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3 LTCI, Téĺecom Paris, Institut Polytechnique de Paris, France
4 Equal contribution
5 Corresponding author

E-mail: thibault.marin.us@ieee.org

Keywords: PET motion correction, subspace modeling, low-rank reconstruction, PET/MR

Supplementary material for this article is available online

Abstract
Image quality of positron emission tomography (PET) reconstructions is degraded by subject
motion occurring during the acquisition. Magnetic resonance (MR)-based motion correction
approaches have been studied for PET/MR scanners and have been successful at capturing regular
motion patterns, when used in conjunction with surrogate signals (e.g. navigators) to detect
motion. However, handling irregular respiratory motion and bulk motion remains challenging. In
this work, we propose an MR-based motion correction method relying on subspace-based
real-time MR imaging to estimate motion fields used to correct PET reconstructions. We take
advantage of the low-rank characteristics of dynamic MR images to reconstruct high-resolution
MR images at high frame rates from highly undersampled k-space data. Reconstructed dynamic
MR images are used to determine motion phases for PET reconstruction and estimate
phase-to-phase nonrigid motion fields able to capture complex motion patterns such as irregular
respiratory and bulk motion. MR-derived binning and motion fields are used for PET
reconstruction to generate motion-corrected PET images. The proposed method was evaluated on
in vivo data with irregular motion patterns. MR reconstructions accurately captured motion,
outperforming state-of-the-art dynamic MR reconstruction techniques. Evaluation of PET
reconstructions demonstrated the benefits of the proposed method in terms of motion artifacts
reduction, improving the contrast-to-noise ratio by up to a factor 3 and achieveing a
target-to-background ratio up to 90% superior compared to standard/uncorrected methods. The
proposed method can improve the image quality of motion-corrected PET reconstructions in
clinical applications.

1. Introduction

Motion, including physiological motion (i.e. cardiac and respiratory motions) and involuntary bulk motion,
is a major source of image quality degradation in positron emission tomography (PET), which can result in
spatial blurring artifacts and mismatch between emission and attenuation maps, altering quantification of
tracer concentration and deteriorating the diagnostic value of PET images (Liu et al 2009, Ouyang et al 2013,
Rubeaux et al 2017). The conventional way to handle motion in PET is the gating method, which bins PET
list-mode data to different cardiac and/or respiratory motion phases followed by reconstructions of images
of each phase. However, gating results in increased noise levels due to the reduced number of events in each
motion phase. To address the limitations of the gating method, many PET motion correction methods have
been developed, which consist of two consecutive steps: motion field estimation and motion correction by

© 2020 Institute of Physics and Engineering inMedicine

https://doi.org/10.1088/1361-6560/abb31d
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6560/abb31d&domain=pdf&date_stamp=2020-11-25
https://orcid.org/0000-0002-8669-1003
https://orcid.org/0000-0003-0756-571X
https://orcid.org/0000-0003-1650-1347
https://orcid.org/0000-0002-6984-1532
https://orcid.org/0000-0002-9005-6993
https://orcid.org/0000-0003-3067-4607
mailto:thibault.marin.us@ieee.org
https://doi.org/10.1088/1361-6560/abb31d


Phys. Med. Biol. 65 (2020) 235022 T Marin et al

either applying the estimated motion field to the gated images or modeling it within motion-compensated
PET image reconstruction (Rahmim et al 2013).

PET motion correction methods can be divided into two major subcategories, depending on how the
motion field is estimated: PET-based methods and magnetic resonance (MR)-based methods. In the
PET-based motion correction methods, the measured emission data are first assigned to specific motion
phases based on surrogate signals (Jin et al 2013), e.g. electrocardiogram (EKG), respiratory bellow, optical
tracking, etc. (Fulton et al 2002, Montgomery et al 2006, Yu et al 2016), or the PET-data themselves (Kesner
et al 2009, Sun et al 2019, Lu et al 2019), e.g. center of mass, time-of-flight information, frame-by-frame
images, etc. Motion fields are then estimated by registering the reconstructed image of each phase to a
reference phase (Dawood et al 2008). However, the accuracy of the motion fields estimated by the PET-based
methods is limited by low signal-to-noise ratio (SNR), especially in the case of dual gating, and the overall
lack of anatomical structural information of PET images (Ouyang et al 2013, Petibon et al 2019).

