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Magnetic resonance diffusion tensor imaging (DTI)
provides information about fiber local directions in
brain white matter. This paper addresses inference of
the connectivity induced by fascicles made up of nu-
merous fibers from such diffusion data. The usual fas-
cicle tracking idea, which consists of following locally
the direction of highest diffusion, is prone to errone-
ous forks because of problems induced by fiber cross-
ing. In this paper, this difficulty is partly overcomed
by the use of a priori knowledge of the low curvature
of most of the fascicles. This knowledge is embedded
in a model of the bending energy of a spaghetti plate
representation of the white matter used to compute a
regularized fascicle direction map. A new tracking al-
gorithm is then proposed to highlight putative fascicle
trajectories from this direction map. This algorithm
takes into account potential fan shaped junctions be-
tween fascicles. A study of the tracking behavior ac-
cording to the influence given to the a priori knowl-
edge is proposed and concrete tracking results
obtained with in vivo human brain data are illus-
trated. These results include putative trajectories of
some pyramidal, commissural, and various associa-
tion fibers.
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INTRODUCTION

The study of connectivity in the human brain is of
interest to a wide range of investigators in the neuro-
science community and encompasses fields of research
concerned with the functional and anatomical organi-
zation of the brain, focal lesion-deficit studies, and
brain development (Dejerine, 1895; Rye, 1999).

MRI is a unique tool for providing in vivo images of
the brain for analysis of brain structure and organiza-
tion. T1-weighted volume scans have been used to seg-
ment brain structures allowing automatic parcellation
of the white matter and cortex (Filipek et al., 1989;
Mangin et al., 1995; Meyer et al., 1999; Makris et al.,
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1999). These high-resolution MRI-based methods can
be used to investigate the spatial relationships be-
tween anatomical regions. They are, however, unable
to infer the connectivity induced by axonal fibers.

Tract tracing methodologies dedicated to the human
brain have been restricted to post mortem studies.
These methods include the dissection of white matter
(Dejerine, 1895), strychnine neuronography (Pribam
and MacLean, 1953), and the Nauta (Whitlock and
Nauta, 1956) and Fink-Heimer methods (Turner et al.,
1980) of tracing neuronal degeneration after localized
lesions. New histological methods have been recently
proposed to study heavily myelinated fiber tracts in the
normal brain (Burgel et al., 1999). Methods based on
active axonal transport of tracer molecules, however,
are restricted to animals for all but the shortest of
pathways (Young et al., 1995). These approaches which
require animal sacrifice are limited by the number of
injections (each of which may track only a few fiber
bundles) in the same individual. In vivo MR imaging of
the tracer could overcome this difficulty (Pautler et al.,
1998).

MRI methods based on the study of water diffusion
in the human brain represent a promising new ap-
proach for fiber tracking and the study of connectivity.
Diffusion imaging provides unique quantitative infor-
mation about brain structure, which is completely non-
invasive and covers the entire brain (see (LeBihan,
1991; Le Bihan, 1995) for a review). The basic principle
stems from the orientational information provided by
the phenomenon of diffusion anisotropy in white mat-
ter. Diffusion tensor imaging (DTI) characterizes the
diffusional behavior of water in tissue on a pixel by
pixel basis. This is done in terms of a matrix quantity
from which the diffusion coefficient can be obtained
corresponding to any direction in space (Basser et al.,
1994b). Subsequent diagonalization of the diffusion
tensor yields its eigenvalues and eigenvectors. As such,
the eigenvector corresponding to the largest eigenvalue
is taken to represent the main direction of diffusion in
a voxel. Given that one may ascribe diffusion anisot-
ropy in white matter to a greater hindrance or restric-
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tion to diffusion across the fiber axes than along them,
the principal eigenvector may be considered to point
along the direction of a putative fiber bundle traversing
the voxel. Thus direction maps made up of the princi-
pal eigenvectors can be produced, providing a striking
visualization of the white matter pathways and their
orientation (Makris et al., 1997).

Several approaches have been recently proposed to
study anatomical connectivity from such direction
maps (Basser, 1998; Poupon et al., 1998b, 1998a; Mori
et al., 1999; Conturo et al., 1999; Xu et al., 1999). The
general aim is the possibility of asserting which corti-
cal areas or basal ganglia are connected by fascicles
embedded in white matter bundles. All these ap-
proaches rely on variants of the idea of locally following
the direction of highest diffusion to reveal a fascicle
trajectory. Unfortunately, in vivo protocols for diffu-
sion image acquisition suffer from partial volume effect
and various artifacts which lead to corrupted direction
maps. For instance, as a result of partial volume, the
direction of highest diffusion may not be related in a
simple way to the underlying fascicle direction because
of fiber crossing (Pierpaoli et al., 1996a, 1996b; Tuch et
al., 1999). As each error in the direction map may lead
to an erroneous fork for a local tracking process, this
situation prevents robust fascicle tracking.

