δ; d0ð Þ or δtwin; δsand ;d0ð Þ
internal curves inside the structure: iAf�1;1g external curves outside the structure:
iAf�2;2g
ERðvi ¼ �1;þ1Þ ¼ EInt ðviÞþEImageðviÞþEtwin with Etwin ¼

R 1
0 δtwin v�1ðsÞ�v1ðsÞ

�� ���d0
� �2 ds

ERðvi ¼ 72Þ ¼ EInt ðviÞþEImageðviÞþEsand with Esand ¼
R 1
0 δsand v71ðsÞ�v72ðsÞ

�� ��� �2 ds

Ribbon snakes [6] v¼ ðx; y;wÞ ðγwÞn: viscosity parameter applied
specifically on wEðvÞ ¼ EInt ðvÞþEImageðvÞ with EImageðvÞ ¼

R 1
0 7ð∇Iðv2ðsÞÞ�∇Iðv1ðsÞÞÞ � nðsÞ ds

(sign depending on the relative mean intensity of the structure with respect to the background)
where v1ðsÞ and v2ðsÞ are defined by vc ¼ ðx; yÞ and w: v1ðsÞ ¼ vcðsÞþwðsÞnðsÞ, v2ðsÞ ¼ vcðsÞ�wðsÞnðsÞ

PDS v¼ ðx; yÞ, b φ, γb
Eðv; bÞ ¼ EInt ðvÞþEImageðv1ÞþEImageðv2ÞþRðv1 ; v2 ; bÞ
RðV1;V2; bÞ ¼

R 1
0 φðb0ðsÞÞ2 ds

where v1ðsÞ ¼ vðsÞþbðsÞnðsÞ and v2ðsÞ ¼ vðsÞ�bðsÞnðsÞ

Fig. 3. Sensitivity analysis of the classical active contours and our model with respect to the initialization, inside the HRC (a) or mostly outside (b). The proposed method
provides stable results. (Figures are best seen in color on the web version of the paper.)
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experiments, we kept α¼10, β¼0, γ¼10, unless otherwise stated,
and made the specific parameters vary.

The ROT model requires 3 additional parameters, δtwin, δsand
and d0. Starting from the setting that visually led to the best result
(δtwin ¼ 1, δsand ¼ 3, d0 ¼ 8), we found that the segmentation is
stable for ðδsand;d0ÞA ½2;4� � ½8;10�.

For the Ribbon Snakes model, the specific parameter is the
viscosity γw related to the half thickness w(s). It has to be adjusted
with respect to the viscosity γ applied to the coordinates, as stated
before. We found that the model converges correctly for γZ5 and
γwr γ

5.
Finally, we studied the behavior of the Parallel Double Snakes

with respect to the parametrization of the parallel constraint, φ, γb.
We varied the parameter φ (but still constant along the structure)
while keeping the other parameter values fixed. The results are
illustrated in Fig. 7. With a large value of φ (here φ¼700) we avoid
under-segmentation or over-segmentation that are observed with
a low value (φ¼100). Setting φ to a higher value will make the
energy term related to parallelism very high as compared to the
rest of the energy terms, thus creating a strict parallelism (see the
example with φ¼5000). We calculated the distance between the
manual segmentation and the automatic segmentation according
to the parameter φ. Our experiments showed that the results are
very stable around the illustrated value φ¼700, in the interval
between 400 and 1200, which is a remarkable property (see
Fig. 8). Moreover, this result is also stable for a large range of γb

values chosen in an interval including γ. For example, for γ¼10,
every value γbZ2 leads to a very good segmentation.

4. Segmentation of retinal layers in OCT images acquired on
pathological subjects

Optical coherence tomography (OCT) is a non-invasive imaging
technology, based on the principle of the Michelson interferom-
eter, which allows the observation of cross sections of biological
tissues. It has revolutionized in the last two decades the practice of
ophthalmology, since it enables clinicians to visualize the retinal
layers with a high resolution. A typical retinal section, obtained by
the OCT imaging, is displayed in Fig. 9. The retina is composed of
superimposed neuronal layers that transform the light to nerve
impulses, transmitted to the brain via the optic nerve. Considering
the spherical geometry of the eye, the layers close to the vitreous
humor are generally called inner layers, whereas the others,
towards the choroids, are called outer layers. In OCT images, the
retinal layers appear as strips of different grey-levels due to the
variability of their backscattering properties. The image resolution
depends on the technology used. In our experiments, we pro-
cessed images acquired with the FD-OCT of Heidelberg [21],
having the following characteristics: horizontal resolution: 6 μm
=pixel; vertical resolution: 4 μm=pixel, image size: 496�
1537 pixels, and section width: 9 mm.

