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Abstract: Comparing probability or possibility distributions is important in many �elds of information pro-
cessing under uncertainty. In this paper we address the question of de�ning and computing Hausdor� dis-
tances between distributions in a general sense. We propose several dilations of distributions, and exhibit
some links betweenLévy-Prokhorovdistances anddilation-baseddistances. In particular,mathematicalmor-
phology provides an elegant way to deal with periodic distributions. The case of possibility distributions is
addressed using fuzzy mathematical morphology. As an illustration, the proposed approaches are applied to
the comparison of spatial relations between objects in an image or a video sequence, when these relations
are represented as distributions.
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1 Introduction
Comparing probability or possibility distributions is important in many �elds of information processing un-
der uncertainty. For instance distributions may represent uncertain measurements, imprecise preferences,
membership to a class, etc. The comparison then aims at assessing the evolution of these distributions over
time in dynamic systems, or their similarities between di�erent situations or in di�erent scenarios. As an
example, comparing distributions is important in image processing and understanding, and typical applica-
tions concern the comparison of histograms of gray levels or colors, or of key points [15, 25]. At a more struc-
tural level, spatial relations between objects, or between instances of objects at di�erent times, are important
to assess the spatial arrangement of objects on a scene and its evolution, thus requiring also comparison
between representations, e.g. as distributions, of such spatial relations [4, 5].

In this paperwe consider the general framework of comparison of distributions in a general sense (related
to image information or not), that can have a probabilistic or a possibilistic and fuzzy meaning. We focus on
links between dilation-based distances and optimal transport ones.

The Hausdor� distance is a good choice for comparing sets or functions, since it has all the properties of
a metric on compact sets. In this paper, we study this distance between distributions, from a mathematical
morphology perspective. In particular we highlight links between existing metrics such as Prokhorov and
Lévy ones, and existing or newly proposed expressions of the Hausdor� distance derived frommorphological
dilations. We consider distributions on the real line, as well as periodic distributions, which are important
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for comparing histograms of orientations or of colors in some speci�c color spaces, or directional spatial
relations. This problemhasbeenaddressedusing theWassersteindistance in [19], but not using theHausdor�
distance.

The Hausdor� distance has been de�ned between functions in [20], and by considering 1D functions as
subsets of R2 in [22]. We will also investigate a similar approach in this work. This idea was then further
studied in [9] by considering truncated umbras and dilations by a half ball, and in [16], where the case of
discontinuous functions was also addressed.

When functions aremembership functions of fuzzy sets or possibility distributions, di�erent approaches
for de�ning the Hausdor� distance have been proposed. Some of them de�ne the distance as a number,
by combining the values of the Hausdor� distances computed between α-cuts (thresholds of the functions,
hence sets), either as a weighted sum, or using the extension principle [7, 8, 18, 26]. Several generalizations
of the Hausdor� distance have also been proposed under the form of fuzzy numbers [2, 10]. Extensions of
the Hausdor� distance based on fuzzy mathematical morphology have been developed, either as a number
in [13] from the distance from a point to a fuzzy set [3], or as a fuzzy number [3]. This last approach will be
exploited in the present work too.

Some preliminaries on periodic and non periodic distributions are �rst given in Section 2, as well as some
considerations about the ground distance. Indeed, existingmethods for comparing histograms or probability
distributions [11] are usually categorized into two classes: (i) bin-to-bin distances, and (ii) cross-bin distances,
involving thedistanceon the support (or grounddistance) [11, 19, 25]. In this paper,weonly consider distances
of the second class, keeping in mind the application to spatial relations. For instance, if two distributions are
identical up to a translation andwith disjoint supports, the distances of the �rst class will always provide the
same value, while the second ones will di�erentiate situations with di�erent translations.

The contributions of the paper are then presented in the following sections. Several types of dilations are
proposed in Section 3. Thenwe propose Hausdor� distances on distributions based on optimal transport and
morphological methods in Section 4. The links between these two types of approaches allow us to address
the case of non periodic distributions in Section 5, which is another important contribution of this paper.
This case is illustrated in Section 6 for comparing directional relations between objects and their change in a
synthetic video sequence.

This work extends the one in [6], in particular by providing complete proofs of the main results as well
as additional illustrative examples.

2 Preliminaries

2.1 Distributions and cumulative distributions

Let f and g denote the distributions (in a broad sense) to be compared, via the computation of a distance
between them. We denote by M the de�nition domain of these distributions. In this paper, we consider only
one-dimensional domains, andM can beR orR+ for non-periodic distributions, and [0, ρ] for periodic distri-
butions of period ρ (for instance [0, 2π] for the example of relative direction in Section 6). We denote points
of M by x, y..., or θ, α... when they are angles.

Normalized distributions are assumed in this paper. Two types of normalization are considered: by the
sup ormax, or by the sum. The �rst case goeswith a fuzzy or possibilistic interpretation, while the second one
corresponds to a probabilistic interpretation. By convention all distributions take values in [0, 1]. In the prob-
abilistic interpretation, f (x) represents the probability that a random variable takes the value x. In the fuzzy
or possibilistic interpretation, f (x) represents the membership degree of x to some set (which is imprecisely
de�ned), or the possibility degree that a variable takes the value x.
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The cumulative distribution of f de�ned on the real line, denoted by F, is de�ned as :

∀x ∈ R, F(x) =
x∫

−∞

f (t) dt,

and for f de�ned on [0, 2π], taking arbitrarily 0 as origin:

∀θ ∈ [0, 2π], F(θ) =
θ∫

0

f (t) dt.