The increasing availability of hybrid PET/MR systems provides a unique opportunity for mitigating
effects of motion in PET using MR-based motion correction. Because of its excellent soft-tissue contrast,
high spatial resolution, and high SNR, MR provides more accurate estimation of motion fields than the
PET-based methods. MR-based PET motion correction methods have been successfully applied to
compensate respiratory and cardiac motion in various applications involving both static and dynamic PET
imaging (Petibon et al 2013, Huang et al 2014, Petibon et al 2019, Catana 2015, Gillman et al 2017, Küstner
et al 2017). One major limitation of the MR-based motion correction methods is that the conventional
noniterative MR imaging methods are unable to resolve cardiac or respiratory motion in real time due to the
slow imaging speed. Binning-based MR imaging methods (Grimm et al 2015, Rank et al 2016, Feng et al
2016, Munoz et al 2018, Robson et al 2018) are often used to address this issue, where MR k-space data are
grouped into different motion phases based on surrogate signals (e.g. EKG), navigator signals, or k-space
data alone, and images of each motion phase are then reconstructed for the estimation of motion fields.
However, the binning-based MR imaging methods suffer from three noticeable limitations. First, they
assume pseudo periodic motion, which does not hold well in the case of arrhythmia and irregular respiratory
motion. Second, they rely on either surrogate signals or navigator signals acquired along a single direction to
assign k-space data to specific motion phases, which cannot reliably capture involuntary bulk motion. Third,
their performance is limited by the inherent trade-off between the number of motion phases (and thus the
accuracy of motion field measurement) and data acquisition time.

In this work, we propose a real-time MR imaging method for PET motion corrections in PET/MR. High
resolution real-time MR imaging is achieved by a subspace-based imaging method, which takes advantage of
a unique property of high-dimensional dynamic MR signals known as partial separability (PS) (Liang 2007).
The PS-model takes advantage of the spatial-temporal correlations of dynamic MR images, significantly
reduces the number of unknowns of the underlying spatiotemporal signal, and makes it possible to recover
high resolution, high frame-rate dynamic MR images from highly undersampled k-space data (Zhao et al
2012, Christodoulou et al 2014). For PET motion correction, the reconstructed real-time MR images are
used to determine motion phases and estimate motion fields. PET list-mode data are binned into sinograms
accordingly and ordered-subset expectation-maximization (OSEM) reconstruction (Hudson and Larkin
1994) is performed integrating the estimated displacement in the system matrix for motion correction. We
demonstrate the performance of the proposed method by carrying out in vivo 18F-FDG PET/MR imaging
experiments using a 3 T simultaneous PET/MR scanner.

2. Methods

2.1. PET/MR imaging experiment
An 18F-FDG PET/MR scan was performed on one healthy subject under a study protocol approved by our
local IRB. PET and MR data were simultaneously acquired 30 minutes after 18F-FDG injection (around 10
mCi) using a 3 T PET/MR scanner (Siemens Biograph mMR, Siemens Healthcare, Erlangen, Germany).

Two 5-minute MR acquisitions were performed using a spoiled gradient-recalled echo (GRE) sequence
with stack-of-stars radial sampling trajectories in the coronal plane. The imaging parameters are as follows:
image size= 384× 384× 32, resolution= 1.9× 1.9× 5 mm3, TR/TE= 3/1.6 ms, and flip angle= 7 degrees.
The (k,t)-space data were acquired using a random sampling pattern shown in figure 1. A total of 35 k-space
spokes were sampled in each frame, resulting in a frame rate of 9.5 volumes per second. For each frame, the
first 3 spokes were respectively acquired along the kx, ky and kz direction across the center of the k-space to
estimate the temporal basis of the partially separable (PS) model detailed next. The remaining 32 spokes were
along a random angle in the kx-ky plane for every kz. During the first 5-minute acquisition, the subject was
instructed to move once to assess the effect of both respiratory and bulk motion. During the second
5-minute acquisition, the subject was instructed to simulate an irregular respiratory pattern including both
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Figure 1.MR Sampling scheme used for the proposed method. 35 lines per frame are acquired: 1 line along kz and 34 lines in the
kx-ky plane. For a better visibility, only the kx-ky in-plane acquired lines are shown in the figure. Two training lines along kx and ky
at kz = 0 are consistently acquired through the whole acquisition to estimate the temporal basis V t (red lines). A random angle is
chosen every frame and is consistently acquired every kz for imaging.