Fig. 4. Results with the twin snakes, for different parameter settings. (a) δ¼0.5, d0 ¼ 12. (b) δ¼2, d0 ¼ 12. (c) δ¼1, d0 ¼ 8. (d) δ¼1, d0 ¼ 20. (Figures are best seen in color on
the web version of the paper.)

Fig. 5. Results with the ROT model, for different parameter settings. (a) Initialization. (b) δtwin ¼ δsand ¼ 1, d0 ¼ 12. (c) δtwin ¼ 1, δsand ¼ 3, d0 ¼ 8.

Fig. 6. Results with the Ribbon Snakes, for different parameter settings. (a) γw ¼ γ ¼ 10. (b) γw ¼ 1, γ¼10.
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In our previous work [4], we developed an automatic algorithm
for the segmentation of OCT images acquired on healthy subjects, in
the foveal and perifoveal area of the retina. This previous approach

was very accurate and robust given the image quality and the normal
anatomical variability. However it could not be directly applied on
images of patients affected by retinitis pigmentosa (RP), for several

Fig. 7. Comparison of the results obtained with the Parallel Double Snakes, from two initializations, and for different values of φ and γb.

Fig. 8. (a) Evolution of the distance (in pixels) between the manual and the automatic segmentation according to the parameter φ; (b) zoom in the interval 0rφr2000.

Fig. 9. Cross-sectional OCT image of the retina and retinal layers definition.
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reasons linked both to morphological changes and contrast loss.
Indeed, this pathology tends to destroy the photoreceptors from the
periphery towards the center of the fovea, leading to a fusion of the
inner and outer retinal layers. The extent of the fusion is correlated to
the disease progress (red circles in Fig. 10). As a consequence, the
inner nuclear layer (INL) is no more well defined, especially at its
extremities where it tends to join the inner limit of the hyper-
reflective complex (HRC) [22]. We can also observe a thinning of the
OPL layer and of the HRC at the periphery. For the most advanced
stages of the RP, a thickening of the HRC occurs as well. Besides, from
an image quality point of view, all these morphological changes result
in a loss of contrast, especially on the outer border of the INL layer, as
underlined previously. Moreover, the contrast is also low on the outer
side of the HRC layer and a classical snake is disturbed by the
artefacts inside the choroid (Fig. 10).

Thus, the adaptation of the segmentation approach to these
pathological cases is not only a question of parameter tuning: new
prior information has to be modeled and integrated, in order to
compensate for these additional difficulties. The most interesting
knowledge we have at our disposal is the approximate parallelism
of the interfaces. This kind of structural information remains stable
and relevant, whatever the progress stage of the disease. Unfortu-
nately the Kalman filter, applied on healthy subjects [4], fails in RP
cases, where the destruction of photoreceptors induces a loss of
contrast and parallelism between the inner and outer retinal
layers. In addition, this method exploits only local information of
the image and thus lacks robustness. Therefore the proposed
method, with approximate parallelism constraint, is appealing.

We now present the segmentation of eight layers in OCT retinal
images for RP subjects. The global flowchart is the same as in [4]
(Fig. 11). Here we detail the only segmentation steps that are
substantially new with respect to the method in [4], in particular
involving the Parallel Double Snakes model.

The overall methodology is as follows:

(i) Image denoising, based on an anisotropic filter [23], in order
to reduce the image noise while preserving the edges;

(ii) Segmentation of the most contrasted layers: Inner Limiting
Membrane (ILM) [4] and hyper-reflective complex (HRC)
(Section 4.1). The retinal area is thus delimited and regions
of interest within this area can then be further analyzed;

(iii) Segmentation of the photoreceptors, around the inner HRC
interface (Section 4.2);

(iv) Alignment with respect to the outer HRC interface [4];

(v) Segmentation of the inner layer interfaces, RNFL [4], ONL, INL
(Section 4.3). The regions of interest are each time deduced from
the previous segmentation results. As the interfaces may have a
very low contrast, region-based approaches were preferred (k-
means [24,25] with a Markovian regularization [26,27], under a
Gaussian noise model assumption). The model parameters were
set experimentally on some sample images. Then the same values
were used for all images of the database.

