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a b s t r a c t

Digital breast tomosynthesis (DBT) is a new 3D imaging technique, which overcomes some limitations of
traditional digital mammography. Its development induces an increased amount of data to be processed,
thus calling for a computer aided detection system to help the radiologist. Towards this aim, this paper
focuses on the detection of masses and architectural distortions in DBT images. A complete detection
scheme is proposed, consisting of two parts, called channels, each dedicated to one type of lesions, which
are then merged in a final decision step, thus handling correctly the potential overlap between the two
types of lesions. The first detection channel exploits the dense kernel nature of masses and the intrinsic
imprecision of their attributes in a fuzzy approach. The second detection channel models the
convergence characteristics of architectural distortions in an a contrario approach. The experimental
results on 101 breasts, including 53 lesions, demonstrate the usefulness of the proposed approach, which
leads to a high sensitivity with a reduced number of false positives, and compares favorably to existing
approaches.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Digital breast tomosynthesis (DBT) is a new three-dimensional
(3D) imaging technique aiming at overcoming some limitations of
mammography [1]. It has the potential of improving the visibility of
breast structures by reducing overlap of tissues. Therefore, the
detectability of lesions is potentially increased while false positives
(FPs) due to tissues superimposition can be more easily discarded.
This comes at the expense of an increased amount of data to be
reviewed by the radiologist. Therefore the need for an automatic
detection/characterization system, also known as computer aided
detection (CAD), dedicated to lesions contained in this new kind of
data is increasing, since it may help the radiologist to achieve
detection tasks in a reasonable amount of time, while keeping
or increasing his sensitivity. Towards this aim, we propose in
this paper a complete detection scheme for automated detection of
masses and architectural distortions, which are suggestive of
malignancy. Fig. 1(a) illustrates the former type of lesions. It is
characterized by a dense kernel and ill defined boundaries. In this
particular example there are also some spicules. Fig. 1(b) represents

the latter, which is characterized by the lack of dense kernel and a
strong convergence pattern.

The aim of this paper is not to identify the clinical type of
lesions, but detect lesions whatever their type. All lesions we
consider have one of the two different appearances in the images.
Therefore we design a detection method for each of these broad
classes of appearances, regardless of the exact clinical type of the
lesion. Since there is no crisp transition between the two appear-
ance classes, the results are finally grouped to provide better
overall detection results. While a third type of finding exists
(calcification clusters), it is not considered in this paper. Actually,
we rely only on commonalities between masses and architectural
distortions in order to detect border line findings like strongly
spiculated masses. Although this reasoning makes sense for these
two types of lesions, it does not for calcification clusters since they
do not share characteristics with them. Therefore no gain in
overall detection performance can be expected compared to
adding an external approach like for instance [2] to our method.
For the same reason, CAD systems in the literature are usually
dedicated to either masses or calcifications.

Although DBT aims at offering a better characterization of
radiological findings, the variability of these structures is still
large. Thus, as it is the case for standard mammography, the
detection task of pathological patterns remains challenging.
Furthermore, DBT being a quite recent imaging technique, the
literature does not provide a comprehensive solution to the CAD
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problem, especially for the case of architectural distortions, which
has not been fully addressed so far.

In DBT-CAD, sensitivity can be reported as the ratio of findings
that are detected. This can be done either on a DBT volume or on a
breast basis. In the first case, each lesion in each DBT volume is
considered as a finding to be detected. In the second case, a given
lesion contained in a breast that has been acquired from several
views (i.e. several DBT volumes) only needs to be detected a single
volume. In the literature, the first one is commonly used, mainly
because early DBT exams usually contain only one view. However,
sometimes both measurements are used [3]. For the sake of clarity,
we will always use the first method in this paper when presenting
existing results or the performance of our approach. Additionally,
specificity will always be given as the number of false positives per
DBT-volume.

Preliminary investigations were based on a detection of masses
performed within the projections to be used for the reconstruction
of the volume [4]. The same authors also proposed to work directly
within the DBT volume [5]. While these developments demon-
strated the feasibility of a CAD system, specificity remained high
(2.2 FP per breast volume at 85% sensitivity).

Other groups worked on both projections and volume based
approaches. Reiser et al. [6] proposed to detect masses indepen-
dently within each projection and to recombine the detection
output in the 3D space using visibility angular range of the
findings. They also proposed a processing of the volume by a
radial gradient filter combined with a maximum intensity projec-
tion and a top hat [7]. This processing produces a large number of
false positives, therefore it is only suitable as a preliminary
detection step of a whole CAD chain.

A fuzzy logic based processing chain has also been proposed
[8]. It relies on an independent detection of the suspicious areas
within the projections, followed by a segmentation stage using a
fuzzy contour framework [9], which allows handling imprecision
and uncertainty regarding these steps until the decision making
stage using fuzzy decision trees [10]. However, this work mainly
focuses on the information aggregation part and lacks a robust
initial detection of findings.

More recently a projection and a volume based CAD system
were compared by Chan et al. [11]. A hybrid method that combines
both approaches was also introduced. The authors used quite a
large database (69 malignant lesions) for the evaluation and
concluded that their 2D only approach performed worse than
the hybrid one. While this work focuses only on mass detection, it
will be considered as the reference method in this paper and a

comparison with our approach will be provided later on, mainly
because of the database size and because it provides the best
performance in the literature (1.61 FP per breast volume at 90%
sensitivity).

Another kind of approach uses information theory [12,13] to
reduce the number of false positives. While results are promising,
the false positive rate still remains high (2.4 FP per breast volume
at 90% sensitivity) compared to the method of Chan et al. [11]. This
kind of method will be discussed in this paper as well.

Finally, a more recent work has been proposed [3]. The idea is
to use a CAD system trained on 2D mammograms on tomosynth-
esis slabs (aggregation of slices). Using the same evaluation
methodology as the other papers, the proposed method gives
performance slightly better than the approach of Singh et al. [12].
However, the use of slabs and the poor slice inter-spacing have a
negative impact on the localization of the lesion in the volume.