This paper proposes a new approach which consists
of using a priori knowledge of white matter geometry
to attempt to overcome such difficulties. The approach
relies on a global model of the likelihood of any fascicle
direction map. This model is used within a Bayesian
framework to compute a regularized direction map al-
lowing a global trade-off between diffusion tensor data
and a priori knowledge regarding the low curvature of
most of the fascicles. This regularized direction map is
then used to perform tracking operations according to
a new algorithm dealing with potential fan-shaped
junctions between fascicles. Various results obtained
in a series of normal volunteers show that the regular-
ization approach improves the tracking robustness.

METHODS

Data Acquisition

All scans were acquired on a 1.5T Signa Horizon
Echospeed MRI system (Signa, General Electric Med-
ical Systems, Milwaukee, WI) equipped with magnetic
field gradients of up to 22 mT/m. A standard quadra-
ture head coil was used for RF transmission and recep-
tion of the NMR signal. Head motion was minimised
with standard foam padding as provided by the man-
ufacturer. The images were acquired after a sagittal
localizer scan.

An inversion recovery prepared spoiled gradient
echo sequence was used to obtain a volume image of
the entire brain with a resolution of 256 X 192 X 124
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slice locations each 1.3 mm thick. The field of view =
24 X 18 cm along the read and phase directions respec-
tively. Flip angle = 10°, TE = 2.2 ms, Tl = 600 ms.
Four excitations were acquired. Imaging time was ap-
proximately 27 min.

Echoplanar diffusion-weighted images were ac-
quired in the axial plane. Blocks of eight contiguous
slices were acquired each 2.8 mm thick. Seven blocks
were acquired covering the entire brain corresponding
to 56 slice locations. For each slice location 31 images
were acquired; a T2-weighted image with no diffusion
sensitisation followed by 5 diffusion sensitized sets (b
values linearly incremented to a maximum value of
1000 s/mm?) in each of 6 noncolinear directions. These
directions were as follows: {(1, 1, 0), (1, 0, 1), (0, 1, 1), (1,
-1, 0), (1, 0, —1), (O, 1, —1)} providing the best preci-
sion in the tensor component when 6 directions are
used (Pierpaoli et al., 1996b).

In order to improve the signal to noise ratio this was
repeated 4 times, providing 124 images per slice loca-
tion. The image resolution was 128 X 128, field of view
24 X 24 cm, TE = 84.4 ms, TR = 2.5 s. Imaging time
excluding time for on-line reconstruction was approxi-
mately 37 min. A database of 8 normal volunteers
(men, age range 25-34 years) has been acquired with
this protocol. All subjects gave informed consent and
the study was approved by the local Ethic Committee.

Computation of the Diffusion Tensor

Before performing the tensor estimation, an unwarp-
ing algorithm is applied to the diffusion-weighted dataset
to correct for distortions related to eddy currents induced
by the large diffusion sensitizing gradients. This algo-
rithm relies on a three parameter distortion model in-
cluding scale, shear, and linear translation in the phase-
encoding direction (Haselgrove and Moore, 1996). The
optimal parameters are assessed independently for each
slice relative to the T2-weighted corresponding image by
the maximization of an entropy-related similarity mea-
sure called mutual information (Wells 111 et al., 1997).
Following the distorsion correction, the diffusion tensor,
and, subsequently, the eigen system are calculated for
each voxel of the brain using a robust version of the
method described in (Basser et al., 1994a). This robust
regression method is a M estimator, which can be re-
garded as an iterated weighted least-squares (Meer et al.,
1991). This method remains reliable if less than half of
the data are contaminated by outliers. A detailed descrip-
tion of this tensor reconstruction process is beyond the
scope of this paper (Poupon, 1999b). The improvements
induced by distortion correction and robust regression
are illustrated by Fig. 1.

Direction Map Regularization

IlI-posed nature of the tracking problem. Let us as-
sume now that the fascicle tracking problem consists of
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FIG. 1. Correction for the spatial distortions induced by eddy currents and computation of diffusion tensor using a robust regression
method highly improves anisotropy maps. For instance, artifactual white areas induced by these distorsions in the phase-encoding direction

have disappeared and the gray/white boundary is better defined.

inferring trajectories from a fascicle direction map ex-
tracted from tensor diffusion data. It should be noted
that the spatial sampling of this direction map may be
higher than the spatial resolution of diffusion data.
This sampling may even be continuous when an inter-
polation method is used (Conturo et al., 1999). Conse-
guently, the fascicle tracking problem is very similar to
a number of problems where “flow lines” have to be
inferred from a vector field. The flow line running
through a given location may be reconstructed bidirec-
tionally by incremental displacements in the local vec-
tor direction. All the methods proposed to date follow
this idea in conjunction with a stop criterion, which
relies on thresholding tensor anisotropy (Conturo et
al., 1999) or trajectory curvature (Mori et al., 1999).