The coordinates are defined by the origin at the top-left corner,
the vertical x-axis and the horizontal y-axis.

4.1. Detection of the hyper-reflective complex (HRC)

A line inside the HRC is first determined [4] so as to roughly
locate the median position of the HRC. The initialization of the
inner side of the HRC is based on two classifications (k-means with
Markovian regularization [24–27]), with respectively 3 (Fig. 12(a))
and 4 (Fig. 12(b)) classes. Indeed the case k¼3 provides generally a
good segmentation of the HRC around the foveola, while the case
k¼4 is more consistent in periphery. The inner boundary of the
HRC is estimated from the regions of highest intensity crossed by
the median line. We first extract candidate points from the two
images (in dark blue in Fig. 12(a) and (b)) and apply the following
fusion rule at every y-coordinate: at the center, both classifications
are considered and the candidate point with minimal x-coordinate
is retained, otherwise, the candidate point given by the classifica-
tion with k¼4 is kept. The standard snake algorithm [10,20] is
then applied in order to refine this first result. We denote by lin the
inner HRC border so obtained. As the HRC is well contrasted on its
inner side, especially on the area of clinical interest, which is 5 mm
wide and centered on the foveola, the final result is reliable and
accurate. So, it will serve as a reference for the initialization of the

Fig. 10. Illustration of the various stages of the retinitis pigmentosa evolution: (a) early stage (at the beginning); (b) intermediate stage and (c) advanced stage. The regions
indicated by red circles illustrate the limits between atrophic and non-atrophic retina. (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)

Fig. 11. Flowchart of the proposed segmentation method. The main steps involving
the Parallel Double Snakes model are the HRC, photoreceptor and inner layer
segmentations.
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HRC outer border. We refine the estimation of the foveola position,
ðxF ; yF Þ, by minimizing the distance between the ILM and lin.

The outer HRC boundary is much noisier, excepted near the
foveola. Therefore, the initialization is performed from the estimation
of the HRC thickness ðb0ðyF ÞÞ at the foveola (using the classification
image with k¼3), the knowledge of the inner border lin(y) and the
gradient magnitude image Igðx; yÞ. The local HRC thickness b0ðyÞ is
estimated from the center to the periphery by piecewise maximizing
the mean gradient magnitude on a sliding window (Fig. 12(c)). We
initialize the central curve of the Parallel Double Snake, V, by
translating lin by b0=2. The outer border of the HRC is thus accurately
located (Fig. 12(d)). The method takes advantage of the good contrast
along the inner side to determine the outer side which is much
noisier. A very good robustness with respect to initialization inaccu-
racy has been observed on the entire database (see also the experi-
mental results in Sections 3.3 and 4.4).

4.2. Segmentation of the photoreceptor segments (IS, OS)

The segmentation method consists of the following two steps:
detecting the photoreceptors and segmenting the ONL/IS and OS/
RPE interfaces.

Knowing that the thickness of the HRC layer increases from the
image boundaries towards the center, we are able to detect two points
Ph1 and Ph2 of thickness variation in this region (Fig. 13). The point Ph1
corresponds to the first detected point, from left to right, at which the
HRC thickness increases by more than 10%, and similarly, from right to
left, for the point Ph2. We approximate the OS/RPE interface in the
center of the foveola region by connecting the two points Ph1 and Ph2.
From an anatomical point of view, the region located between these
two points is the one where the photoreceptors are not yet destroyed.
This is therefore the clinically relevant region for further analysis. The
clivus is defined by the two highest points of the ILM found on both
sides of the foveola ((xCl, yCl) and (xCr, yCr), Fig. 13). The inner interface
of the RPEþChCap (OS/RPE) is then estimated by extrapolating
between the points Ph1 and Ph2. The next step consists in detecting
the ONL/IS and OS/RPE boundaries between Ph1 and Ph2 points by
applying the Parallel Double Snakes. We initialize the central curve,
V(s), by the inner boundary of the HRC layer, and b(s) by the distance
between this boundary and the approximation of the OS/RPE interface
(Fig. 14(a)). This method provides simultaneously good estimations of
both ONL/IS and OS/RPE interfaces. They are then refined separately by

applying the classical snake (ONL/IS) and the PDS algorithm (OS/RPE),
the two side-curves V1 and V2 being this time respectively the OS/RPE
and the HRC outer interface (Fig. 14(b)).