The cumulative distribution of g is denoted by G and is de�ned similarly. Note that de�ning a distance be-
tween f and g from a distance between F and G actually provides a distance between distributions (the proof
is immediate). For some de�nitions, we will consider F and G as sets in a 2D space, denoted by SF and SG.
Cumulative distributions are right continuous and jumps correspond to discontinuities in the underlying dis-
tributions. In such cases, SF and SG are completed by vertical segments corresponding to these jumps:

SF = {(x, F(x)) | x ∈ M} ∪ {(x, y) | x ∈ J(F) and lim
x′→x−

F(x′) ≤ y ≤ F(x)}

where J(F) denotes the set of points at which jumps occur (i.e. where the left limit of F at x is not equal to
F(x)). In the sequel, we always assume that SF and SG are completed graphs.

2.2 Ground distance

Asmentioned in the introduction, we only consider here cross-bin distances between distributions, involving
the ground distance on the support M.

Let us denote by d the ground distance on M. Its de�nition depends on M. If M is equal to R or R+, then
d is de�ned from an Lp norm, for instance in 1D:

d(x, y) = |x − y|.

For periodic distributions (or de�ned on a circle), the geodesic distance is used. If the period is ρ, we will use:

d(x, y) = min(|x − y|, ρ − |x − y|) = ρ
2 − ||x − y| −

ρ
2 |.

In the case of distributions on the circle, with ρ = 2π, this ground distance is expressed as:

d(θ, θ′) = min(|θ − θ′|, 2π − |θ − θ′|) = π − ||θ − θ′| − π|. (1)

This formulation allows us to consider that values close to 0 and 2π, respectively, are at a short distance from
each other. The distance values can also be normalized, using for instance d(θ,θ′)

π or sin |θ−θ
′|

2 . These formulas
extend to higher dimensions.

3 De�nition of some dilations of distributions

3.1 Morphological dilation of a sup-normalized distribution

We assume in this section that the distributions are normalized by the sup (and we restrict this work to dis-
tributions with bounded sup), or at least that they all have the samemaximum value. To simplify the presen-
tation, we consider binary structuring elements, de�ned as subsets of M.
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If the distributions are de�ned on the real line (M = R or M = R+), classical mathematical morphology
applies and the dilation of f by a structuring element B is expressed by

∀x ∈ M, δB(f )(x) = sup
y∈Bx

f (y),

where Bx denotes as usual the translation of B at x (Bx = x + B).
If the distributions are periodic, this periodicity should be taken into account in the dilation and the

structuring element. The following de�nition details the case where ρ = 2π but can be easily extended to any
periodic function.

De�nition 1. Let f be a distribution on the unit circle. Its dilation by a structuring element of size α is de�ned
by:

∀θ ∈ M = [0, 2π], δBα (f )(θ) = sup
θ′∈Bαθ

f (θ′) (2)

where Bα is a structuring element of aperture α, de�ned as:

– if α ≤ π:

– Bαθ = [θ − α, θ + α] if θ − α ≥ 0 and θ + α ≤ 2π,
– Bαθ = [0, θ + α] ∪ [θ − α + 2π, 2π] if θ − α ≤ 0 and θ + α ≤ 2π,
– Bαθ = [θ − α, 2π] ∪ [0, θ + α − 2π] if θ − α ≥ 0 and θ + α ≥ 2π,

– if α ≥ π: Bαθ = [0, 2π]. (The case θ − α ≤ 0 and θ + α ≥ 2π implies α ≥ π.)

Figure 1 illustrates the de�nition of Bα.

θ θ

Figure 1: Two examples of Bαθ , i.e. a ball of radius α of the ground distance, centered at θ (in red). In the �rst example, Bαθ =
[θ − α, θ + α], and in the second one Bαθ = [0, θ + α] ∪ [θ − α + 2π, 2π].

Figure 2 illustrates the dilation of a distribution on [0, 2π]. Note that De�nition 1 extends directly to any
periodic function.

Figure 2: Distribution on [0, 2π] and example of a dilation accounting for the periodicity.

The normalization ensures that the core of the distribution (set of points with maximum value) is ex-
tended according to the size of the structuring element. In particular, it is always possible to �nd a size of
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dilation such that a given point of the support of the distribution belongs to the core of the dilated distribu-
tion. This propertywill beused forHausdor�distances de�ned fromsuchdilations. The followingproposition
is easy to show (by a direct computation):

Proposition 1. For all α, Bα is a ball of radius α of the ground distance d (Equation 1), and for all f and α, we
have ∀θ ∈ [0, 2π], δBα (f )(θ) = sup{f (θ′) | θ′ ∈ [0, 2π], d(θ, θ′) ≤ α}.

3.2 Dilations of cumulative distributions in the non-periodic case

In this section we consider a cumulative distribution either as a function F from M into [0, 1], or as a subset
SF of M × [0, 1].

Let us consider as a structuring element a segment of length 2ε, with ε ≥ 0. We denote by Bεx = [x − ε, x +
ε] ∩M the translation of this structuring element at x, restricted to the support.

Proposition 2. The dilation of F by Bε is expressed as:

∀x ∈ M, δBε (F)(x) = sup
y∈Bεx

F(y) =
{
F(x + ε) if x + ε ∈ M
1 otherwise

Proof. This result follows directly from the fact that F is increasing.