While such flow line local reconstruction approaches
may give very good results with a smooth vector field,
stemming for instance from the simulation of some
partial differential equation, they turn out to be ques-
tionable when applied to a corrupted vector field re-
sulting from noisy observations. Indeed, it has to be
understood that each erroneous vector may yield an
erroneous fork of the trajectory reconstruction process.
Hence, this local tracking method is unable to tolerate
even one corrupted vector along a fascicle.

All the methods described up to now use the vector
field made up of the tensor eigenvector related to the
largest tensor eigenvalue. Unfortunately, this vector

field is error prone. First, the low spatial resolution of
diffusion weighted images with respect to the usual
fiber bundle diameters encountered in the human
brain leads to significant partial volume effects. If a
voxel includes several fiber directions, the tensor is
difficult to interpret. In such situations, the main eig-
envector might follow a “mean direction” which may
differ significantly from the directions of the underly-
ing fascicles (Pierpaoli et al., 1996a, 1996b; Tuch et al.,
1999). Furthermore, DTI is highly sensitive to physio-
logical motion which may systematically lead to incor-
rect tensor estimation in some brain areas.

Considering that the corrupted nature of the eigen-
vector based direction maps is intrinsic to in vivo DTI
of brain white matter, the tracking problem turns out
to be “ill-posed.” This mathematical terminology
means here that two different DTI acquisitions of the
same brain could lead to two highly different tracking
results because of a high sensitivity to corrupted local
directions. This type of situation, which is common in
the field of computer vision, calls for the use of a priori
knowledge on the tracking solution. Indeed a priori
knowledge may allow the tracking algorithm to find
the correct fascicle trajectory whatever the corrupted
local directions.

The regularized approach. A vast amount of path-
way specific knowledge could be used to constrain the
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tracking algorithm. For instance some connections are
known from post mortem studies and animal studies
can be used to infer others. Furthermore, pathway
diameter, dispersion, and anisotropy can be deter-
mined from previous studies. However, our current
limited understanding of the variability of the human
brain connectivity makes the use of such knowledge
problematic (Burgel et al., 1999). Additionally, the use
of such specific knowledge may prevent consistent
studies of pathological brains. We have chosen there-
fore to use only a simple global assumption regarding
the low curvature of most white matter fascicles. This
kind of a priori knowledge leads to a classical paradigm
of applied mathematics called regularization theory
(Tikhonov and Arsenin, 1977).

The above introduction to the ill-posed nature of the
fascicle tracking problem has led to two important
observations. First, some principal eigenvectors do not
follow the underlying fascicle directions. This will lead
us to abandon the idea of using the tensor eigensystem
to compute the direction map. Second, a local trajectory
reconstruction is oblivious to corrupted vectors that
produce erroneous forks. This will lead us to use a
larger scale strategy in order to interpret ambiguous
tensors.

Our new fascicle tracking method is made up of two
stages. The first stage consists of computing a regular-
ized fascicle direction map as the optimal trade-off
between diffusion data and the low curvature hypoth-
esis. For instance, while the direction of the first eig-
envector of a “flat tensor” may largely differ from ac-
tual fiber directions, the plane defined from the first
two eigenvectors is supposed to include these direc-
tions. Hence, the low curvature hypothesis will lead
the regularization algorithm to choose within this
plane the fascicle direction which provides the best
agreement with the surrounding trajectories (see Fig.
2). The second stage of our method consists of studying
brain connectivity using a simple tracking algorithm
applied to this regularized direction map. Since this
map is supposed to be error free, this algorithm relies
on local information.

The initial step of our method consists of defining a
mask W within which all the algorithms are restricted.
A first volume of interest made up of the voxels belong-
ing to white matter is automatically extracted from the
T1-weighted image using an algorithm developed in
our institution (Mangin et al., 1995, 1998). A sophisti-
cated morphological dilation is then applied to this
segmentation in order to be robust to potential distor-
tions occuring in relating the echo-planar images (DTI)
and the high resolution T1-weighted image mask. This
dilation is homotopic which means that the topology of
white matter is preserved (Mangin et al., 1995) thus
preventing the creation of impossible pathways
through cortical folds.