4.3. Inner nuclear layer segmentation (INL)

In order to locate the inner border of the INL layer (GCLþ IPL/INL),
we apply a classification followed by a Markovian regularization, with
K¼3. The detection of the outer side of the INL layer (INL/OPL), which
is less contrasted, is performed in the same way, on a more restricted
area deduced from the inner border, with K¼2. Both interfaces are
then refined by applying the Parallel Double Snakes. Fig. 15 shows the
initialization (a) and the final interfaces (b).

Final segmentation examples are presented in Fig. 16. The results
obtained on the database confirm that the proposed approach detects
precisely the various interfaces in the different stages of the RP evolution.

4.4. Experiments and results

In this section we detail the measures performed to assess the
accuracy of our segmentation approach and the contribution of our
PDS model compared to other parametric snakes [10,5–7]. The
database includes 95 images, selected by the medical doctors,
acquired from 30 patients suffering from RP. 10% of the images show
other abnormalities, such as cystic edema, thick fovea with incom-
plete cleavage of the inner layers over the fovea, drusen-like deposits,
epiretinal membrane, increasing further the image variability and the
complexity of the segmentation task. For each eye, the medical
experts have selected one or two 2D images (horizontal and/or
vertical slices), according to their clinical relevance. This study was
conducted in accordance with the French ethics regulation and all
subjects gave informed consent to participate. The segmentation
method was applied to all the images, and allowed determining
97.6% of all layer interfaces in the foveal area (5 mmwide around the
foveola), which is the region of medical interest. These results were
visually validated by an expert, whose experience in the field of OCT
image interpretation exceeds 12 years.

The evaluation protocol is composed of three steps, as in [4]:

(1) direct evaluation of the precision of the interface locations by
calculating the mean square error (MSE) between two differ-
ent segmentations;

Fig. 12. HRC localization for RP subjects: (a) and (b) regularized classification results with respectively k¼3 and k¼4, with, in dark blue, the estimated inner HRC boundary;
the vertical blue lines indicate the central and the peripheral zones involved in the fusion rule; (c) initialization of the Parallel Double Snakes (V1 ¼ lin in red and V2 ¼ linþb0
in blue); (e) final HRC outer boundary segmentation, obtained with the PDS method. (For interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)
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(2) direct evaluation of regions (i.e. retinal layers) by calculating
similarity (S), specificity (SPEC) and sensitivity (SENS) indices
between two different segmentations;

(3) evaluation of derived measures of thickness and horizontal
distances of the main retinal layers, to provide data for
physicians in order to study the morphology of the RP
pathology.

To quantitatively evaluate our method, we compared the
automatic segmentations to manual segmentations. Three physi-
cians segmented fifteen images acquired on RP subjects. Five of
them were segmented twice by every physician at two different

times, the procedure being separated by several weeks in order to
eliminate the memory effect between both segmentations. The
images were selected from the entire image database in order to
ensure a good representativeness in terms of image quality, noise
levels and disease progress.

4.4.1. Evaluation of the interface detection and localization
For each interface we calculated the mean square error (MSE)

between two different segmentations. Let us denote by Segði;jÞðyÞ
the abscissa of the interface i at the ordinate y for the segmenta-
tion performed by the physician j. The MSE measured between the

Fig. 13. Detection of Ph1 and Ph2 on the aligned image for a RP subject, and clivus definition.

Fig. 14. Localization of the OS/RPEþChCap and ONL/IS interfaces: (a) initialization of the Parallel Double Snakes; (b) final result obtained for RP subjects.

Fig. 15. Segmentation of the INL layer: (a) initialization of the Parallel Double Snakes, from the classification results; (b) final interfaces.