Let us now consider the dilation of SF, using di�erent structuring elements, that will prove useful in the
following. Let us �rst consider a ball of radius ε of the L∞ distance, with a positive proportionality factor λ on
M (λ > 0) to account for the di�erent scales of the two dimensions (i.e. the structuring element is a rectangle).
It is expressed, when translated at (x, y), as:

(Bε,λ1 )(x,y) = (B̌ε,λ1 )(x,y) = [x − λε, x + λε] × [y − ε, y + ε].

where B̌ denotes the symmetrical of B with respect to the origin.

Proposition 3. The dilation of any SF by Bε,λ1 is expressed as:

δε,λ1 (SF) = {(x, y) ∈ M × [0, 1] | ∃x′ ∈ M, max( |x − x
′|

λ , |y − F(x′)|) ≤ ε}. (3)

Proof. It follows directly from the development of δε,λ1 (SF) = {(x, y) ∈ M × [0, 1] | (B̌ε,λ1 )(x,y) ∩ SF ≠ ∅}.

This dilation is illustrated in Figure 3, for λ = 1.

0

1

M

F

xx − ε x + ε

B1(x,F(x))
ε

δ  (SF)
ε

1

Figure 3: Dilation with a symmetrical structuring element.
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Let us now consider an asymmetric dilation, with the following structuring element centered at (x, y) and
of size ε (still with the factor λ on M): (Bε,λ2 )(x,y) = [x − λε, x + λε] × [y − ε, 1]. Its symmetrical with respect to
(x, y) is then: (B̌ε,λ2 )(x,y) = [x − λε, x + λε] × [0, y + ε].

Proposition 4. The asymmetric dilation of SF by Bε,λ2 is expressed as:

δε,λ2 (SF) = {(x, y) ∈ M × [0, 1] | ∃x′ ∈ M, max( |x − x
′|

λ , F(x′) − y) ≤ ε}.

Proof. The proof is similar to the one of Proposition 3.

This asymmetric dilation is illustrated in Figure 4.

0

1

M

F

xx − ε x + ε

ε

B2(x,F(x))
ε

  (SF)
ε

δ2

Figure 4: Dilation with a non-symmetrical structuring element.

Finally, let us consider another asymmetric dilation, but without saturation along the ordinate axis, with
(Bε,λ3 )(x,y) = [x, x + λε] × [y − ε, y], and (B̌ε,λ3 )(x,y) = [x − λε, x] × [y, y + ε].

Proposition 5. The dilation of SF by Bε,λ3 is expressed as:

δε,λ3 (SF) = {(x, y) | ∃x′ ∈ M, x − λε ≤ x′ ≤ x, y ≤ F(x′) ≤ y + ε}. (4)

Proof. Again the proof is direct from the development of δε,λ3 (SF) = {(x, y) | ∃x′ ∈ M, (x′, F(x′)) ∈ (B̌ε,λ3 )(x,y)}.

This dilation is illustrated in Figure 5.

0

1

M

F

x x + ε

ε

δ3
B3(x,F(x))

ε ε
(SF)

Figure 5: Asymmetric dilation, in the sub-graph of F only.
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Proposition 6. We have the following relationship between the two asymmetrical de�nitions:

δε,λ2 (SF) = δε,λ3 (SF) ∪ {(x, y) | x ∈ M, F(x) ≤ y ≤ 1}

(i.e. δ2 is obtained from δ3 by adding the sup-graph of F bounded by 1).

Proof. The proof is immediate.

In all these de�nitions, we could also assume that M and [0, 1] are co-normalized and then restrict the 2D
space R2 to [0, 1] × [0, 1]. Then λ can be set to 1 in all the above equations. This applies also for the periodic
case considered next.

3.3 Dilations of cumulative distributions in the periodic case

All the de�nitions introduced above apply also to the periodic case, using the following embedding of F into
R:

∀x ∈ R, F(x + ρ) = F(x) + 1. (5)
However, the computation does not need to be performed on the whole real line. For instance if ρ = 2π, it
is su�cient to consider an embedding in ] − π, 3π[×[−1, 2] since for λε ≥ π, the dilation would provide the
whole space M × [0, 1]. The extension of SF then writes:

SFE = SF ∪ {(θ, F(θ + 2π) − 1), θ ∈] − π, 0]} ∪ {(θ, F(θ − 2π) + 1), θ ∈ [2π, 3π[}. (6)

Dilations can be expressed directly from this set, and we have the following simple form.

Proposition 7. The dilation of SF with a symmetrical structuring element and λε ≤ π is expressed as:

δε,λc1 (SF) = {(θ, y) ∈ [0, 2π] × [0, 1] | ∃θ′ ∈ [0, 2π], |θ − θ′| ≤ λε and |F(θ′) − y| ≤ ε}. (7)

For λε > π, then δε,λc1 (SF) = [0, 2π] × [0, 1].

Proof. The sketch of the proof is as follows: we �rst develop the expression of dilation, considering each part
of the disjunction in SFE. Then we analyze the cases where θ ≤ λε and θ ≥ 2π − λε and show that, due to the
fact that F is increasing, F(0) = 0 and F(2π) = 1, these cases can be simpli�ed, and that neighbors outside
[0, 2π] do not need to be considered, thus providing the simple result in the proposition.