From a technical perspective, designing an efficient CAD system
is quite a challenging task mainly because of the difficulty to
mathematically define the findings of interest in a way that
captures their variability. This results in the difficulty to derive
robust operators for their detection/characterization. Actually, exist-
ing systems usually rely on two steps. First the detection of
potential findings and then false positive reduction. The former
should be as sensible as possible in order not to miss cancers. The
latter has to drastically reduce the number of false detections.
However, if the early detection has a poor specificity, the second
stage will likely not reduce it to an acceptable level. In this paper,
we introduce a method to cope with all these constraints altogether.

In our work, we propose a detection scheme that addresses
both masses and architectural distortion with similar performance
to state of the art mass only DBT CAD systems. Since these findings
have different appearances and characteristics in the images, we
propose an original scheme, composed of two channels, each one
being dedicated to one type of lesions. The results provided by
these two channels are then aggregated to reach the final decision
on the detection. In the first channel, a fuzzy approach is
implemented to detect masses. The idea is to model the impreci-
sion on the contours using fuzzy logic, which is suitable to
propagate/handle this type of imperfection through the detection
process. In the second channel, convergence regions are detected
using an a contrario approach. Here the idea is to statistically
define the content of a healthy breast in order to detect
abnormalities.

An overview of the proposed approach is given in Section 2.
Then the detection procedures in the two channels are described

Fig. 1. An example of mass (a) and architectural distortion (b) in DBT.
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in Sections 3 and 4. In Section 5 we discuss the aggregation step
and the obtained results.

2. Method overview

In this section we provide a general overview of the proposed
approach, and we describe the database used for the experiments
and the evaluation.

2.1. Proposed approach: a two-channel scheme

One of the original features of the proposed approach is to deal
with two types of lesions separately. This allows taking into
account the specificities of each type of lesion before aggregating
the results. The overall scheme, which is applied directly on the
reconstructed tomosynthesis volume, is illustrated in Fig. 2. The
detection of masses (e.g. Fig. 1(a)) relies on the recognition of
dense kernels, while the detection of architectural distortions (e.g.
Fig. 1(b)) is based on the identification of convergence regions.
Indeed, these two radiological signs are likely to represent the two
types of lesions to be detected. It should be noted that another
channel could be added for detecting microcalcifications, for
instance using the method described by Bernard et al. [2], thus
leading to a complete system for suspicious findings detection.

The first channel, which is dedicated to dense kernels, relies on
the modeling within a fuzzy set framework of both lesion
imprecision and variability in the image. The tomographic planes

of the acquired volume are first processed one after the other.
Focal densities are detected using an original fuzzy connected filter
derived from the one introduced by Palma et al. [14] and involving
size, compactness and contrast attributes. A fuzzy map of poten-
tially suspicious regions is then computed, using 3D pseudo-
connected component labeling based on a maximum shape
variability criterion. This allows disconnecting some components
and ensuring that each region corresponds to only one potential
lesion and does not aggregate two distinct structures together.
Then each suspicious region is segmented. The decision on
whether the suspicious region is actually a lesion or not is made
from a support vector machine (SVM) classification [15] based on
specific attributes (such as compactness, size, statistical analysis of
the neighborhood). This final segmentation and classification step
aims at reducing the number of false alarms.

The second channel aims at detecting suspicious convergence
regions, indicating potential architectural distortions. The charac-
teristics of these regions led us to propose an a contrario modeling
[16] of the problem. This approach consists in statistically defining
the content of healthy breast volumes allowing detecting patterns
in real images that are unlikely to appear in such data. This is
performed on each tomographic plane, before aggregating the
results in the 3D volume. The final step is again a classification
based on specific features (e.g. orientations analysis in a neighbor-
hood of the finding).

Once each channel has been applied independently, a final
fusion step is performed. Since the channels have dedicated and
distinct objectives, a direct disjunctive fusion can be applied and a
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region in the volume is considered as suspicious if it has been
detected by at least one channel. It should be noted that the two
classes of lesions are not perfectly separated. For instance a highly
spiculated mass may be detected by both convergence detection
and dense kernel channels. Therefore, although not sophisticated,
the fusion actually improves the performance of the overall chain,
which is one contribution of this paper.

While these two channels rely on existing techniques that
have recently been introduced, their refinement and implementa-
tion in a full detection scheme demonstrate their validity for a
clinical task.

2.2. Image database

The database used in our experiments is composed of 101 DBT
acquisitions (1 breast, 1 MLO view for each acquisition), 53 with a
biopsy proven cancer and 48 with no pathology. Localization of
lesions in the DBT volumes has been performed according to
radiologist's report defining the exact biopsy target (and therefore
the cancer if malignancy is proven). Contours of the lesions have
been drawn according to radiologist information such as lesion
size and validated by two clinical experts (cases were reviewed
and refined by the reviewers together). The repartition of the 53
lesions is as follows:

� 7 irregular masses,
� 4 lobulated masses,
� 39 spiculated masses,
� 3 architectural distortions.

DBT volumes were reconstructed using iterative techniques
[17] from low dose projections acquired over an angular range of
401. Slice inter-spacing and in-plane spatial sampling were set to
1 mm and 0.1�0.1 mm, respectively.

In order to derive clinically relevant figures, the images used for
the computation of the specificity index do not contain any
suspicious region detected by radiologists, while the images used
for the computation of the sensitivity index contain at least one
lesion detected by radiologists, with biopsy proven malignancy.

The density detection channel was evaluated using all irregular
and lobulated lesions, as well as the less visually spiculated masses
(i.e. a total of 40 lesions). The remaining lesions, including the
highly spiculated lesions and the architectural distortions, were
used to evaluate the second channel. The choice to split the
spiculated lesions into two pools was motivated by the fact that
the most characteristic feature of such lesions is sometimes their
stellate pattern rather than their density, and this feature is mainly
exploited by the second channel. From an experimental stand-
point, this choice also leads to a more accurate evaluation of
the convergence detection channel, with 13 lesions, even if
this number is still too low to lead to definite conclusions about

a clinical evaluation. Still, we believe that this provides a proof of
concept and an evaluation of the interest of the proposed
approach.