Fig. 16. Final segmentation in various stages (a and b) of Retinitis Pigmentosa evolution.
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segmentations provided by the two physicians Phys1 and Phys2,
expressed in pixels, is calculated by

MSEðSegði;Phys1Þ; Segði;Phys2ÞÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPyR
y ¼ yL

min
ym

d2ððSegði;Phys1ÞðyÞ; yÞ; ðSegði;Phys2ÞðymÞ; ymÞÞ
yR�yLþ1

vuut ð12Þ

where d is the Euclidean distance. In order to estimate the intra-
physician variability, we calculated the mean square error between
manual segmentations of the same image, made by the same
physician. This estimation helps us to choose the physician who
will be our reference for the comparison. As shown in Table 2, the
physician Phys1 has the lowest intra-physician variability. Based on
these results, we chose this physician, who is also the most
experienced one, as a reference because he performed the most
stable segmentations. The maximum value of the mean square
error is 1.53 pixels and its standard deviation does not exceed
1 pixel. Note that for other physicians, the mean square error in
some cases exceeds 2 pixels.

After choosing our reference physician PhysRef, we calculated
the inter-physician variability and the MSE between the automatic
segmentation and the segmentation performed by the reference
physician. The results are summarized in Table 3. This table shows
a significant variability between physicians especially for the INL/
OPL interface and the outer HRC border. This is mainly due to their
poor definition and the presence of noise. The mean square error
between the automatic segmentation and the reference is lower
than the inter-physician and intra-physician variability for three
interfaces out of six, and similar for the others.

4.4.2. Comparison with other algorithms
These experiments aim at comparing quantitatively the perfor-

mances of the PDS model against the standard snakes [10] and
three other models integrating parallelism information: Twin
Snakes [5], Ribbon Snakes [6], Ribbon of Twins (ROT) [7]. In order
to do that, we replaced the PDS algorithm by each of these
algorithms, wherever it is applied in the whole segmentation
program. The parameters of the introduced snakes were set
experimentally and independently, so as to optimize the number
of correct segmentations in each case. The other parts of the
method remain unchanged, notably the automatic initialization
steps. We also developed a graphical interface that displays the

segmented images one by one and enabled the most experienced
doctor to evaluate every interface and annotate it as correct or
uncorrect (considering still the foveal area). Note that the doctor
did not know which of the five approaches had been used for the
segmentation of the presented image. Table 4 summarizes the
evaluation results thus obtained on the whole database for the
hyper-reflective complex (HRC) and the Inner Nuclear Layer (INL).

These experiments show that the classical model cannot
delineate the external interface of the HRC, while the introduction
of parallel information improves noticeably the performances. The
PDS algorithm leads to the best results with almost 96% of correct
segmentations. The rates vary from 74% to 79% for the other
models. For the Twin Snakes and ROT algorithms, the errors occur
especially outside the inter-clivus area, which results from the
compromise that has to be made on the parameter settings:
increasing the weight of the parallelism constraint improves the
results outside the inter-clivus area but damages the performances
inside. The typical distance between the two curves is also a
parameter that is difficult to set, since this distance may vary
considerably, up to a factor 3. For the Ribbon Snakes model, the
regularity properties imposed on the centerline through the
weighting parameters (α, β) have positive effects on the segmen-
tation outside the inter-clivus zone but do not allow detecting
properly the external interface of the HRC at the center. Indeed,
the local thickness may vary abruptly in the inter-clivus zone,
especially for advanced stages of the RP pathology. This illustrates
the interest of defining a distinct coupled energy term in the
global energy functional. These global results confirm the observa-
tions made in Section 3.

The segmentation of the INL layer is even more problematic, given
its strongly varying thickness (almost 0 at the foveola) and the image
noise. That is the reason why the Twin Snakes algorithm is not
adapted at all to this particular case. The ROT model leads to better
results thanks to the “sandwich” energy term. However, it suffers
strongly from initialization difficulties, as the pre-segmentation is
generally not accurate enough to set properly the four curves. The
Ribbon Snakes are not appropriate either even if the results are
slightly better. While the central line shows high regularity proper-
ties, the half thickness, on the contrary, varies greatly, from 0 μm at
the foveola to around 100 μm (25 pixels) at the clivus. As underlined
above, the ribbon parametrization cannot manage both these contra-
dictory structural features with the same parameter settings (α, β).
The PDS model outperforms the other algorithms, with more than
87% of correct segmentations. However, experiments show that the
performances are sensitive to the quality of the initialization since
the INL layer is very noisy and often poorly contrasted. This explains
the 13% of unsatisfactory cases.

Finally MSE values have been calculated for the five models,
and are reported in Table 5. They show that our PDS model leads
to the best accuracy.