Let us detail these steps. The dilation of SF with a symmetrical structuring element and λε ≤ π is de�ned
as:

δε,λc1 (SF) =δε,λ1 (SFE) ∩ ([0, 2π] × [0, 1])
={(θ, y) ∈ [0, 2π] × [0, 1] | (∃θ′ ∈ [0, 2π], |θ − θ′| ≤ λε and |F(θ′) − y| ≤ ε)
or (∃θ′ ∈ [−π, 0[, |θ − θ′| ≤ λε and |F(θ′ + 2π) − 1 − y| ≤ ε)
or (∃θ′ ∈]2π, 3π], |θ − θ′| ≤ λε and |F(θ′ − 2π) + 1 − y| ≤ ε)} (8)

={(θ, y) ∈ [0, 2π] × [0, 1] | ∃θ′ ∈ [0, 2π], (θ′, F(θ′)) ∈ [θ − λε, θ + λε] × [y − ε, y + ε]
or (θ′, F(θ′)) ∈ [0, θ + λε] × [y − ε, y + ε] ∪ [θ − λε + 2π, 2π] × [y + 1 − ε, y + 1 + ε]
or (θ′, F(θ′)) ∈ [θ − λε, 2π] × [y − ε, y + ε] ∪ [0, θ + λε − 2π] × [y − 1 − ε, y − 1 + ε]} (9)

This derivation (Equation 9) shows that it is su�cient to look for θ′ in [0, 2π] (which is interesting in practice
to reduce the computation time), and to use a circular neighborhood, de�ned as (when centered at (θ, y)):

Bε,λθ,y = [θ − λε, θ + λε] × [y − ε, y + ε] if θ − λε ≥ 0 and θ + λε ≤ 2π

[0, θ + λε] × [y − ε, y + ε] ∪ [θ − λε + 2π, 2π] × [y + 1 − ε, y + 1 + ε] if θ − λε ≤ 0 and θ + λε ≤ 2π
[θ − λε, 2π] × [y − ε, y + ε] ∪ [0, θ + λε − 2π] × [y − 1 − ε, y − 1 + ε] if θ − λε ≥ 0 and θ + λε ≥ 2π
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Note that the θ part, i.e. the projection of Bε,λθ,y on M = [0, 2π], is equal to Bλεθ as de�ned in Section 3.1 for the
circular dilation. This also means that the condition on θ′ is always equivalent to d(θ, θ′) ≤ λε for d being the
circular distance (Section 2), since Bλε is a ball of this distance. The case where θ − λε ≤ 0 and θ + λε ≥ 2π is
not considered here, since it implies λε ≥ π and then the dilation yields the whole space.

Let us now further develop the expression of the dilation in Equation 8, taking into account that F is
an increasing function taking values 0 at 0 and 1 at 2π, in particular for θ being close to the bounds of the
support of F:

– If 0 ≤ θ ≤ λε (and y ≥ 0):

– if 0 ≤ y ≤ ε, then (0, F(0)) = (0, 0) belongs to the structuring element centered at (θ, y), and (θ, y)
belongs to the dilation (it is therefore not necessary to look for another θ′ < 0);

– if y > ε:

* if ∃θ′ ≥ 0 such that |θ − θ′| ≤ λε and |F(θ′) − y| ≤ ε, then (θ, y) belongs to the dilation;
* otherwise, we look for θ′ ∈ [−π, 0[ such that |θ − θ′| ≤ λε and |F(θ′ + 2π) − 1 − y| ≤ ε. Since
F(θ′ + 2π) − 1 ≤ 0, we have |F(θ′ + 2π) − 1 − y| = y + 1 − F(θ′ + 2π) which is greater than y.
We cannot have both y > ε and |F(θ′ + 2π) − 1 − y| ≤ ε. Therefore the values of θ′ in [−π, 0[
are not involved in the result of the dilation.

– If 2π − λε ≤ θ ≤ 2π:

– if 1 − y ≤ ε, then the point (2π, F(2π)) = (2π, 1) belongs to the structuring element centered at
(θ, y) and (θ, y) belongs to the dilation;

– if 1 − y > ε:

* if ∃θ′ ≤ 2π such that |θ − θ′| ≤ λε and |F(θ′) − y| ≤ ε, then (θ, y) belongs to the dilation;
* otherwise, we look for a θ′ ∈]2π, 3π] such that |θ − θ′| ≤ λε and |F(θ′ − 2π) + 1 − y| ≤ ε. We

have |F(θ′ − 2π) + 1 − y| = F(θ′ − 2π) + 1 − y which is greater than 1 − y and hence cannot
be less than ε.

Finally, only the �rst case for θ′ needs to be considered, i.e. (θ, y) ∈ δε,λc1 (SF) i� ∃θ′ ∈ [0, 2π] such that
|θ − θ′| ≤ λε and |F(θ′) − y| ≤ ε, hence the result.

Note that the simple expression obtained in Proposition 7 corresponds to a geodesic way to process the
boundaries of the domain, by truncating the translated structuring element to limit it to the part included
in [0, 2π] × [0, 1]. This dilation is illustrated in Figure 6.

Considering now the structuring element Bε,λ2 to dilate only the subgraph (and saturating its complement
to 1) leads also to a simple expression:

Proposition 8. The dilation of SF with an asymmetrical structuring element and λε ≤ π is expressed as:

δε,λc2 (SF) = {(θ, y) ∈ [0, 2π] × [0, 1] | ∃θ′ ∈ [0, 2π], |θ − θ′| ≤ λε and F(θ′) − y ≤ ε}. (10)

For λε > π, we have δε,λc2 (SF) = [0, 2π] × [0, 1].