deep and shallow breaths. The vendor-provided two-point Dixon sequence was performed with
breath-holding to obtain attenuation coefficients.

2.2. Subspace-based image reconstruction
Denote the dynamic image series as ρ(r, t) and its matrix representation C ∈ CN×M such that:

C=

 ρ(r1, t1) . . . ρ(r1, tM)
...

. . .
...

ρ(rN, t1) . . . ρ(rN, tM)

 . (1)

We express ρ(r, t) as a PS model (Liang 2007):

ρ(r, t) =
L∑

l=1

ul(r)vl(t), (2)

or, equivalently C as:

C= UsVt, (3)

where Vt ∈ CL×M concentrates in rows the temporal basis function vl of the PS model up to order L and
Us ∈ CN×L concentrates in columns the corresponding spatial coefficients ul.

We estimate the temporal basis functions using the training data acquired at every frame. Assuming p
training lines, we form the so-called Casorati matrix Ct ∈ CpNf×M by stacking the signal of the p training
lines at each frame, where N f is the number of samples acquired in each k-space line. The temporal basis

functions {vl}Ll=1 can then be estimated by calculating the first L right eigenvectors of Ct using singular value
decomposition (SVD).

Once V t is obtained (denoted by V̂t), the image reconstruction problem is reduced to the determination
of the spatial coefficients matrix U s. We solve this problem by fitting the PS model to the undersampled
(k,t)-space data with additional sparsity constraints (Zhao et al 2012):

Ûs = argmin
Us

∥∥d−Ω
(
FsUsV̂t

)∥∥2
2
+λ1

∥∥T(UsV̂t)
∥∥
1
+λ2 ∥Us∥F , (4)

where d is the measured k-space data, Fs is the Fourier transform operator in the spatial domain, i.e.
Non-Uniform FFT (NUFFT) operator (Fessler and Sutton 2003) for the stack-of-stars trajectory, Ω is the
sparse sampling operator in the (k,t)-space, T is the finite difference operator along both the spatial and
temporal directions, ∥.∥F is the Frobenius norm and the scalar variables λ1 and λ2 are regularization
parameters. The first term in equation (4) is a data fidelity term, the second term promotes sparsity in the
reconstructed image and the third term favors minimal norm solutions for U s.
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We solve the optimization problem in equation (4) using the alternating direction methods of multipliers
(ADMM) algorithm (Boyd et al 2011), which leads to solving the following three sub-optimization problems
in an alternative fashion:

z(k+1) = Sλ1
µ

(
T
(
U(k)

s V̂t

)
+ η(k)

)
, (5)

U(k+1)
s = argmin

Us

1

2

∥∥d−Ω
(
FsUsV̂t

)∥∥2
2
+

µ

2

∥∥∥T(UsV̂t

)
− z(k+1) + η(k)

∥∥∥2
F
+ λ2 ∥Us∥F , (6)

η(k+1) = η(k) +
(
T
(
U(k+1)

s V̂t

)
− z(k+1)

)
,

where z is the split variable, η is the dual variable, and µ is a scalar relaxation parameter. The z update in
equation (5) is a soft thresholding operation and the U s update equation (6) is a convex-optimization
problem, which is solved using the conjugate gradient algorithm.