4.4.3. Evaluation of region segmentation
We calculated the similarity S, sensitivity SENS and specificity

SPEC indices for the INL, ISþOS and HRC regions (the ones relying
on parallelism information for their segmentation). In the

Table 2
Intra-physician mean square error (MSE) for RP subjects, estimated from 5 images.

Retinal interfaces Phys1=Phys1 Phys2=Phys2 Phys3=Phys3

GCLþ IPL/INL 1:5370:14 1:7570:13 1:6370:35
INL/OPL 1:2570:22 2:2070:48 1:8070:28
ONL/ISþOS 1:4070:29 1:6270:56 1:5170:23
ISþOS/RPE 1:4170:93 1:2670:45 1:4070:46
Inner HRC 1:3470:22 1:7370:29 1:9270:56
Outer HRC 1:2370:15 2:1270:31 1:6170:28

Table 3
Inter-physicians and automatic/the most experienced physician mean square error
(MSE) for the RP subjects, estimated from 15 images.

Retinal interfaces Mean inter-physicians Our method=PhysRef

GCLþ IPL/INL 1:6570:40 1:3070:33
INL/OPL 1:7170:51 2:1270:46
ONL/ISþOS 1:3570:45 1:8170:42
ISþOS/RPE 1:4470:46 2:0671:30
Inner HRC 1:3570:42 1:1570:36
Outer HRC 2:2370:80 1:1970:36

Table 4
Percentages of correct segmentation of the HRC and the INL layers in the foveal
area (5 mmwide, centered on the foveola), for the five studied methods, estimated
on the whole database.

Retinal structures Standard Twins Ribbon ROT PDS

HRC 18.9 77.9 73.7 78.9 95.8
INL 11.6 8.4 35.8 23.2 87.4
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following equations, jRegði;jÞj represents the cardinality of the set of
pixels of the region i segmented by physician j:

SðRegði;jÞ;Regði;Ref ÞÞ ¼ 2jRegði;jÞ \ Regði;Ref Þj
jRegði;jÞjþjRegði;Ref Þj

ð13Þ

SENSðRegði;jÞ;Regði;Ref ÞÞ ¼ jRegði;jÞ \ Regði;Ref Þj
jRegði;Ref Þj

ð14Þ

SPECðRegði;jÞ;Regði;Ref ÞÞ ¼ jRegði;jÞ \ Regði;Ref Þj
jRegði;jÞj

ð15Þ

The results are summarized in Table 6(a)–(c). They show that
our segmentation approach enables us to get very close to the
intra- and inter-physician variability. The similarity indices are
between 0.87 (INL) and 0.92 (HRC). No significant under- or over-
segmentation is noticed for any of the three layers.

The indices of sensitivity, specificity and similarity obtained
with the other methods (standard snake, Twins snakes, ROT
model, Ribbon model) are also reported in Table 6(a)–(c). They
confirm the observations made in the MSE study. The PDS
algorithm achieves the best compromise between sensibility and
specificity, which results in the best similarity indices.

4.4.4. Evaluation of retinal thickness measures
In this section, we evaluate the measures derived from the

segmentation. The physicians defined nine thickness and horizon-
tal measures (Fig. 17): foveal thickness ðD1F Þ, total thickness at both
clivus (D1Cl and D1Cr ), foveal thickness of the ONLþOPLþ INL layers
ðD2F Þ, ONLþOPL thickness at distances 0.5 and 1.0 mm from the
foveola (D20:5l

, D20:5r , D21l , D21r ), and the horizontal IS/OS distance
between points Ph1 and Ph2 ðD3Ph1� Ph2

Þ. The results are reported in
Table 7. They show a very good agreement between thickness
measurements performed manually and those obtained with our

automatic segmentation. The relative error is less than 5% and
does not exceed the inter- and intra-physician variability for all of
them. Other algorithms [10,5–7] do not achieve such a high level
of reliability. Our automatic segmentation method provides also a
correct estimation of the horizontal distance D3Ph1� Ph2

, in accor-
dance with the physician values (223271250, 255471515,
260171250), unlike the other automatic approaches.

Overall, and considering the results of this evaluation, we can
conclude that the proposed approach accurately segments the
different layers, for a wide range of images, acquired from patients
affected by even advanced stages of RP. No over-segmentation or
under-segmentation is observed. It is worth noting that the
method of Parallel Double Snakes allowed detecting the HRC,
ISþOS and INL layers with a relatively high accuracy. All evalua-
tion criteria show that the proposed method provides similar
results as the ones obtained by the reference physician.