3. Detection of masses

The first channel of our detection scheme relies on the detec-
tion and classification of dense kernels. In this section, we focus on
the description of the detection techniques implemented in the
first stage, the segmentation methods and the potential lesions
classification.

3.1. Dense kernels detection

The detection of dense kernels contained in the image is
performed on an under-sampled version of the original volume.
This step allows speeding up the computation time with limited
impact on the detection performance because of the scale of target
structures. Actually, masses seen in DBT are usually quite large
(from several millimeters to several centimeters) in comparison to
other findings like microcalcifications, which require a full resolu-
tion to be seen and detected.

3.1.1. Fuzzy connected filters
Potential masses are usually detected either using a gradient

analysis [11] or with a difference of Gaussian's [12]. These two
methods work on circular regions, which may not reflect the shape
of all lesions. Connected filters may help to relax this assumption
because the shape of potential lesions is given by the signal itself
(connected component resulting from image thresholding).
Furthermore, this kind of filters has recently been extended
to the fuzzy set framework [18,14] making them suitable to handle
uncertainty of lesions on both the shape of connected components
and the output magnitude with regard to selected criteria.
The assumption that motivates the use of such filters as a
detection step is that dense kernels can roughly be retrieved
by multi-thresholding tomosynthesis images. Actually, if the
object we try to detect is denser than its surrounding, it can be
retrieved by thresholding and extracting a connected component.
The proposed assumption holds because of the 3D nature of the
image: DBT suppresses a large part of tissue superimposition
compared to standard mammography.

More specifically, fuzzy connected filtering relies on two
features. First the concept of image is replaced by the one of fuzzy
image. For a given image I, for each pixel p in the image domain Ω,
the associated value I(p) is no longer a crisp value belonging to the
set of gray-levels G but a fuzzy quantity (columns in Fig. 3). This
fuzzy set is defined on the domain of possible gray-levels where a
membership degree between 0 and 1 is associated with each
possible value belonging to G. Fuzzy umbra images are defined as

Fig. 3. Example of a fuzzy connected filter δ. On the left: a fuzzy umbra image (F). On the right: the filtered fuzzy image. For every gray level gAG, a fuzzy set Fðn; gÞ is
extracted and filtered using ψF .
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fuzzy images where the fuzzy quantities associated with every
pixels are decreasing with respect to the gray value (see left image
in Fig. 3). As it will be shown later, this representation will enable
us to consider fuzzy thresholding of the image. Let us call F the set
containing all the possible fuzzy images. This set can be seen as
the set of all the fuzzy sets defined on Ω� G. Using this notation,
for a given pixel pAΩ, for a given gray-level gAG, a fuzzy umbra
image FAF is interpreted as follows: Fðp; gÞ is the degree to which
the image has a gray-level greater than or equal to g at pixel p. The
second aspect of this framework concerns the way images are
processed. A fuzzy filter is defined using a set of operators ψF to be
applied on the sets f ¼ Fðn; gÞ extracted for each gray level g. These
fuzzy sets f are fuzzy sets defined on the image domain Ω
extracted from the fuzzy image F for a given gray level g (n
denoting all the elements of Ω). It corresponds to rows of fuzzy
images in Fig. 3. The membership degree of f for each pixel p is the
degree of the fuzzy quantity associated with the considered gray
value (Fðp; gÞ). In the case of fuzzy umbra images, for a given gray-
level, the corresponding fuzzy set can be seen as a fuzzy thresh-
olding of the input image. Fig. 3 illustrates the filtering of a fuzzy
image. The set of all the fuzzy sets on Ω is denoted by S. In our
CAD application, the filter we use on the various gray levels
extracts all the fuzzy connected components Hðf Þ [19–22] from
the previous sets f and keeps only the ones that verify simulta-
neously size, compacity and contrast-based criteria. This filter is
defined in the below equation

8FAF ; 8 f AS; 8pAΩ;

ψF ðf ÞðpÞ ¼ max
hAHðf Þ

ðminðhðpÞ; tu1 ðfcardðhÞÞÞÞ

> max
hAHðf Þ

ðminðhðpÞ; ru2 ðfcompðhÞÞÞÞ

> max
hAHðf Þ

ðminðhðpÞ; ru3 ðfroseðF;hÞÞÞÞ ð1Þ

where > is a t-norm, which is a fuzzy conjunction (fuzzy
extension of a logical and), tu and ru are the ramp functions
parameterized by u, fcard and fcomp are the fuzzy cardinality (see
Eq. (2)) and fuzzy compacity (see Eq. (3)), respectively [23,18] and
frose the operator of Eq. (4). Let us note that this last criterion,
which represents a contrast that takes into account the size of the
object, is one contribution of this work

fcardðhÞ ¼ ∑
pAΩ

hðpÞ ð2Þ

fcompðhÞ ¼ fcardðhÞ
ð∑pAΩj∇hðpÞjÞ2

ð3Þ

8FAF ; 8 f AS; 8νAS;
froseðF; f Þ ¼ fctrastðF; f Þ

fmeanðF;Dνðf Þ \ f Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fcardðf ÞfmeanðF;Dνðf Þ \ f Þ

q
ð4Þ

In Eq. (4), Dνðf Þ corresponds to the fuzzy dilation of a set f using a
fuzzy structuring element ν (a disk in our case) as defined by Bloch
and Maitre [24], fmean denotes the fuzzy mean (i.e. weighted
mean of F by Dνðf Þ \ f ), and fctrast denotes the contrast, computed
as the difference of the means inside and outside the component
(where the outside is restricted to Dνðf Þ \ f ).

The filter ψF can be interpreted as follows: for each point p of
the image domain, the resulting degree corresponds to the
conjunction (expressed by the t-norm >) of the degrees asso-
ciated with the criteria results computed on the various fuzzy
connected components hAHðf Þ that have been extracted for a
given fuzzy set f. This means that the degree at point pwill be high
if it belongs to a fuzzy connected component that verifies the
criteria of size, compacity and detectability.