For comparison, we reconstructed MR images using the same data by a binning-based method, known as
XD-GRASP (Feng et al 2016). The respiratory motion signal used for binning was processed the same way
Feng et al (2016) did: the Fourier transform of the data at the center of the k-space at each frame was sorted
into a 2D matrix, with data from each coil concatenated along the first dimension. A Principal Component
Analysis (PCA) was then applied on this matrix and the component with the highest peak in the respiratory
frequency range (0.1, 0.5 Hz) was selected as the binning signal. The k-space data were then regrouped into
balanced bins, i.e. each bin containing the same number of spokes. The actual number of bins is experiment
dependent and will be described later in the Results section. The XD-GRASP reconstruction was performed
the same way as in Feng et al (2016).

2.3. Motion estimation
The reconstructed real-time MR images were first binned into a small number of phases corresponding to
different body positions (respiratory and bulk motion phases). Binning was performed in three steps. The
first step consists in visually determining the bulk motion phases from the MR images and discarding time
frames corresponding to the transition between bulk motion phases. In the second step, a bin is assigned to
each (real-time) frame by tracking the tip of the right lobe of the liver over time while ensuring balanced bins
(i.e., all bins should contain a similar number of frames). Finally, a combined MR image is formed for each
bin by averaging all real-time images in a bin. Volumetric image registration was then performed between all
bins and a reference bin using the multiscale B-spline registration algorithm described by Chun and Fessler
(2009).

2.4. PET reconstruction
The acquired list-mode PET events were first rearranged into B sinograms y= (y1, . . . ,yB) following the
binning determined fromMR images and discarding PET list-mode events occurring during bulk motion
transitions.

PET reconstruction was performed using the OSEM algorithm (Hudson and Larkin 1994) integrating
the estimated motion fields in the forward model (Liu et al 2011, Petibon et al 2016). Let x denote the PET
image to reconstruct arranged in vector form. The system matrix, denoted by F, is decomposed as
F= SAGM, where:

• M= [M1, . . . ,MB]
⊤ is a stack of deformation operators estimated using the procedure described in Section

2.3,
• G= diag(G, . . . ,G) is a block-diagonal geometrical projection matrix constructed by repeating the static
projection matrix G implemented using Siddon’s algorithm (Siddon 1985),

• A= diag(A1, . . . ,AB) is a diagonal matrix with time-varying attenuation coefficients,
• S= diag(S, . . . ,S) is a diagonal matrix with detector sensitivity coefficients S repeated for all bins.

With these notations, the motion-corrected OSEM update for a given subset l is given by:

x(n+1) =
x(n)

F⊤l 1
F⊤l

yl
Flx(n) + sl

, (8)

where Fl is the system matrix for the lth subset and sl is the combined additive correction sinogram for subset
l including randoms and scatter. Correction sinograms were constructed as follows. Random coincidences
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Figure 2. Regions of interest used for quantitative analysis: (a) bulk motion experiment, (b) irregular respiratory motion
experiment. ROI 0 in the lung, ROI 1 in the kidney, ROI 2 in the liver. For each experiment a small region in the kidney with the
highest activity was selected to assess the effects of different PET reconstruction methods on contrast-to-noise ratio.

were estimated using the delayed window method. Scatter was estimated using the single scatter simulation
algorithm (Werling et al 2002) from an initial reconstruction performed without motion correction. Scatter
was estimated separately for each bulk motion phase. Attenuation coefficients were obtained from a
vendor-provided Dixon sequence during breath-holding. The attenuation map was deformed to each bin
and forward projected to calculate sinogram-domain attenuation coefficients.

The OSEM used 12 subsets and 5 iterations. This motion-corrected reconstruction is denoted by MC in
the rest of the paper. For comparison, two other reconstruction methods were considered: a traditional
OSEM without motion correction (NMC) and a gated reconstruction where only list-mode events occurring
in a given motion phase are reconstructed without motion correction (Gated). Note that no time-of-flight
information was available and that the scanner’s point spread function was not included in the imaging
model. Both reference methods used 4 iterations to account for the difference in convergence speed, aiming
to match the noise level in MC and NMC reconstructions. The noise level was not matched for the Gated
method in order to keep gated reconstructions sharp and better compare with motion correction methods
(in practice gated reconstruction would typically use fewer subsets and/or iterations).