Proof. The proof follows the same reasoning as for Proposition 7: we have (θ, y) ∈ δε,λc2 (SF) i�

1. ∃θ′ ∈ [0, 2π] such that |θ − θ′| ≤ λε and F(θ′) ∈ [0, y + ε],
2. or ∃θ′ ∈ [−π, 0[ such that |θ − θ′| ≤ λε and F(θ′ + 2π) − 1 ∈ [0, y + ε],
3. or ∃θ′ ∈]2π, 3π] such that |θ − θ′| ≤ λε and F(θ′ − 2π) + 1 ∈ [0, y + ε].

Cases 2 and 3 are not possible since F(θ′ + 2π)−1 ≤ 0 and F(θ′ −2π) + 1 ≥ 1, so only the �rst case remains.

In all these de�nitions, the classical properties of dilations hold (commutativity with the supremum,
monotony with respect to ε, iterativity property, etc.). The envelop of the dilation of SF is delimited by
two functions which are cumulative distributions of distributions with a jump at 0 for the upper envelop and
at 1 for the lower envelop.
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θ

θF(  ) F

δ(SF)

Figure 6: Dilation in the periodic case, for a symmetrical structuring element. The central circle corresponds to 0 and the larger
one to 1. The dashed area is an example of structuring element centered at (θ, F(θ)).

4 Distances between distributions on the real line
In this section, we de�ne distances between distributions on the real line using two approaches. The �rst one
exploits the link between Hausdor� distances and morphological dilations to derive de�nitions of Hausdor�
distances from the dilations introduced in the previous section, either for distributions or for cumulative dis-
tributions. The second approach is inspired by optimal transport. We consider the Lévy-Prokhorov distance,
and exploit its Hausdor� like expression on cumulative distributions. We show that it is equivalent to one
of the morphological expressions. This link, which constitutes an original contribution, will be then further
exploited in the next section for periodic distributions.

4.1 Morphological approach

Let us �rst recall the general link between Hausdor� distance and dilation. In the classical set theoretical
setting, it writes as:

dH(F, G) = inf{ε > 0 | SG ⊆ δε(SF) and SF ⊆ δε(SG)},
and in the functional setting as:

dH(F, G) = inf{ε > 0 | G ≤ δε(F) and F ≤ δε(G)},

where δε denotes the dilation by a structuring element of size ε (a ball of radius ε of the ground distance).
The same notation is used for dilations of sets and of functions, since no ambiguity can arise.

4.1.1 Hausdor� distance from dilations of cumulative distributions

Let us �rst consider δε,λ1 introduced in Section 3.2, and let us derive a Hausdor� distance from it (see Figure 7,
for λ = 1).

Proposition 9. The Hausdor� distance associated with δ1 is:

dH1(F, G) = max(sup
x∈M

inf
y∈M

max( |x − y|λ , |G(x) − F(y)|), sup
y∈M

inf
x∈M

max( |x − y|λ , |F(y) − G(x)|)). (11)
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0

1

M

G

F
δ

ε

1  (SF)

Figure 7: Minimal size of the dilation of SF by δ1 such that it contains SG.

Proof. We have:

SG ⊆ δε,λ1 (SF) ⇔ ∀x ∈ M, ∃y ∈ M, max( |x − y|λ , |G(x) − F(y)|) ≤ ε

⇔ sup
x∈M

inf
y∈M

max( |x − y|λ , |G(x) − F(y)|) ≤ ε,

which is illustrated in Figure 7 for λ = 1. A similar expression is obtained for SF ⊆ δε,λ1 (SG). The result then
follows from dH1(F, G) = inf{ε > 0 | SF ⊆ δε,λ1 (SG) and SG ⊆ δε,λ1 (SF)}.

Let us now consider the asymmetric dilation δ2.

Proposition 10. The Hausdor� distance derived from δ2 is:

dH2(F, G) = max(sup
x∈M

inf
y∈M

max( |x − y|λ , G(y) − F(x)), sup
y∈M

inf
x∈M

max( |x − y|λ , F(x) − G(y))). (12)

Proof. We have:
dH2(F, G) = inf{ε > 0 | SF ⊆ δε,λ2 (SG) and SG ⊆ δε,λ2 (SF)},

SG ⊆ δε,λ2 (SF)⇔ sup
y∈M

inf
x∈M

max( |x − y|λ , F(x) − G(y)) ≤ ε,

SF ⊆ δε,λ2 (SG)⇔ sup
x∈M

inf
y∈M

max( |x − y|λ , G(y) − F(x)) ≤ ε.

Hence the result. The computation from the dilation is illustrated in Figure 8 (only the lower envelop of the
dilation is shown).

Finally, let us derive the Hausdor� distance from cumulative distributions considered as functions.

Proposition 11. We have:

dH(F, G) = inf{ε > 0 | ∀x ∈ M, G(x) ≤ F(x + ε) and F(x) ≤ G(x + ε)}
= inf{ε > 0 | ∀x ∈ M, G(x − ε) ≤ F(x) ≤ G(x + ε)}. (13)

Proof. It follows directly from G ≤ δε(F)⇔ ∀x ∈ M, G(x) ≤ F(x + ε).

This is illustrated in Figure 9.

Proposition 12. All distances de�ned in this section are metrics (i.e. positive, separable, symmetrical and sat-
isfy the triangular inequality). If the distributions are Dirac functions (with a unique non zero value at f0 and
g0), the proposed distances are all equal to d(f0, g0), where d is the ground distance.
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Figure 8:Minimal size of the dilation of SF by δ2 such that it contains SG.
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Figure 9: Computation of the Hausdor� distance by dilating the cumulative distributions considered as functions.