As said previously, the filter we have just introduced is
dedicated to the processing of fuzzy sets contained in a fuzzy

image and extracted for the various gray levels it encodes. Defining
a filter δ that processes all the fuzzy sets Fðn; gÞ extracted from a
fuzzy image F (see Fig. 3) is then straightforward as shown in the
below equation

8FAF ; 8pAΩ; 8gAG;
δðFÞðp; gÞ ¼ ψ F ðFðn; gÞÞðpÞ ð5Þ
The detection filter that is applied to the volume slices I is then

expressed as ϕðIÞ ¼ aggðδðumðIÞÞÞ, with 8pAΩ, 8gAG, δðum
ðIÞÞðp; gÞ ¼ ψumðIÞðumðIÞðn; gÞÞðpÞ. The um operator enables to con-
sider the original image as an umbra image. It is responsible for
the modeling of the imperfections like noise arising from the
image [25]. The agg operator as originally introduced by Palma
et al. [18] allows aggregating the filtering results associated with
each gray level (e.g. agg¼max for a disjunctive aggregation).

Let us note that the operator ψF is similar to the one originally
introduced by Palma et al. [18]. The only difference resides in the
measure that is actually used to assess the contrast of a connected
component. In the present work, we introduce a new measure,
which is a fuzzy version of the signal to noise ratio expressed in
the frose modeling where the size of the object is taken into
account [26]. This criterion was originally defined to assess the
detectability of a circular structure of known size in an image
corrupted with Poisson noise. By extension, we can use it to detect
findings. While the content of DBT planes does not verify the noise
assumption, it turned out experimentally that the measure was
more suitable than the regular fuzzy contrast.

3.1.2. Various levels of fuzziness
The previously proposed framework allows taking into account

imperfection of the data at various stages. From an implementa-
tion standpoint, we could use a simplified version of the fuzzy
umbra image framework: the um operator would actually provide
regular umbra images. The proposed filter would then take only
advantage of the fuzzy detection output and discards the uncer-
tainty coming from the gray levels. Considerations on computation
time could motivate this choice. Actually, while efficient generic
algorithms, based on tree update strategies, have already been
proposed in the literature [14], processing a crisp umbra image
allows us to make simplifications resulting in computation speed
up: a single tree representation of the nested connected compo-
nent is enough to filter the whole image. From a detection
standpoint this would obviously lead to a coarser output of the
filter. Nonetheless this could be acceptable since in the detection
stage of our processing chain we want a high sensitivity even if the
specificity is not that good. In this context, the criteria we used are
rather flexible and a fine study of the imprecision is not manda-
tory: the characterization stage is actually performed later.

Practically, we can note that crisp umbra images lead to a
rather robust output [18] even if the detection performance could
benefit from a comprehensive use of the fuzzy image framework
[25] or by modeling some DBT volume characteristics (e.g. recon-
struction artifacts).

3.1.3. Illustration
Fig. 4 presents the kind of results we get using the previous

filter on a DBT volume. The obtained fuzzy detection map clearly
highlights the lesion, which appears as the brightest component.
It contains only a limited number of other components, with a
much lower degree of detection, which will allow us to recognize
them as false positives in the subsequent steps.

3.2. Marker extraction from the fuzzy detection map

Once all the tomographic planes have been filtered, a marker
extraction stage is performed in order to better characterize the

G. Palma et al. / Pattern Recognition 47 (2014) 2467–2480 2471



detected regions and thus reduce the amount of false positives.
Markers are sets of connected voxels in the volume domain.

3.2.1. Adaptive thresholding
An adaptive thresholding was implemented to extract the

markers from the fuzzy detection map. Actually the texture can
change from one breast to another, thus a single threshold does
not allow processing in a suitable way (i.e. with a reasonable
specificity) a large set of exams: some volumes produce only one
or two markers while for some other ones we can reach twenty or
more markers.

In order to illustrate the dependency between the number of
detections and the composition of the breast, we can refer to Fig. 5,
which presents the distribution, estimated on 122 normal cases
not used for assessing the algorithms, of the amount of unlimited
detections (i.e. with a sufficiently large threshold), for various
breast densities. The classification of the density is done using the
scale ranging from 1 to 4 proposed by the American College of
Radiology [27]. The density was assessed by experienced radiolo-
gists on the DBT volumes. Let us note that these histograms are
highly smoothed. Furthermore, since densities 1 and 4 are less

likely to appear than others, their histograms are computed using
only a small number of cases, and thus their accuracy is limited. In
this illustration, we can see that denser breasts seem to produce a
larger amount of false positives. Thus it seems reasonable to adjust
the threshold according to the data at the marker detection stage.

Therefore, the proposed strategy consists in automatically
restricting the threshold while the amount of detections in the
volume is larger than what we are willing to accept. This also
enables to tune in a more intuitive and more efficient way the
performance of the marker extraction stage. This number of
detections corresponds to the number of markers to be presented
later on to further processing steps.

Again, let us recall that although the histograms of Fig. 5 help
us in defining an adaptive thresholding mechanism, we need to be
careful before drawing any other conclusions from its content,
mainly because of the small amount of data for some classes.

3.2.2. 3D aggregation
In order to take advantage of the 3D information, connected

components resulting from the former adaptive thresholding are
gathered in 3D. This gathering is done using the connectivity
between the detection results obtained from consecutive planes,
in combination to a similarity measure. This similarity is measured
by computing the shape variation (see Eq. (6)) between several
markers fCzg, each Cz being the set of connected points from the
same plane z contained in the marker. The cardinality of a marker
is denoted by j � j.

variationð Czf gÞ ¼ j[ zCzj
maxzjCzj

ð6Þ

Concretely, the aggregation of the tagged regions in the volume
is done as follows: we consider every pair of 2D markers, which
have been extracted from the various planes that are connected
together on the Z-axis. These pairs are aggregated if the resulting
3D marker has a variation value less than or equal to a given
threshold. This ensures not to consider markers with a high
dissimilarity in the remaining processing. This threshold has been
set once to a restrictive value in order to avoid any meaningless
aggregation. Nonetheless this may result in a non-aggregation of
markers that should actually be put together. While being non-
optimal, such a behavior is acceptable since if a single lesion is
split into two separate components, it will not be discarded but

Fig. 4. Illustration of the fuzzy connected filtering of a DBT slice containing a spiculated lesion. (a) Plane containing the lesion (circled in white). (b) Fuzzy detection map
(high gray levels correspond to high membership values).
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rather processed several times later on. Thus, the choice of this
threshold is rather flexible.