2.5. Quantitative analysis
In order to compare PET reconstructions, two evaluation measures were used: the contrast-to-noise ratio
(CNR) and target-to-background ratio (TBR). The contrast-to-noise ratio is defined as:

CNR(x,R) =
x̄R − x̄R0

σ0
, (9)

where σ0 is the standard deviation in the background regionR0 and x̄R is the average activity of image x in
regionR. The background regionR0 was a spherical region with a diameter of 14 mm, which was placed in
a low activity region (lung) and defined large enough to estimate the noise level. With the same notations,
the target-to-background ratio is given by:

TBR(x,R) =
x̄R
x̄R2

, (10)

whereR2 is a small spherical region with diameter 4 mm located in the liver. Both measures were evaluated
in a small spherical region with diameter 4 mm located in the kidney (R1 shown in figure 2). The region was
selected in the kidney with the highest activity and its size was defined to cover the high activity region. Note
that all regions of interest were located at the same position for all reconstruction methods. In the absence of
ground truth, the contrast-to-noise and target-to-background ratios were used as indicators of image quality.

3. Results

3.1. Correction of bulk motion
In this experiment the subject was instructed to move after around 2.5 minutes in the 5-minute acquisition.
Images reconstructed by XD-GRASP and the proposed method at the end-inhalation and end-exhalation
phases are shown in figure 3. The k-space data were grouped into six balanced bins as in Feng et al (2016) in
the XD-GRASP reconstruction. The images obtained by XD-GRASP method show noticeable blurring
artifacts largely because the bulk motion was not detected from the navigator signal. More specifically, figure
4(a) shows the navigator signal obtained from the training line along the kz direction in each frame as in
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Figure 3. Representative MR images obtained with the XD-GRASP and the proposed method. The red dashed-line indicates the
top of the liver position for end-inhalation and the green dashed-line indicates the top of the liver position for end-exhalation.
Note that, besides respiratory motion, bulk motion indicated by the yellow arrows is clearly seen in the proposed low-rank based
image reconstruction. The images obtained by XD-GRASP show blurring artifacts largely because the bulk motion was not
detected from the navigator signal (see figure 4 for more details).

Figure 4. (a) Plot of the processed navigator along time, which was used to bin the k-space data in XD-GRASP. (b) to (d) Real part
of the temporal basis V t for the component 1, 2, and 15 of the PS model, respectively.

Feng et al (2016). Since the bulk motion of the subject was along the x direction (left to right), the navigator
signal only recorded abnormal changes during the bulk motion, i.e. the red region in figure 4(a), but did not
contain sufficient information to indicate what type of motion occurred. Therefore, six motion bins were
chosen in XD-GRASP while the k-space data acquired in the red region of figure 4(a) were discarded,
resulting in blurring artifacts.

The images obtained by the proposed method shown in figure 3 successfully capture both respiratory
motion (as indicated by the red and green dashed lines) and bulk motion (as indicated by the yellow arrows).
Figure 4(b)–(d) show the temporal basis functions of the PS model estimated from the three training lines,
where, intuitively, the first component (figure 4(b)) shows respiratory patterns and the second component
(figure 4(c)) indicates bulk motion. To further demonstrate the real-time capabilities of the proposed
method, figure 5 shows images at multiple time frames along with a 1D profile through the liver along time.
The images from before and after bulk motion demonstrate the ability to capture both respiratory and bulk
motion. The yellow overlay emphasizes the body displacement between Stage 1 and Stage 2. The profile plot
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Figure 5. Dynamic MR images reconstructed by the proposed method. The real-time profile (e) is plotted for a part of the
experiment where the bulk motion happens, and two representative images (a) & (b) and (c) & (d) are shown for each body
position. The white line in (a) shows where the time profile was taken. A yellow box at the edge of the patient has been drawn for
the first body position (b) and the same box was also drawn for the second body position (d) at the same coordinates (regarding
the image). One can clearly see that the body of the subject moved to the right of the image during the bulk motion, and that the
proposed method managed to catch that motion.

shows the respiratory motion, captured for both bulk motion phases. The transition portion between the
two bulk motion phases corresponds to the frames that were discarded in the PET reconstruction. Videos
showing the reconstructed MR images are available in the Supplementary Material M1
(stacks.iop.org/PMB/65/235022/mmedia).