The inference of the regularized direction map stems
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from a classical Bayesian interpretation. The regular-
ized map V,, is the optimal map which maximizes the
a posteriori probability p(V|D), where D denotes the
diffusion tensor data set and V denotes a random vec-
tor field which covers all possible direction maps de-
fined on W. Bayes rule allows us to introduce the a
priori knowledge on the low curvature of fascicles:

p(DV)p(V)

pVID) = =5

(1)

Since p(D) does not depend on V, maximizing p(V|D)
amounts to maximizing the product p(D|V)p(V). In the
following, we propose a model of these two probabilities
which allows the computation of V.. The a priori prob-
ability p(V) will favor the direction maps made up of
low curvature fascicles. The probability p(D|V) will be
related to the nature of water diffusion in white mat-
ter: for each voxel M, the diffusion coefficient in the
direction V(M) should be as high as possible. Hence, the
optimal map will be the best trade-off between the
observations (the diffusion data) and the a priori
knowledge (the low curvature assumption). An impor-
tant point to be noted is that if p(V) is the uniform
probability density (no a priori knowledge), V. turns
out to be the usual map made up of the tensor principal
eigenvectors.

The spaghetti plate model. Let us consider any di-
rection map V and a voxel M of this map. According to
this map, V(M) corresponds to the local direction of an
underlying fascicle crossing voxel M. Assume now that
we can find a way to compute the local curvature of this
fascicle from the neighborhood of M in the map. This
can be achieved using local geometric relationships.
Because fascicle curvature is the only information used
to assess the likelihood of any direction map (without
diffusion observations), then p(v(M)) depends only on
the realizations of the random vector field in the neigh-
borhood of M. Random fields endowed with this prop-
erty are called Markov fields. These fields have been
intensively studied in statistical physics as models of
spin glasses. Such fields are very interesting from a
practical point of view because the global field proba-
bility p(V) follows a Gibbs distribution (Geman and
Geman, 1984):

1
p(V) = > e e, )

where Z is a normalizing constant and P, are potential
functions defined on subsets of neighboring points
which interact with each other. These subsets are
called cliques. Each clique ¢ possesses a potential func-
tion P, which embeds the nature of the local interac-
tion. Intuitively, the lower the potential, the higher the
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probability of the clique realization. It should be noted
that one random variable (or one point) usually belongs
to several cliqgues. Combining all potential functions
leads to the global energy of the field, which is minimal
for the most likely realizations, i.e., those having the
highest probability.

We have recently introduced a class of Markovian
models dedicated to direction map regularization (Pou-
pon et al., 1998a). In this paper, we focus on one specific
model of this class which appears especially suitable to
the tracking problem and stems from an intuitive anal-
ogy. At the resolution of our diffusion data, a lot of
white matter voxels include some trans-callosal, some
projectional, and some associational fibers (Dejerine,
1895). As a first approximation, however, the geometry
of white matter may be compared with the geometry of
spaghetti plates illustrated by Fig. 3. While this anal-
ogy will be used to describe our methodology, one has to
bear in mind that this point of view is a significative

Principal
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b S
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FIG. 2. The regularization idea illustrated by a Y shaped trajec-
tory extracted from the pyramidal pathway. The diffusion tensors
are represented by ellipsoids, the tensor principal eigenvectors by
light yellow cylinders, and the regularized fascicle directions by dark
blue cylinders. The trajectory has been obtained using a local track-
ing algorithm applied to the regularized direction map. This trajec-
tory includes some flat tensors at the level of the Y junction. The
principal eigenvectors of these flat tensors give low confidence infor-
mation on actual fascicle directions. Therefore, a local tracking al-
gorithm applied to the eigenvector map may lead to erroneous forks
at the level of these flat tensors. The regularization algorithm has
reoriented the putative fascicle directions in order to create low
curvature trajectories while keeping a high diffusion coefficient
along these directions. The largest corrections occur for the low
anisotropy tensors.
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FIG. 3. The spaghetti plate like geometry of white matter illus-
trated by a brain dissection (Williams et al., 1997). The preservation
method of Klinger was utilized. Fine forceps (straight or curved)
were used to dissect the delicate nerve bundle preparations.

simplification of the actual white matter geometry.
Indeed, the striking simplicity of Fig. 3 dissection re-
sults in part from the fact that the anatomist was a
talented sculptor who has discarded finer fascicles and
fan-shaped endings.