Proof. Since all distances are Hausdor� distances (for which we proved explicit expressions based on dila-
tions), they are metrics. If distributions are Dirac functions, then we have F(x) = 0 for x < f0 and F(x) = 1
otherwise, and a similar expression for G. Then the minimal size of dilation, such that SF is included in the
dilation of SG and SG is included in the dilation of SF, is |f0 − g0|, which is the ground distance between f0
and g0 for one-dimensional distributions.

4.1.2 Fuzzy Hausdor� distance from dilations of distributions

The idea here is to exploit the link between morphological dilation and some distances, such as minimum
and Hausdor� distances, in the case of sets [3, 23]. Indeed, the Hausdor� distance between two sets is equal
to the minimal size of the ball of the ground distance, such that the dilation of each set by this ball contains
the other set. We propose to use the same principle on distributions.

De�nition 2. [3] The fuzzy Hausdor� distance is de�ned from the dilation of the distributions, considered as
fuzzy sets, and from an inclusion operator ∆⊆(f , g), expressing the degree to which f is included in g:

∀` ∈ R+*, dH(f , g)(`) = t(d′H(f , g)(`), d′H(g, f )(`)) (14)

with
d′H(f , g)(`) = t(∆⊆(f , δB` (g)), inf

0≤`′<`
c(∆⊆(f , δB`′ (g)))),

and d′H(f , g)(0) = ∆⊆(f , g), with t a t-norm.
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Note that when values of ` are quanti�ed, which is the case in practice, it is su�cient to consider for `′
only the largest value less than `.

The value dH(f , g)(`) expresses the degree to which the Hausdor� distance between f and g is equal to
`, and dH(f , g) is then a distance density, in the sense of [21]. A common de�nition of an inclusion degree in
the fuzzy set framework is

∆⊆(f , g) = inf
x∈M

I(f (x), g(x))

where I is a fuzzy implication. If a crisp number is needed, the center of gravity of this fuzzy number can be
used: ∫∞

0 dH(f , g)(`)`d`∫∞
0 dH(f , g)(`)d`

,

or the following de�nition:

dH(f , g) = inf{` ∈ R+ | ∀x ∈ M, δB` (f )(x) ≥ g(x) and δB` (g)(x) ≥ f (x)}, (15)

which corresponds to a crisp version of the inclusion. This simpli�ed expression corresponds to the de�ni-
tions in [9, 16] for �at structuring elements.

Proposition 13. [3] The fuzzy distances introduced in Equations 14 and 15 are positive and symmetrical. The
morphological Hausdor� distance between the distributions and computed with a crisp version of the inclusion
degree (Equation 15) is separable and satis�es the triangular inequality, while the fuzzy version of the inclu-
sion degree yields a distance (Equation 14) which is a fuzzy number, and separable for Lukasiewicz implication
(I(a, b) = min(1, 1 − a + b)), but does not satisfy the triangular inequality.

4.2 Lévy and Prokhorov distances

An interesting distance between probability distributions, related to optimal transport problems [24] and
which involves dilations, is the Lévy-Prokhorov metric dPr [17], de�ned for two distributions f and g as:

dPr(f , g) = inf{ε > 0 | ∀Z ∈ B(M), f (Z) ≤ g(δλε(Z)) + ε and g(Z) ≤ f (δλε(Z)) + ε} (16)

where δλε(Z) is the dilation of size λε of Z (see Section 3.1, restricting functions to sets), and B(M) denotes
the set of all Borel sets onM. The de�nition has been adapted here to introduce λ and thus to account for the
potential di�erent scales of M and [0, 1], as in [20].

This distance generalizes the Lévy distance (also a metric), de�ned in 1D between two cumulative distri-
butions F and G as:

dL(F, G) = inf{ε > 0 | ∀x ∈ R, G(x − λε) − ε ≤ F(x) ≤ G(x + λε) + ε}. (17)

By restricting the Borel sets of R to the intervals of the form Z =] − ∞, x[ (or equivalently Z =]x, +∞[), which
generate B(M), dPr is indeed equivalent to dL in 1D. Note that if all Borel sets are considered, then we only
have dL ≤ dPr.

Let us provide the Hausdor�an expression of dL from [20].

Proposition 14. [20] The Lévy distance can be expressed in a similar way as the Hausdor� distance and we
have:

dL(F, G) = max(sup
x∈M

inf
y∈M

max( |x − y|λ , G(y) − F(x)), sup
y∈M

inf
x∈M

max( |x − y|λ , F(x) − G(y))). (18)

Note that this expression involves explicitly the ground distance onM. Figure 10 illustrates Equation 18,
providing a geometrical interpretation.

We now exhibit links with Hausdor� distances derived from the dilations proposed in Section 3.2. Note
that dPr already involves a dilation and that the links between dPr, dL and its Hausdor�-like expression al-
ready suggest that all these notions are closely related.
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Figure 10: Computation of the Lévy distance between F and G.

Proposition 15. Let F and G be any two cumulative distributions. We have the following equivalences between
their distances:

– the Lévy distance can be formulated as a Hausdor�-like expression (Equation 18);
– Equation 11 is similar to Equation 18, but with absolute values on G(x) − F(y), providing one of the de�ni-

tions in [20];
– Equation 12 is equivalent to Equation 18;
– Equation 13 is equivalent to Equation 17;
– Equation 15 is similar to dPr expressed on points.

Proof. These results are straightfoward from the expressions of distances. For the two last ones, they can be
proved by replacing ε by ε

λ and taking the limit for λ → +∞.