To account for the two body positions and for respiratory motion in PET reconstruction, real-time MR
images obtained by the proposed method were grouped into 12 bins (six bins for each body position) for
motion field estimation. Frames in the transition between the two bulk motion phases were excluded (a total
of 15 seconds were discarded). Motion was estimated between all bins and the bin corresponding to the
end-exhalation, which was used as reference bin. Estimated motion fields are shown in figure 6. The top left
image shows motion caused by respiration, mostly visible as a vertical displacement near the liver (shown
with more details in the inset image). The left column images show the bulk motion, which is mostly lateral.
Finally, the bottom right figure shows a combination of respiratory motion between end-inhalation and
end-exhalation and bulk motion.

Reconstructed PET images are shown in figure 7. Figures 7(a) and (b) show coronal and axial slices using
different reconstruction methods. Motion-induced blurring artifacts are clearly visible on the NMC
reconstruction primarily in the lateral direction, corresponding to bulk motion but also in the vertical
direction due to respiratory motion. The gated reconstruction, which uses one sixth of the PET counts at a
single body position, shows sharper features but is severely corrupted by noise. The motion-corrected
reconstruction using XD-GRASP for motion estimation (denoted by MC-XDG) still shows noticeable
motion artifacts because the XD-GRASP reconstruction failed to capture the bulk motion. The proposed
method compensates both respiratory and bulk motion, significantly reducing motion-blur, while exhibiting
a low noise level. Figure 7(c) shows line profiles through the kidney. Without motion correction, the activity
peak is lowered by motion. Instead, two distinct peaks are visible, which correspond to the two bulk motion
phases. The two peaks are also visible for the XD-GRASP based motion correction. The gated
reconstructions and the motion-corrected reconstructions by the proposed method both preserve the peak
activity. However, the gated reconstructions exhibit a high level of noise due to the reduced amount of data
used for reconstruction.

Evaluation measures are reported in table 1. The table shows that motion corrected reconstruction leads
to the highest CNR: a 83% improvement was observed over reconstruction without motion correction, 47%
over XD-GRASP-based motion correction and 198% over gated reconstruction. The noise level in NMC and
MC is similar (within 15%) but the contrast is substantially improved by motion correction, while the noise
level in the gated reconstruction is three times higher leading to the low CNR. This is expected since gated
reconstructions were not tuned to reduce noise but to increase contrast. One could expect a lower CNR for
gated reconstruction with a tuned number of subsets and iterations. For the TBR, the gated reconstruction
achieves the highest ratio, because gated reconstructions favor high contrast (at the expense of high noise).
The proposed motion compensation method approaches the gated TBR (25% decrease) and outperforms
NMC (20% increase).
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Figure 6. Estimated motion field between bins from different bulk motion phases. The top left panel corresponds to the bin used
as reference (Body position 1 and the end of exhalation). The top right panel shows the same body position at the end of
inhalation; the overlaid motion field exhibits mostly vertical displacement near the liver, corresponding to respiratory motion.
The bottom row shows the estimated motion field at the end of exhalation and inhalation for the second body position (after bulk
motion). Motion fields demonstrate the lateral displacement between body positions.

Figure 7. PET reconstructions for the bulk motion experiment using three different methods: reconstruction without motion
correction (NMC), reconstruction from PET data corresponding to a single respiratory phase and body position (Gated), motion
correction using motion estimated from the XD-GRASP MR reconstructions (MC-XDG) and proposed motion-corrected
reconstruction from low-rank MR reconstruction (MC-LR). Profile plots through the right kidney (along the orange line drawn
on the NMC image) are shown in (c).

3.2. Correction of irregular respiratory motion
The second experiment was designed to evaluate the performance of the proposed method in the case of
irregular respiratory motion. The subject was instructed to alternate between slow deep and fast shallow
breaths throughout the 5 minutes PET/MR acquisition.