Let us consider a single strand of spaghetti. Before
any cooking, this spaghetti can be considered as a
straight line. Put in hot water, the spaghetti accumu-
lates some energy and becomes a bended curve. The
magnitude of the total curvature is related to the total
amount of energy which has been accumulated. A sim-
ple way to assess the cooking effect on the spaghetti
geometry consists of integrating the curvature to de-
rive the spaghetti bending energy E:

length
ac?(s)ds;

E(spaghetti) =f (3)

0

where s is simply a curvilinear length measured along
the spaghetti, c(s) is the spaghetti curvature at dis-
tance s from the origin and « is the spaghetti rigidity.
This energy, well known in chemistry as the Kratky-
Porod model of semi-flexible polymers (Chaikin and
Lubensky, 1995), can be extended in a straightforward
way to the whole spaghetti plate. Note now that the
spaghetti energy defined in Eq. (3) breaks down to a
sum of local terms related to the local curvature, which
are exactly the kind of local interactions we are seeking
to define a Gibbs distribution for the fascicle direction
maps. Hence, the low curvature hypothesis will be
translated into a low bending energy constraint.

It is still necessary, however, to design the way to
compute the fascicle local bending energy. Let us re-
turn to the fascicle going through voxel M. Since fas-
cicles cannot end inside white matter, we must find two
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FIG. 4. 2-D illustration of the computation of fascicle local bend-
ing energy. (A) The spaghetti local bending energy. Note that c*ds =
(da/ds)?ds = da?/ds, where ¢ denotes local curvature (cf. Eqg. 3). (B) A
discrete bending energy is defined between two neighboring points in
order to mimic the continuous case (cf. Eq. 4). (C) The 26-neighbor-
hood of each point M is split in two by a plane orthogonal to V(M)
which defines forward and backward neighbors. One point minimiz-
ing the discrete bending energy is selected in each of these half-
neighborhoods (forwards: f(M), backwards: b(M)). The underlying
fascicle is supposed to follow the f(M) — M — b(M) trajectory.

prolonging voxels or perhaps the boundary of white
matter. To be consistent with the spaghetti plate anal-
ogy, these linked voxels are defined from a criterion
e(M, P), which mimics the spaghetti local bending en-
ergy (see Fig. 4):

e(M, P)
_ max?((V(M), Gup), (V(P), Gyp), (V(M), V(P)))
IMP|

(4)

where Uy, = MP/|MP| and (G, V) denotes the angle
between directions G and v. The neighborhood of M is
split in two by a plane that defines forward and back-
ward neighbors. Then one point minimizing e(M, P) is
selected in each of these half-neighborhoods (forward:
f(M), backward: b(M)). The underlying fascicle is sup-
posed to follow the f(M) — M — b(M) trajectory. The
potentials used to define the Gibbs distribution follow
directly:

PM(V) =e(M, f(M)) + e(M, b(M)). (5)
Because of the definitions of f(M) and b(M), the clique
related to Py, is the 26-neighborhood of M (more pre-
cisely the points of the 26-neighborhood of M included
in W). The Gibbs distribution made up of these poten-
tials gives a high probability to the direction maps
endowed with a low global bending energy. Because of
the analogy introduced above, this model is called later
the spaghetti plate model. It should be noted that al-
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though this model is made up of local potentials, the
probability distribution p(V) is global. This endows our
tracking model with a non local field of view.

The diffusion information. A model will now be pro-
posed for the second probability p(D|V). It should be
noted by a reader unfamiliar with the Bayesian frame-
work that V is now fixed and supposed to represent an
actual fascicle direction map. Let us assume that the
tensor measurement in one voxel M depends only on
the local fascicle direction given by v(M). This reason-
able hypothesis will lead to a second Gibbs distribution
corresponding to a field without interaction. The prob-
ability p(D|V) can be rewritten in the following way:

p(D|V) = g P(D(M)[V(M)).

Assuming now that any tensor measurement D(M) has
a non-zero probability, p(D|V) can be rewritten as:

1 D 1 D, .
p(D|V) = — [] e PMEM) = —_ ¢ —SuPu((M),
ZP ZP

where Z° is a normalizing constant and Py(V(M)) =
—In(p(D(M)|V(M))). Finally, in order to get a probabil-
ity p(D(M)|¥(M)) decreasing with the discrepancy be-
tween diffusion in the direction V(M) and the largest
diffusion coefficient A, (the largest tensor eigenvalue),
we propose the following potential function:

V(M)'D(M)¥(M) — A, 2
DM

PR(V(M)) = ( (6)

The discrepancy is normalized by the tensor norm
(Basser and Pierpaoli, 1996) in order to remove all
diffusion-based information apart from anisotropy. For
highly anisotropic tensors, this potential acts like a
spring which tries to align v(M) along the direction of
the largest diffusion coefficient. In the case of flat ten-
sors, this potential is more flexible and allows V(M) to
turn in the high diffusion plane. Finally, for isotropic
tensors, this potential allows any fascicle direction.