3.2.3. Intermediate performance
This marker detection step has been assessed using cross-

validation techniques on the database containing the lobulated,
irregular and spiculated lesions that were not used for the
convergence detection assessment. For this purpose, 40 malignant
lesions were used, as explained in Section 2.2. Fig. 6 illustrates the
various sensitivities associated with the false positive rates that
were obtained by varying the maximum number of allowed
markers as explained previously.

For instance, at this stage, a sensitivity of 82% (rate of actual
malignant lesions detected) is reached for an average number of
3.83 false positives (number of begin areas detected) per volume.
Nonetheless, in order to keep as much potential findings as
possible, a sensitivity of 100% will be used for the remaining steps
even if the false positives rate reaches 6.8 markers per volume (see
Fig. 6). The remaining segmentation, feature extraction and
classification steps will then aim at lowering this rate.

3.3. Segmentation

Each marker produced by the former stage is considered as a
set of voxels inside the volume. Since objects in DBT volumes
usually suffer from a distortion in the Z direction, potential lesions

are segmented in 2D in the ðX;YÞ plane parallel to the detector. The
plane to be considered for this segmentation step is the most
representative one. In order to determine it, a contrast measure is
computed for each plane that intersects the marker by subtracting
the mean inside and outside the marker. Assuming that the
highest contrast is obtained in the focal slice of the lesion, the
most contrasted plane is considered as the most representative
one. Let us remark that even though segmentation is performed in
2D, 3D information is used through the 3D aggregation step.
Furthermore, since this last step tends to over-segment the 3D
markers, the set of slices to be considered is usually small and
their content is rather similar, which implies that no meaningful
information is lost by selecting the most representative plane.

We assessed our CAD system using two different segmentation
methods. The first one is based on a multi-thresholding strategy
while the second one relies on a minimum cost path modeling
[28,29].

The multi-thresholding method relies on the same assumption
as the one we used for the connected filter implementation (dense
kernels can be segmented by image thresholding). For a given
seed, the connected components containing this seed and coming
from all the possible thresholds of the image are considered. Each
component is a potential contour and a set of fuzzy criteria
(similar to the ones used for the proposed fuzzy connected filter)
are computed and aggregated together. The final contour is the
one associated with the highest membership degree.

The second segmentation method relies on the modeling of the
segmentation problem as a minimal path search, using an exten-
sion of the approach of Timp and Karssemeijer [28]. First the
image is converted into the polar domain (the first axis represents
the distance to the finding center and the second one represents
an angle ranging from 0 to 2π that covers the whole surrounding
of the lesion). Once the image is converted in this new representa-
tion, some features, like gradient orientations or optimal
gray values, are extracted from the contour and used to derive a
cost matrix. The segmentation problem is then reformulated as
finding a path that crosses all the columns of the cost matrix,
corresponding to the different angles, and that has a minimal
cumulative cost [29].

Although these segmentation methods are suitable to provide
fuzzy contours [8,10,29], we used the crisp versions in the
experiments presented in this paper. Actually, for computation
time considerations, we chose not to handle imprecision arising
from the detections.
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Fig. 6. Performance of the marker stage used for the detection of dense kernels.

Table 1
Features used for the classification of dense kernels.

Criterion Description

Homogeneity Variance within the ROI that contains the marker
Entropy Entropy within the ROI
Contrast Contrast of the structure (difference between the means inside and outside the contour)
RGI Radial gradient index on the contour [30]
RGI inside the contour Likewise but inside the contour
RGI within the region of interest Likewise but inside the ROI
Mean gradient on the contour Mean of the gradient, which is computed using Gaussian derivatives on the image
Entropy of orientations inside the contour Statistical measure computed on the (non-)weighted histogram of the orientation inside the contour
Entropy of orientations on the contour Likewise but the histogram is computed on the contour boundary
Entropy of orientations within the ROI Likewise but the histogram is computed using the whole neighborhood of the lesion, i.e. the ROI
Kurtosis, variance, mean, entropy, skewness of relative

orientations inside the contour
Statistical measures computed inside the contour on the histogram of the orientations relative to the center
of gravity of the contour

Kurtosis, variance, mean, entropy, skewness of relative
orientation on the contour

Likewise but the histogram is computed using the elements present on the contour boundary

Kurtosis, variance, mean, entropy, skewness of relative
orientation within the ROI

Likewise but the histogram is computed with all the values of the ROI containing the lesion

Minimal convergence probability Measure derived from the a contrario modeling proposed in Section 4 (minfP½Zc;rZzc;r �; rrRmax ; cAcontourg,
with zc;r the instances of Zc;r for the considered image)
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3.4. Features

In order to characterize the contours produced by the former
step, several measures are computed for each of them. These
features enable to use a classifier as explained later.

Among these features, some of them use only the contour's
shape, while others rely on the image content, and are computed
either in the region inside the contour, or on a region of interest
(ROI) that contains the marker. The criteria we used are listed in
Table 1.

The computation done on the various contours extracted from
the markers allows us to build a data set to be classified. These
elements will be denoted as feature vectors whose each dimension
corresponds to one feature listed in Table 1.

3.5. Support vector machine

The classification stage is performed by a regular support
vector machine (SVM) classifier [15]. Because our problem corre-
sponds to non-linear classification, we used the kernel version of
the classifier relying on a Gaussian radial basis function.