MR images obtained by the proposed method are shown in figure 8. The top row shows images at
different frames: two at the end of inhalation and two at the end of exhalation taken from different breathing
patterns (deep/shallow), respectively. The full extent of the respiratory motion is captured and the images are
artifacts-free. Figures 8(e) and (f) show 1D profiles of the image through the liver changing over time. Both
the images and the plot in figure 8 clearly show the breathing patterns, alternating between deep slow breaths
and fast shallow ones. Based on the reconstructed real-time MR images, 12 bins were determined through
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Table 1. Contrast-to-noise ratio (CNR) and target-to-background ratio (TBR) for kidney region of interest. See figure 2 for a view of the
regions of interest.

NMC Gated MC-XDG MC-LR

CNR 42.07 25.88 52.49 77.26
TBR 6.05 9.57 6.84 7.25

Figure 8. Reconstructed MR images in the case of irregular respiratory motion. The real-time profile (e) is plotted for a few
minutes of the experiment where the subject changes their breathing pattern from slow and deep to fast and shallow respiration.
Images (a) and (b) show representative images at end-inhalation during deep breath and shallow breath, respectively; (c) and (d)
at end-exhalation. The red dashed-line indicates the top of the liver position for end-inhalation and the green dashed-line
indicates the top of the liver position for end-exhalation for each breathing pattern.

Figure 9. PET reconstructions for the irregular motion experiment using three different methods: reconstruction without motion
correction (NMC), reconstruction from PET data corresponding to a single respiratory phase (Gated) and proposed
motion-corrected reconstruction (MC-LR). (c) shows profile plots through the left kidney (the profile line is shown on the NMC
coronal PET image).

analysis of the liver displacement in the MR images and were consequently used for motion field estimation
and motion corrected PET reconstruction. Sequences of MR reconstructions are shown in Supplementary
Material M2. Reconstructed MR images using XD-GRASP are shown in Supplementary Material M3, where
the k-space data were grouped into 12 balanced bins to capture both deep and shallow respiratory motion.

Corresponding PET reconstructions are shown in figure 9. Images reconstructed without motion
correction (NMC) exhibit blurring artifacts. This is particularly visible on the left kidney (see the orange line
on the NMC coronal image) where the bright spot visible on other images is elongated in the vertical
direction, due to the large amplitude of the respiratory motion. The gated reconstruction uses one sixth of
the total number of counts and therefore is degraded by noise, despite resulting in a sharper image. The
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Table 2. Contrast-to-noise ratio and target-to-background ratio for kidney region of interest. Regions are shown in figure 2.

NMC Gated MC-XDG MC-LR

CNR 17.52 15.28 37.39 46.18
TBR 3.92 9.00 6.33 7.64

motion corrected reconstructions using XD-GRASP and the proposed method for motion estimation both
produce sharper images with higher SNR, while the proposed motion correction method results in the best
image quality, in terms of noise and contrast. Corresponding line profiles are plotted in figure 9(c). The
NMC peak is elongated along the y-axis, due to the large extent of the mostly vertical respiratory motion.
The Gated line profile is sharper near its peak but has a large noise level. The proposed MC method results in
a good compromise between sharpness and low noise. Contrast-to-noise and target-to-background ratios
(defined in equations (9) and (10) respectively) are reported in table 2 (regions of interest are shown in figure
2(b)). Metrics show the superior performance of the proposed motion correction method. The improvement
in CNR is around 163% over NMC and over 200% over gated reconstruction. As for the bulk motion
experiment the gated reconstructions were tuned to maximize contrast rather than reduce noise. The CNR
for the gated reconstructions could be improved with further tuning (i.e. by decreasing the number of
subsets and iterations). The TBR for the proposed method is within 15% of the gated TBR and around 95%
larger than NMC.

4. Discussions

We have demonstrated the performance of the proposed MR-based motion correction for PET in two
challenging cases: bulk motion and irregular respiratory motion. The proposed subspace-based MR imaging
method allows for reconstruction of high-resolution 3D volumes at a rate of 9.5 volume/s, which enables
accurate motion field estimation even in the case of irregular motions. Another important benefit of the
proposed approach is the ability to perform informed binning for PET motion correction, rather than
relying on navigators or external markers which offer limited information on the subject motion. With full
real-time volumetric MR images, detecting motion becomes straightforward, and the process of determining
an appropriate number of bins is greatly simplified.