The entire model. Combining all the previous equa-
tions leads to an expression for p(V|D) which turns out
to be a new Gibbs distribution:

1 D . S
p(V|D) = > e EMPMU(M) +aP (V).

(7)

where Z is a normalizing constant. This new distribu-
tion now leads to the definition of V,, as the direction
map that minimizes the energy given by:
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FIG. 5. The tracking system. (A) The regularized direction map
is endowed with a system of two-way links. Some of the voxels which
have more than one two-way link in the same half neighborhood turn
out to be fascicle junctions. (B) The user selects one area on the white
matter surface. Then a propagation algorithm follows the links until
other white matter surface areas are reached. If the propagation
comes across a junction voxel, several trajectories may be followed in
parallel. The rule that prevents the propagation from proceeding
backwards at junction voxels is simple: when a voxel is reached, the
voxel mid-plan has to be crossed before using a new link. Black
arrows indicate the links used in the example.

E(V) = % PR(V(M)) + a % Pa(\V). (8)

Finally, this last definition shows that the optimal
direction map V,, is a trade-off between the measured
tensor data and the a priori knowledge on the low
curvature of fascicles. The constant « reflects the in-
fluence of this a priori knowledge, which is equivalent
to the rigidity of the underlying spaghetti plate. Hence,
V. represents the low energy spaghetti plate with the
highest diffusion along each spaghetti.

Tracking Experiments

Once the regularized fascicle direction map V,, has
been computed from the minimization of E(V), the sys-
tem user can perform tracking experiments according
to a simple local tracking scheme. This scheme relies
on the following organization of the direction map.
Each M — f(M) and M — b(M) link defined according to
the principle used during the regularization stage (see
Fig. 4) is converted into a two-way link (see Fig. 5A).
Recall that each voxel is endowed with forward and
backward half-neighborhoods (see Fig. 4C). After the
conversion operation, some of the voxels have more
than one two-way link in the same half-neighborhood.
These voxels prove to be junctions related either to
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fan-shaped divergences (see Fig. 2) or to variations of a
bundle thickness.

The system user first selects one area on the white
matter surface. Next a real-time propagation algo-
rithm follows the two-way links until other areas of the
white matter surface are reached (see Fig. 5B). Several
areas may be reached if the propagation encounters
junction voxels. Other kinds of experiments may also
be performed. For example, the input area may be
located inside white matter (W), in which case the
propagation algorithm is bidirectional. Or two input
areas, defined for instance by functional activations,
may be specified. In this case the system performs the
propagation from the first area and yields only the
trajectories reaching the second area.

RESULTS

For all the following results, the state space of the
random vectors V(M) has been discretized in 162 uni-
formly distributed directions. A deterministic minimi-
zation algorithm has been used to find the local mini-
mum for E(V) the nearest to the principal eigenvector
map (Besag, 1986). The computation time is about one
hour on a conventional workstation. The resulting fas-
cicle direction map is used to perform the tracking
experiments.

Influence of the a Priori Model Weight

Regularization of one set of diffusion tensor data has
been performed with eleven different values of the
weighting parameter o« (the spaghetti rigidity). In or-
der to then study the influence of regularization on the
fascicle direction map geometry, the voxels have been
classified into four types according to topological con-
siderations. In order to assess the number of voxels
leading to high local curvature trajectories, a threshold
on the local bending energy has been used to remove
some links. Since we will only focus on the evolution of
the number of the created “dead ends” relative to «,
this threshold has been arbitrarily fixed to remove
links leading to angular variations of more than 45
degree (see Fig. 4). The four types are:

Simple fascicle nodes. Voxels having exactly one
two-way link in each half neighborhood;

Junctions. Voxels related to the merge (or split) of
several fascicles made up of points of the previous type;

Gate to gray matter. Voxels leading to outside of the
white matter.

Dead ends.
borhood.

Figure 6 presents the evolution from no regular-
ization (left asymptotes) to high regularization
(right). First, the number of pathological sites (see
Fig. 6.3) decreases dramatically with the regulariza-
tion which demonstrates the efficiency of the model.

Voxels without a link in one half-neigh-
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(Left) Evolution of the numbers of four different types of configurations (see text); (right) (1) fascicle mixing inside a bundle before

regularization versus parallel fascicles after regularization; (2) sites of white matter leading to gray matter; (3) dead end without tracking

possibility.