All these links make it easier to extend the de�nitions to the periodic case (next section).

Proposition 16. dL is a probabilitymetric [20]. Similarly, theHausdor�distances de�ned inEquations 11 and 13
are probability metrics.

Proof. The distance dL (for λ = 1) can be expressed as:

dL(F, G) = inf{t > 0 | v(f , G, t) < t} (19)

for v de�ned as:

v(F, G, t) = max
(

sup
x∈M

inf
y∈M,|x−y|<t

(G(x) − F(y)), sup
y∈M

inf
x∈M,|x−y|<t

(F(x) − G(y))
)

(20)

This extends directly to λ ≠ 1.
If v veri�es the following four properties, then the distance expressed in the form of Equation 19 is a

probability metric [20]. Let us prove that these four properties hold for v in Equation 20.

1. If the probability that the two random variables underlying F and G are equal is equal to 1, then
v(F, G, t) = 0 for all t. This property holds since in this case F = G and the in�mum in v is 0 (it is
obtained for x = y).

2. v(F, G, t) = v(G, F, t): this symmetry property holds by construction.
3. If t < t′ then v(F, G, t) ≥ v(F, G, t′): indeed, if t < t′, then |x−y| < t ⇒ |x−y| < t′, and infy∈M,|x−y|<t(G(x)−
F(y)) ≥ infy∈M,|x−y|<t′ (G(x) − F(y)). The same inequality holds for the second part of v, and �nally
v(F, G, t) ≥ v(F, G, t′).

Brought to you by | Telecom Paristech
Authenticated

Download Date | 4/10/16 9:32 AM



92 | Isabelle Bloch and Jamal Atif

4. v(F, G, t + t′) ≤ v(F, H, t) + v(H, G, t′): indeed, starting from G(x) − F(y) = G(x) −H(z) +H(z) − F(y), and
(|x − z| < t′ and |y − z| < t)⇒ |x − y| < t + t′, we have (for all x, y, z):

inf
|x−y|<t+t′

(G(x) − F(y)) ≤ G(x) − H(z) + inf
|y−z|<t

(H(z) − F(y))

≤ G(x) − H(z) + sup
z

inf
|y−z|<t

(H(z) − F(y))

≤ inf
|x−z|<t′

(G(x) − H(z)) + v(H, F, t)

⇒ sup
x

inf
|x−y|<t+t′

(G(x) − F(y)) ≤ sup
x

inf
|x−z|<t′

(G(x) − H(z)) + v(H, F, t)

Hence v(F, G, t + t′) ≤ v(G, H, t′) + v(H, F, t).

A similar proof applies for the versionwith the absolute values in |G(x)−F(y)|, andwith the scale factor λ.

5 Distances between periodic distributions
In this sectionwenowassumeperiodic distributions. To�x the ideas,we set,without loss of generality, ρ = 2π
and M = [0, 2π]. The proposed approach relies on the link previously established between Lévy-Prokhorov
distance and Hausdor� distance derived from a dilation. We show that this approach leads to a simple and
elegant way to deal with the more complex case of periodic distributions.

5.1 Lévy and Prokhorov distances

Let us start again from dPr. We propose to express this distance from a circular dilation and by restricting the
Borelian sets to Z = [0, θ] (which are generating all Borelian sets on [0, 2π]), taking 0 as origin, arbitrarily. If
the origin is taken at θ0, then the cumulative distribution is

∫ θ
θ0
f (t)dt =

∫ θ
0 f (t)dt −

∫ θ0
0 f (t)dt = F(θ) − F(θ0)

if θ0 ≤ θ ≤ 2π, and
∫ 2π
θ0
f (t)dt +

∫ θ
0 f (t)dt = 1 − F0(θ0) + F0(θ) if 0 ≤ θ ≤ θ0. If we want a distance which is

independent of the choice of the origin, then infθ0 d
c
L(Fθ0 , Gθ0 ) could be considered.

Let us de�ne a dilation of size ε, in the positive direction, as: δε(Z) = [0, θ + ε] if θ + ε ≤ 2π and [0, 2π]
otherwise. This morphological expression allows us to derive easily the following result.

Proposition 17. The Lévy distance, derived from the Prokhorov distance in 1D in the periodic case, is expressed
as:

dcL(F, G) = inf{ε > 0 | ∀θ ∈ [0, 2π], F(θ) ≤ G(θ + λε) + ε and G(θ) ≤ F(θ + λε) + ε}. (21)
by setting G(θ + λε) = F(θ + λε) = 1 if θ + λε ≥ 2π.

Proof. For λ = 1 (without loss of generality), we have for θ + ε ≤ 2π:

f (Z) ≤ g(δε(Z)) + ε ⇔
θ∫

0

f (t)dt ≤
θ+ε∫
0

g(t)dt + ε

⇔F(θ) − F(0) ≤ G(θ + ε) − G(0) + ε
⇔F(θ) ≤ G(θ + ε) + ε

For θ + ε ≥ 2π, we have f (Z) ≤ g(δε(Z)) + ε ⇔ F(θ) ≤ 1 + ε which is always true.

Note that it could be proved that any transport metric dT can be extended to compare distributions with non
equal masses, as suggested in [12] (Chapter 3.1/2.B), as follows:

D(f , g) = dT
(

f
f (X) ,

g
g(Y)

)
+ |f (X) − g(Y)|, (22)
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whereX and Y are the supports of f and g, respectively. This expressionwil beused for computing thedistance
between distributions normalized by the sup instead of the sum.