5. Conclusion

We proposed in this paper a new deformable model, called
Parallel Double Snakes, dedicated to the segmentation of approxi-
mately parallel contours. Several variants of this model make it
suitable for the detection of two parallel contours with a tunable
thickness constraint expressed with respect to fixed or deformable

Table 5
MSE calculated on the subset of 15 images segmented manually by the medical experts.

Retinal structures Interfaces PDS Standard Twins ROT Ribbon

INL GCLþ IPL/INL 1.3070.33 3.3272.32 2.0270.64 2.2671.82 2.5170.47
INL/OPL 2.1270.46 3.7871.34 3.4470.82 4.6372.38 3.5470.70

ISþOS ONL/ISþOS 1.8170.42 1.8370.89 1.9570.60 3.8270.97 2.1070.61
ISþOS/RPE 2.0671.30 3.8876.63 3.2774.62 3.9272.39 3.4471.36
Outer HRC 1.1970.36 2.8571.17 2.3870.72 1.9871.01 1.9470.85

Table 6
Sensitivity (a), Specificity (b) and Similarity (c) for the RP subjects.

Retinal structures Mean inter-physicians Mean intra-physicians PDS=PhysRef Standard=PhysRef Twins=PhysRef ROT=PhysRef Ribbon=PhysRef

(a)
INL 0:8870:07 0:8370:04 0.85 70.04 0:7570:12 0:7470:06 0:6170:19 0:6970:06
ISþOS 0:9170:05 0:8970:06 0:9370:09 0:8770:24 0:7470:22 0:9670:08 0:9170:09
HRC 0:8570:08 0:9170:03 0:9070:05 0:7870:15 0:8970:04 0:9270:04 0:9170:04

Mean inter�physicians mean intra�physicians PDS=PhysRef Standard=PhysRef Twins=PhysRef ROT=PhysRef Ribbon=PhysRef

(b)
INL 0:8870:04 0:8970:05 0:9070:04 0:7570:12 0:8370:07 0:8470:10 0:8470:05
ISþOS 0:9070:05 0:9170:06 0:8470:07 0:7870:23 0:8770:21 0:6270:11 0:7770:10
HRC 0:8970:07 0:8670:04 0:9470:03 0:9470:04 0:8970:07 0:8970:07 0:8870:07

Mean inter�physicians mean intra�physicians PDS=PhysRef Standard=PhysRef Twins=PhysRef ROT=PhysRef Ribbon=PhysRef

(c)
INL 0:8870:03 0:8670:02 0:8770:03 0:7470:10 0:7870:05 0:6970:16 0:7570:04
ISþOS 0:9170:02 0:9070:03 0:8870:06 0:8270:23 0:7970:20 0:7470:08 0:8270:08
HRC 0:8670:05 0:8870:02 0:9270:03 0:8470:10 0:8970:04 0:9070:04 0:8970:03

Fig. 17. Measures derived from segmentations.
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centerline, or of one contour with respect to another fixed one,
again with a tunable parallelism constraint. This method proved to
converge fast and accurately towards the actual contours, with
better properties than existing methods using a parallelism
constraint.

The interest of this model was demonstrated on an application
in medical imaging for the segmentation of retinal layers in OCT
images. The parallelism constraint proved to be useful in particular
in pathological cases. The evaluation was performed by comparing
the results with those obtained from manual segmentations made
by medical experts, leading to a similarity index above 0.87,
sensitivity between 0.85 and 0.93 and specificity between 0.84
and 0.94, for the three retinal layers involved in this study.
Noticeably, the results are within the range of intra- and inter-
expert variability.

Extensions to other types of pathologies are planned for future
work, as well as further clinical investigations. It is worth noting
that the Parallel Double Snakes have been used also for the
estimation of vessel diameters in standard photos of the eye
fundus [9], and that the model with one curve evolving with
respect to a fixed one has been successfully applied for the
segmentation of retinal arteries in Adaptive Optics images [28–
31]. Other applications can be anticipated, in different fields (e.g.
road or river detection in aerial images, automated analysis of cell
migration dynamics [32]), taking benefit of the variants of the
proposed model.
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