Second, the regularization leads to a decreased num-
ber of junctions and to a dramatic increase in the
number of simple fascicle nodes. This effect is mainly
due to a reorganization of the fascicles inside larger
bundles (see Fig. 6.1) which corresponds to the usual
underlying anatomical reality. Indeed, the chrono-
topic establishment of the connections leads to topo-
graphically ordered bundles (Molnar, 1998). Hence,
the large bundles develop somatotopic organizations,
which means that different parts of the bundle sec-
tion include axons connecting different brain areas.
Some very long chains of simple fascicle nodes can be
found inside large bundles (see Fig. 7). Finally, the
number of sites leading to gray matter decreases
slightly, which is related to the fact that our model
prevents concave areas of the boundary, namely cor-
tical fold bottoms, from straying outside the white
matter. While this may correspond to some actual
anatomical constraint, this observation calls for re-
finements of the regularizing model. All the curve
evolutions reach limits beyond which no more topo-
logical effect is observed. This observation suggests
that the weight « = 1 is a reasonable trade-off be-
tween regularization and fidelity to the data which
has been used for further experiments.

Apart from the topological experiments mentioned
above, several experiments have been done to verify
visually that the weight « = 1 was not too high. These
experiments have shown that the more important ef-
fects of regularization occur for voxels endowed with a
low anisotropy (see Fig. 2).

Tracking Experiments

Finally, various tracking experiments have been
performed according to the scheme proposed in Fig. 5
or to a similar one for which the input is located
inside white matter. Some of these experiments were
aimed at tracking the putative trajectories of short
and long association fibers (cf. Figs. 8 and 9). Other
experiments were aimed at tracking the putative
trajectories of commissural fibers (cf. Fig. 10). Most
of these experiments led to low curvature trajecto-
ries in accordance with the a priori knowledge used
in the regularization process. The vast majority of
these trajectories were given fan shaped termina-
tions and a few forks compatible with the actual
organization of white matter. While no real valida-
tion is currently available, some of these tracking
experiments revealed trajectories akin to well-
known white matter bundles described in the ana-
tomical literature (Dejerine, 1895): pyramidal tracts
(cf. Fig. 7), superior longitudinal fasciculus (cf. Fig.
8A), cingulum bundle (cf. Figs. 9A and 9B), occipito-
frontal fasciculus (cf. Fig. 9C), occipito-occipital com-
missural axons crossing corpus callosum splenium
(cf. Fig. 10). Tracking experiments stemming from
inputs located in the corpus callosum show that it is
possible to reveal a certain level of the somatotopic
organization of this major commissure, even if the
respective cortical areas reached from very close in-
puts may not be fully distinct (cf. red and green
tracking from corpus callosum splenium in Fig. 10).
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FIG. 7. Two sample elementary fascicles (made up of simple nodes) among the longest ones. The underlying pyramidal tracts have been
defined using a connectivity based idea similar to the one proposed in (Jones et al., 1999). The putative fiber orientation is indicated by

cylinders.

DISCUSSION

Recent in vivo studies of the rat brain using research
MRI systems and long acquisition times have shown the
feasibility of accessing brain connectivity using DTI (Xu
et al., 1999). Reaching similar results for the living hu-
man brain with clinical scanners and reasonable acqui-
sition times remains a difficult challenge (Poupon et al.,
1998a; Conturo et al., 1999). Fascicle tracking itself is a

A Input Central sulcus

Frontal
lobe

Superior temporal sulcus

/ Intraparietal
sulcus .

mathematically ill-posed problem especially sensitive to
corrupted local directions in the map inferred from the
DTI data. Each error in this direction map may lead to an
erroneous fork of a local tracking process. This weakness
is especially troublesome considering the problems in-
duced by partial volume effects which mix fascicle direc-
tions. While partial volume effects may be decreased us-
ing higher spatial resolution, this solution reduces SNR
and generally leads to more severe image artefacts. Fur-

Right hemisphere B

Temporal lobe

FIG. 8. Examples of tracking from one single input voxel. The right hemisphere cortex is visualised from inside after a virtual split into
two pieces. (A) Input located in a premotor area leading to a long trajectory inside the superior longitudinal fasciculus including several forks
towards inferior parietal lobule and temporal lobe. (B) Tracking from different white matter voxels highlights putative trajectories of short

and long association fibers.
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FIG. 9. Examples of tracking from small sets of neighboring voxels endowed with similar putative fiber orientations (as observed in 2-D
slices with super-imposed directions). Input areas A and B are located inside right hemisphere cingulum bundle. Tracking highlights
different parts of the underlying bundle with some branching towards other cortical areas. Input area C is located inside right temporal white

matter. Tracking highlights the putative trajectory of the occipitofrontal fasciculus.
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FIG. 10. Tracking from different voxels located in corpus callosum. The lateral ventricles (A) and a part of the right hemisphere cortex

(B) are included in the visualizations for a better understanding of the trajectories.
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thermore, considering the actual intercalated fine-
grained anatomy of white matter, DTI cannot completely
overcome partial volume effects without addressing finer
diffusion models (Tuch et al., 1999).