While SVM is a commonly used classifier, other well known
classifiers like neural networks, decision trees, Bayesian methods,
etc. may have been used as well. However, the goal of this paper
being the detection of lesions in DBT, our choice went to SVM
because it is known to perform well in many applications,
including 2D mammography CAD systems [31–33]. The relevance
of this choice was confirmed by the experimental results.

The operating points obtained after classification that are
presented in this paper are computed using a probability to belong
to one class estimated using the approach proposed in [34].

3.6. Results

3.6.1. Validation process
In order to assess the performance of the density detection

channel, a cross-validation approach has been implemented.

As illustrated in Fig. 7, for each tomosynthesis volume (xk), all
other volumes (fxj; jakg) were used to learn the SVM parameters.
The resulting classifier (whose parameters are C; γ) was used to
process the remaining volume. The SVM parameters learning stage
was done using a leave-one-out scheme. These parameters are the
ones that maximize the classifier performance, which is assessed
as follows: for all the elements xk0 of the learning base (fxj; jakg),
xk0 is processed by the SVM learned with fxj; jak; jak0g.

3.6.2. Performance
Fig. 8 presents the performance of the classification stage. Since

the operating point of the preliminary marker stage was set to
100%, this figure represents the overall performance of this mass
detection channel. The two curves represent the performance
associated with the two proposed segmentation methods. Note
that the curve obtained using the optimal path search is better
than the one using multi-thresholding for high sensitivities.
This can be explained by a better quality of the contours provided

Fig. 7. Cross-validation of the dense kernel validation channel (J is the total number of volumes).
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Fig. 8. Performance of the whole dense kernel detection channel.
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by the path-based segmentation method. Actually, the assumption
behind the multi-thresholding is that there is no more tissue
superimposition in the image. Since digital breast tomosynthesis
volumes are built using only a rough approximation of the Radon
theorem [35], tissue superimposition is unfortunately not com-
pletely removed.

On the same figure, we can see that after segmentation, feature
extraction and classification, the mean number of false positives
per volume is only 1.23 for a sensitivity of 90% ([76–97] 95%
confidence interval) for the optimal path method, which is
comparable to state of the art methods [11].

Fig. 9 illustrates the detection channel on a breast containing a
spiculated lesion with a dense kernel. In this example, the marker
extraction stage provides several suspicious regions, one of them
being the lesion. Some of these suspicious zones are discarded
during the next stage of the chain. The final output only shows one
false positive and the lesion, which appear on the same plane.

4. Detection of lesions without dense kernel

Some of the lesions are not associated with a dense kernel in
the image, but rather with a strong convergence pattern. While
this kind of findings has partially been addressed in the literature
[36,37] for DBT, a full scheme including robust decision making is
still needed. In this section, we present the design and the

validation of such a channel, which has previously been intro-
duced in Section 3.

4.1. Detection of convergences

In order to detect convergences, we use the a contrario
approach we previously proposed [36,37] as a marker stage. The
idea behind this method is to define a convergence measure and to
compute the probability of its values in a naive model, which is
supposed to represent the content of a normal breast with no
specific convergent structures, and is inspired by the a contrario
approaches developed e.g. by Desolneux et al. [16,38,39], Muse
et al. [40], Cao et al. [41].

In our case, a contrario modeling is relevant because it allows
setting up an intuitive detection scheme. However, the efficiency
of such a method is mainly driven by the quality of the criterion
that is used to define the naive model. Therefore a contrario
reasoning is mainly a tool to interpret this measure.

Our convergence criterion is based on a binary random variable
Kc;q;r that is equal to 1 if and only if the pixel q, whose underlying
structure has an orientation angle θ, “converges” toward the disk
of center c and whose radius (αr, αA �0;1�) is proportional to r as
defined in Eq. (7) and illustrated in Fig. 10(a)

Kc;q ¼ 1 if ðαro Jcq!JrrÞ4ð tan ðθÞJcq!JrαrÞ
0 otherwise:

(
ð7Þ

Fig. 9. Example of the full processing performed by the dense kernel detection channel. (a) Plane of a DBT volume that contains a spiculated lesion. (b) Fuzzy detection map
obtained after coarse detection. (c) Result after classification: the lesion (circled in black) and a false positive (circled in white) are kept.

Fig. 10. (a) Nested circles used for the computation of Kc;r;q which is here equal to 0. (b) Computation of Zc;r: the arrows on the dark dashed lines (passing through q1, q2 and
q4) converge while others do not.
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The convergence measure is then expressed using Eq. (8),
which just counts how many pixels converge toward a point c of
the image domain Ω as illustrated in Fig. 10(b)

Zc;r ¼ ∑
qAΩ

Kc;q;r ð8Þ

Let us note that while the convergence criterion we use is
similar to what has been introduced by Karssemeijer and te Brake
[42], it differs in several points. First, we use tan ðθÞ instead of its
approximation θ, which enables us to compute convergence for
pixels close to the circle of radius αr. Secondly, in our case the
convergence criterion is computed for all the pixels, regardless of
their signal intensity. This results in a simpler computation which
relies on less parameters. A last difference is the computation of
the orientations map, as described below.

In our experiments, the naive model assumes that the orienta-
tions extracted for each pixel are uniformly and identically
distributed. In practice they are computed from non-correlated
gradient maps [36]. This model is then used to derive a suitable
threshold (λ) for Z. To do that, we consider a parameter ε, which is
the maximum mean number of occurrences of the event Zc;r4λ

∑
cAΩ

r A ½½Rmin ;Rmax ��

P½Zc;r4λ�oε ð9Þ

with Rmin and Rmax the minimum and maximum radii to be
considered, respectively. They reflect the scale of the targeted
structures. Obviously, the parameter ε can be interpreted as the
number of false alarms (NFAs) to be accepted in a healthy breast
that verifies the naive model.

This method allows us to retrieve not only architectural distor-
tions with a stellate pattern but also highly spiculated masses.
Because of their morphology, irregular and lobulated lesions are
unlikely to be detected by this channel. Furthermore, to keep a
high sensitivity with a reasonable specificity, it is not possible to
detect all kinds of spiculated lesions with this convergence
criterion. This is illustrated in the curve of Fig. 11. Note that in
this plot, the scale of the false positives axis has been compressed
in order to draw the curve for acceptable sensitivities.