The key assumption of the subspace-based imaging method is the low-rank property of dynamic MR
signals. We performed a simulation study to investigate this property in the case of regular and irregular
respiratory motion. Two phantoms (shown in the Supplementary Material M4 and M5) were generated
using the XCAT software (Segars et al 2010) to simulate regular and irregular respiratory motion. Respiratory
and cardiac cycles were divided into respectively 30 and 40 phases and 3D volumes were computed for each
respiratory and cardiac phase combination (i.e. 1200 volumes). A 4D (3D space+ time) phantom was then
built by selecting and concatenating frame by frame the 3D volumes based on simulated EKG and respiratory
signals. Both the breathing frequency and diaphragm expansion were varied while keeping a constant heart
rate in the simulation of the irregular respiratory motion. Each phantom contained six respiratory cycles.
The contrast was designed to simulate a Balanced Steady-State Free Precession (bSSFP) signal for several
compartments such as fat, muscles, etc. using T1 and T2 values from the literature (Bojorquez et al 2017).
SVD was then performed to investigate the effect of an irregular respiratory pattern on the rank, and its
corresponding approximation error with low-rank truncation (see Supplementary Material figure M6). The
decay of the calculated singular values from both phantoms was very similar, indicating that the breathing
pattern does not substantially affect the rank of the data.

The proposed method utilizes an MR acquisition which fully overlaps with the PET acquisition and
provides real-time MR images for motion correction. The proposed method can still have benefits for other
commonly used acquisition protocols. It is common in practice to reserve a first part of the PET acquisition
to perform MR motion field measurements and use the remaining PET acquisition time to perform
additional MR measurements (e.g. using T1 or T2 contrast sequences) that can be used for other diagnostic
tasks (Petibon et al 2019). The proposed method can advantageously replace the motion field measurement
sequence, possibly reducing the acquisition time while preserving image quality. A gating signal (e.g.
navigator or external marker) can then be used in subsequent MR sequences to select an appropriate bin for
each PET frame. Another approach is to integrate contrast sequences into the motion field estimation
sequence described in this paper. This is under investigation and will be reported in separate publications.

The study reported in this paper has several limitations. First, the computation time for the low-rank
reconstruction with sparsely sampled non-Cartesian k-space data could be a concern. The current MATLAB
(The MathWorks, Inc. Natick, Massachusetts, United States) implementation performs reconstruction of one
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slice and one coil in around one hour. We anticipate that using a lower level programming language and
parallel computing devices (e.g. GPU) will help achieve reasonable runtimes (Wu et al 2011). Second, the
proposed method does not have sufficient temporal resolution to resolve the motion in the transition phase
between the two bulk motion phases of experiment 1 (figure 5(e)). The time-varying profile plot shows that
the image quality in the transition is severely degraded. The corresponding list-mode data were excluded
from the PET reconstruction. Since the duration of the bulk motion was short, only about 5% of the
list-mode data were discarded and thus should not be a significant limitation. Third, this study focuses on
demonstrating the feasibility of using subspaced-based real-time MR for PET motion correction. We showed
the performance of our method in two cases (bulk motion and irregular respiratory motion) from in vivo
PET/MR experiments on a healthy subject. More subjects are needed to fully evaluate the performance of the
proposed method in clinical settings. It is also worthwhile to explore incorporating advanced system
modeling including time-of-flight information and point-spread function modeling into the proposed
method. While advanced imaging models are expected to improve low-count (e.g. gated) reconstructions
and quantitative metrics, all reconstruction methods, including the proposed motion correction, would
benefit from more accurate modeling.

5. Conclusion

We proposed an MR-based method for PET motion correction using a subspace-based real-time MR
imaging for motion field estimation. We demonstrate the feasibility of the proposed method using
18F-FDG-PET/MR studies on a healthy subject. Our results show that the proposed method can capture and
correct for normal and irregular respiratory motions as well as bulk body motion. The proposed method can
be beneficial to a range of clinical applications where irregular motion patterns are expected.
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