While high angular resolution diffusion models have to
be used to untangle thin association bundles, we have
shown in this paper that another promising direction of
research consists of using a priori knowledge on the
tracking solution. While the regularization method pro-
posed in this paper may appear complicated compared to
more usual image smoothing approaches, it should be
noted that the underlying idea is a restoration that pre-
serves the DTI spatial resolution. Considering the cur-
rent spatial resolution of in vivo DTI (2 mm), preserving
this resolution is crucial for the tracking of thin cortico-
cortical bundles, which are of high interest in neuro-
science. For instance, Gaussian smoothing of the tensor
data, which has been recently proposed as a preprocess-
ing to tracking (Westin et al., 1999), is bound to increase
partial volume effects. In return, our approach based on
the fascicle low curvature hypothesis, can deal with some
simple problems induced by partial volume effects (see
Fig. 2). Our hypothesis, however, like a number of a priori
knowledge, may be wrong in some situations. Neverthe-
less, since our approach is based on a trade-off between a
priori knowledge and observations, actual fascicles en-
dowed locally with high bending can be tracked when the
underlying diffusion data is straightforward (highly
anisotropic).

In a recent paper, Conturo et al. presented similar
tracking results obtained for the living human brain
(Conturo et al., 1999). Their tracking approach and the
one described in this paper differ on many points, how-
ever. First, Conturo et al. ask connectivity questions of
a closed nature: which diffusion tracks cross these two
specific regions of interest? This kind of question in-
cludes more constraints than open questions such as:
which diffusion tracks cross this specific gray or white
matter area? Imposing several localization constraints
is an interesting way of dealing with the ill-posed na-
ture of the tracking problem. Nevertheless, more open
guestions are required to explore brain connectivity.
Moreover, it has to be noted that the user of the Con-
turo et al. method will have to decide whether he dis-
cards unplausible diffusion trajectories or he takes ev-
ery result at face value. Hence, a second important
difference is that the Conturo et al. method uses no a
priori knowledge at all on the diffusion track geometry.
In our opinion, such constraints are required not only
to discard erroneous forks but also to recover some of
the actual trajectories masked by partial volume and
other artefacts (see Fig. 2).

A third difference between both tracking approaches is
related to the interpolation of diffusion data used by
Conturo et al. This interpolation allows the tracking pro-
cess to get rid of potential bias induced by the discrete
grid. An important issue which has to be answered is

POUPON ET AL.

whether this interpolation results in an increase in the
number of false forks followed by the tracking process.
Indeed, interpolation is bound to create partial volume
like direction mixing. A last difference is that our method
deals explicitly with the fan shaped organization of fiber
bundles while the Conturo et al. method relies on diffu-
sion track oversampling. Their method cannot appar-
ently account for fiber branching.

In another recent paper, Jones et al. proposed a voxel
linking rule to define major bundles as connected compo-
nents (Jones et al., 1999). While this rule shares striking
similarities with the tracking method described in our
paper, it is too tolerant to deal with brain connectivity.
Indeed, a bunch of bundles that cross the same white
matter bottleneck (corpus callosum, internal capsule) be-
long to the same connected component because voxels of
parallel bundles are often linked. In fact the notion of
trajectory is missing in Jones et al. method. In return, the
notion of best neighbors used in our paper leads to tra-
jectories which allows us to split large bundles into fas-
cicle sets.

A number of questions related to some of the param-
eters of our method remain open: the weight of a priori
knowledge, the choice of the potential functions, the
minimization algorithm. Furthermore, some refine-
ments are required to overcome some bias induced by
the discrete grid. Finally, our model of white matter
should be improved in order to take fiber crossing into
account. Indeed, our work with a priori knowledge is
only a first attempt and should lead to further devel-
opments. Improving our general methodology will re-
quire knowledge of a gold standard with which to test
the validity and accuracy of all refinements. One of the
challenges to be immediately pursued, therefore, is the
design of reliable validation approaches, using, for in-
stance animals and standard tracer-based methods.

In summary, we have introduced a sequence of ro-
bust algorithms allowing the tracking of white matter
fascicles using DTI. A number of these algorithms are
completely new: eddy current distortion correction us-
ing mutual information, robust regression to assess the
diffusion tensor, computation of a regularized direction
map from DTI data and finally, a fascicle tracking
algorithm dealing with fascicle junctions. An impor-
tant future direction of research involves combining
our regularization approach with diffusion data en-
dowed with high angular resolution in order to deal
with fascicles crossing inside a voxel (Tuch et al., 1999).
DTI based tracking methodologies yield for the first
time access to the living human brain connectivity
which may rapidly open numerous fields of appealing
applications (Di Virgilio and Clarke, 1997; Rye, 1999).
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