However, if we focus only on stellate lesions, i.e. architectural
distortion and highly spiculated lesions whose convergence char-
acteristics are close to architectural distortions (13 lesions in our
database), the method becomes suitable to be used as a marker
stage as seen in Fig. 12: for instance a sensitivity of 92% is obtained
for 0.9 false positives per volume.

The curves of Figs. 11 and 12 were obtained by tuning the
parameter ε, which represents the number of false detections per
volume we accept to get, assuming the naive model.

4.2. False positive reduction

A classification step similar to the one used for dense kernels
detection was implemented to reduce the amount of false posi-
tives. The main difference is that all the tomographic planes were
used here to make the decision on whether a marker is suspicious
or not according to the extracted features. The motivation for this
divergence in the analysis is that stellate patterns are rather subtle,
hence a better characterization is expected from the analysis of all
tomographic planes.

4.2.1. 3D aggregation
In order to take into account the 3D information not used due

to the 2D processing, the 2D markers on each plane are gathered
together in 3D. To do that, a detection map A is built from the
aggregation of all the disks of center c and radius αr for all the
pairs (c, r) labeled as suspicious during the first processing stage.
Connected components Aj of this 3D map are then labeled. For all j,
fAj

ig will denote the set of connected components contained in Aj

for each plane intersected by this marker. Each component Aj is
then kept if the classification step considers that at least one Aj

i

corresponds to a lesion. Furthermore, keeping the whole Aj allows
not splitting the lesion if there is a bad classification on an
intermediate plane. This aggregation step is illustrated in Fig. 13.

4.2.2. Feature selection
As explained by Palma et al. [36], false positives generated by

the a contrario modeling correspond to regular fiber crossing. In
order to differentiate such structures from potential malignant
lesions, features relying on a statistical analysis (entropy) of the
orientations lying within the maker neighborhood were used as
classifier input. More precisely, the measures were computed in
three different regions: in the aggregation of the convergence
centers (αr radius disks), on the border of the same zone and
inside the aggregation of the convergence regions (disks of radius
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Fig. 11. Performance of the a contrario detector for spiculated lesions only.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7
Number of false positives per breast volume

Se
ns

iti
vi

ty

Fig. 12. Performance of the a contrario detector for architectural distortions and
highly spiculated lesions.

Fig. 13. Illustration of the marker aggregation step for the convergence detection
channel.
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r). In addition to these measures, a radial gradient index [30] on
the border of the convergence region and ratios of the volume
of interest dimensions (e.g. minðheight;widthÞ=depth) are also
computed.

4.3. Performance

The evaluation of the performance of this channel has been
conducted similarly to the assessment of the first channel. The 13
lesions presented in Section 2.2 that were used for this purpose
prevent us from drawing strong conclusions on the actual perfor-
mance of this channel. Nonetheless, it allows us to have an idea on
its validity.

The performance achieved by this detection scheme is pre-
sented in Fig. 14. For high specificity, the sensitivity is better than
the one obtained for the first channel. A valid operating point is a
sensitivity of 92% ([64–99] 95% confidence interval) for a false
positive rate equal to 0.48.

Fig. 15 illustrates an example of the whole convergence detec-
tion chain. The image of Fig. 15(a) is a DBT plane containing an
architectural distortion. The a contrario detection (see Fig. 15(b))
provides four suspicious findings in this plane, one of them being
the actual lesion. The false positives reduction stage (see Fig. 15(c))
allows getting rid of two of them. Eventually, two regions are kept:
the actual lesion and a false positive.

5. Aggregation and results

In this section, we describe the final aggregation step, detail the
experimental results obtained with the proposed complete detec-
tion scheme and briefly discuss some implementation details.

5.1. Fusion of the two channels

As explained in the two previous sections, each channel is
dedicated to the detection of one type of potential lesion based on
its specific characteristics. Therefore the most natural aggregation
is a disjunctive fusion, i.e. a region is considered as a potential
lesion if it is detected as such in at least one channel. This step can
further improve the performance for each class of lesions, since
the two considered classes are not perfectly separated and a lesion
of one class can actually be detected by the channel dedicated to
the other class (this may occur in particular for some spiculated
masses).

This approach allows us to compute bounds of sensitivity and
specificity by combining the results displayed in Figs. 8 and 14. By
merging the two sets of images in the database, for a given
specificity, at least a specificity equal to the weighted sum of the
two specificity values of the two channels is guaranteed (the
weights being the proportion of malignant cases in each set of
images).

5.2. Results and discussion

The performance of the complete processing is displayed in
Table 2. It has been obtained by using threshold values of the
classifier probabilities corresponding to equivalent sensitivity
values in the results of Figs. 8 and 14. The results of the two
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Fig. 14. Performance of the suspicious convergence detection channel.

Fig. 15. Example of the full processing of the convergence detection channel. (a) Plane of a DBT volume that contains an architectural distortion. (b) A contrario detection
result. (c) Result after classification: the lesion (circled in black) and a false positive (circled in white) are kept.

Table 2
Performances of our 2-channels method and the methods in [11]. Note that the last
3 methods address mass only while our method addresses also architectural
distortions and that database was not the same for the evaluation of this last one.

Sensitivity (%) # of false positives per breast

Our method Chan et al. [11]

2D method 3D method Combined 2D þ 3D

80 1.31 2.43 1.46 0.84
90 1.60 3.65 2.52 1.61
96 1.81 43:65 43 42
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channels are combined by computing the union (logical or) of the
detection marks obtained in each channel. The validation is
performed using a cross-validation method, as done before for
each channel, but this time using all cancer and normal cases.

Interestingly enough, the combination of the two channels
actually allows us to obtain better performances than the lower
bound described before (Section 5.1). For instance this bound
would be 1.7 false positives for a sensitivity of 90%, and 1.45 false
positives for a sensitivity of 80%. This is explained by the potential
detection of strongly spiculated masses (used in the distortion
channel evaluation) by the dense kernel channel, as illustrated in
Fig. 16. While this lesion was not suspected by the architectural
distortion channel, after the false positive reduction step, it was
correctly identified by the dense kernel channel.

Unfortunately, there is no publicly available database on which
several methods could be evaluated. However, the results obtained
by the proposed approach are similar to those published in the
literature. Among the works providing performance evaluation, let
us mention the one of Chan et al. [5], where a 3D detection
method was evaluated on 26 volumes with 13 malignant masses
and 10 benign ones, 2 malignant architectural distortions and
1 benign one. The results have shown a sensitivity of 80%
(respectively 85%) for 2 (respectively 2.2) false positives per case.
However a fair comparison with our results is not possible since
the database is not the same, and our approach focuses on
malignant cases only.

Chan et al. [43] have then combined this approach with a
detection in projection images, with an evaluation on a database
containing 41 malignant masses and 11 benign ones. The additional
2D information reduces the number of false positives from 1.6 to 1.19
for a sensitivity of 80%, and from 3.04 to 2.27 for a sensitivity of 90%.

More recently, the same group proposed a deeper study of the
differences between 2D and 3D detection approaches, and their
combination [11], with an evaluation on 100 volumes containing 69
malignant lesions. The comparison with our approach is then more
relevant since the databases are of the same order of magnitude (our
validation is based on 53 malignant lesions). Let us recall that DBT is
still a new acquisition technique resulting in difficulty to collect data.
Moreover results are also provided only for the detection of
malignant lesions, which corresponds to our configuration. The
operating points of the three methods described by Chan et al. [11]
are displayed in Table 2. However, let us note that these methods
address mass detection only. Nonetheless this table shows direct
comparison with our two channels scheme, which also detects
architectural distortions to demonstrate that while addressing more
findings we may have similar performances and even better ones at
high sensitivity.

For 80%, the combined approach of Chan et al. [11] provides a
better specificity than our method, while the 2D only and 3D only
methods are worse. However, for a 90% sensitivity, our method
provides as good results as the combined approach. Moreover, our
method allows setting the sensitivity above 90% with a small
increase of FP per volume (þ13%).

It should be noted that the databases are still quite small in
comparison to the high variability of lesions. Furthermore, the
databases used by Chan et al. [11] and in this paper are not the
same, which makes any comparison difficult. Again, the case of
architectural distortions is not addressed by Chan et al. [11]. If we
compare the results in Table 2 with those obtained by the first
channel only (Fig. 8), it appears that for low sensitivity (80%), the
combined method of Chan et al. [11] is slightly better. However,
this becomes the opposite when the sensitivity is increased (e.g.
for 90%, FP rates are 1.61 vs 1.23). Despite the above-mentioned
reasons regarding this comparison, this study shows that our
results are comparable to the ones obtained with already pub-
lished algorithms while addressing more findings.

Let us finally mention three other works. First, Singh [44] has
developed a masses detection method based on information
theory. Results on a database of 28 lesions (among which 10 are
malignant) show a FP rate of 2.4 for a sensitivity of 90%. Secondly,
Chan et al. [45] have assessed the influence of the number of
projections on the CAD system using a 3D method they previously
proposed [5]. This was evaluated on a database of 14 malignant
lesions. For a sensitivity of 80%, a FP rate of 0.87 was obtained
when using 11 projections, and 1.11 for 21 projections. These
results help us to confirm that our system is comparable to what
can be found in the literature. Finally, van Schie et al. [3] proposed
to train a DBT CAD system with 2D mammograms. While valida-
tion was done on a meaningful database, results obtained were
slightly worse than our method and the one of Chan et al. [11].
Actually, a sensitivity around 85% (resp. 90%) was obtained at
around 2 (resp. 3) false positives per breast volume.

5.3. Implementation details

The prototype used for the evaluation of the proposed methods
was implemented in Cþþ . Complexity of the overall method is a
combination of every step involved in the approach. For the sake

Fig. 16. Plane of a DBT volume exhibiting a strongly spiculated lesion, used in the
convergence channel evaluation. Although this lesion is not detected by this
channel, it is correctly detected by the dense kernel channel, and therefore by
the final fusion step.

Table 3
Complexity of the main parts of the proposed CAD scheme.

Step Complexity Notes

Fuzzy connected filters OðN log ðNÞÞ N being the number of voxels
Mass segmentation O(K) K being the number of pixels in the ROI to segment
A contrario detection OðNR2Þ N being the number of voxels and R the diameter of the largest potential lesion
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of clarity we summarize the main ones in Table 3. While not fully
optimized, the implementation was multi-threaded. Execution
time on an 8-core Intel Xeon X5482@3.20 GHz is about 2 min for
a 5 cm thick breast volume.

6. Conclusion

In this paper, we have proposed an original method for
detecting potential cancerous lesions in DBT images, based on
the design of specific methods for masses on one hand, and
architectural distortions on the other hand, leading to two detec-
tion channels, which are combined in a final decision step. These
methods exploit the 3D information provided by the DBT images.
Only a few steps are performed on 2D slices, when it is more
relevant, and the results are then aggregated in 3D. The results,
evaluated on a database of 101 images, containing 56 malignant
lesions, are very promising and compare favorably to those
published in the literature, especially for high sensitivity operating
points. They constitute a proof of concept, and the proposed
method can be the basis for a complete CAD system dedicated to
DBT volumes.

Further improvements could be proposed. The imprecision
induced by the DBT artefacts could be modeled using the notion
of fuzzy umbra images used in the first channel. While the
mathematical and algorithmic aspects can be dealt with, an
increase in computation time would however be expected. Impre-
cision and uncertainty could also be modeled in the segmentation
and classification steps.

As for the second channel, it would be interesting to investigate
a more realistic modeling of the tomographic planes content, for
instance by taking into account the correlation between voxels.

Further work aims at an extended evaluation on a larger
database, which would also enable to include more lesion types
in the proposed CAD system.
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