5.2 Morphological approach

5.2.1 Hausdor� distance from dilations of cumulative distributions

Proposition 18. The Hausdor� distance derived from δc1 computed with a symmetrical structuring element
is:

dHc1(F, G) = max( sup
θ∈[0,2π]

inf
θ′∈[0,2π]

max( |θ − θ
′|

λ , |F(θ′) − G(θ)|), sup
θ∈[0,2π]

inf
θ′∈[0,2π]

max( |θ − θ
′|

λ , |G(θ′) − F(θ)|)).

The asymmetrical dilation δc2 leads to similar results, and the derived Hausdor� distance has a similar
expression, without the absolute values:

dHc2(F, G) = max( sup
θ∈[0,2π]

inf
θ′∈[0,2π]

max( |θ − θ
′|

λ , G(θ) − F(θ′)), sup
θ∈[0,2π]

inf
θ′∈[0,2π]

max( |θ − θ
′|

λ , F(θ) − G(θ′))).

Proof. As in Section 4.1 the proof is direct, by developing SG ⊆ δε,λ(SF) and SF ⊆ δε,λ(SG), for δ = δc1 and
δ = δc2.

The computation of dHc1(F, G) is illustrated in Figure 11, where the minimal size of dilation of SF, such that
it includes SG, is shown.

θG(   )

θ

θF(  ) F

G

δ(SF)

Figure 11: Dilation in the periodic case, for a symmetrical structuring element, such that the dilation of SF includes SG, illustrat-
ing the computation of the Hausdor� distance.

Proposition 19. As in the non-periodic case, the Hausdor� distance derived from asymmetrical dilation and
the Lévy distance are equal:

dHc2(F, G) = dcL(F, G). (23)
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Proof. We detail the proof for λ = 1 to simplify the equations. Its extension to any λ is straightforward. We
prove that dcL(F, G) ≤ ε ⇔ dHc2(F, G) ≤ ε.

dcL(F, G) ≤ ε ⇒ ∀θ ∈ [0, 2π], F(θ) ≤ G(θ + ε) + ε
⇒ ∀θ ∈ [0, 2π], ∃θ′ ∈ [0, 2π] (e.g. θ′ = θ + ε), |θ − θ′| ≤ ε, F(θ) − G(θ′) ≤ ε
⇒ ∀θ ∈ [0, 2π], ∃θ′ ∈ [0, 2π], max(|θ − θ′|, F(θ) − G(θ′)) ≤ ε
⇒ sup

θ∈[0,2π]
inf

θ′∈[0,2π]
max(|θ − θ′|, F(θ) − G(θ′)) ≤ ε

and, from a similar derivation for the second term, we get dHc2(F, G) ≤ ε. Conversely:

dHc2(F, G) ≤ ε ⇒ ∀θ ∈ [0, 2π], ∃θ′ ∈ [0, 2π], |θ − θ′| ≤ ε, F(θ) − G(θ′) ≤ ε
⇒ ∀θ ∈ [0, 2π], ∃θ′ ∈ [0, 2π], θ − ε ≤ θ′ ≤ θ + ε, F(θ) ≤ G(θ′) + ε ≤ G(θ + ε) + ε

because G is increasing. The same reasoning applies to the second term, and �nally dcL(F, G) ≤ ε.

5.2.2 Hausdor� distance from dilations of distributions

The de�nitions proposed in Equations 14 and 15 apply directly to periodic distributions, by considering ap-
propriate dilations, taking the periodicity into account, as de�ned in Section 3.1.

An example of distribution on [0, 2π] is given in Figure 12, with three translations. The Hausdor� dis-
tances values, computed usingmorphological dilations of the distributions (using Equation 15), between the
�rst distribution of Figure 12 and the others, correspond to the distance between the cores of the distributions,
as expected in this simple case.

Figure 12: Example of distribution on [0, 2π] and three translations (T = 2.45, T = 3.68, T = 4.9). The distances values (in
radians) are 0 for T = 0, 2.45 for T = 2.45, 2.60 for T = 3.68, and 1.37 for T = 4.9.

6 Comparison between directional spatial relations
Observing the evolution of a pathology in medical images, or of soil occupation in remote sensing, detecting
changes in video sequences, updating a spatial information system are examples that can all bene�t from
quanti�cation and comparison of spatial relations between objects in the observed scenes. In this paper, to
illustrate the proposed approaches, we consider spatial relations represented as distributions or fuzzy num-
bers, with the typical example of directional relations, represented as a periodic function on [0, 2π] via the
angle histogram [14]. The normalized angle histogram haA,B between two 2D objects A and B is de�ned as:

∀θ ∈ [0, 2π], haA,B(θ) =
h′A,B(θ)

supθ′∈[0,2π] h′A,B(θ′)
,
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with
h′A,B(θ) = |{(a, b), a ∈ A, b ∈ B | ∠(a, b) = θ}|

and∠(a, b) the anglemodulo 2π between the vector ~ab and the horizontal axis. This sum is further weighted
by the membership values of a to A and of b to B if the objects are fuzzy.

Let us consider, as an example, the application of the proposed approach to quantify the evolution of
directional relations between objects in a simulated video sequence (Figure 13). The grey object gets close to
the white one in a constant direction, and then changes direction and goes away. The angle histograms ha
between these two objects are also illustrated in this �gure.

Figure 13: Simulated video sequence (top, some frames) and angle histograms (bottom). The grey object gets close to the white
one in a constant direction, and then changes direction and goes away in this second direction.

Thesehistogramshave been comparedusing the di�erent proposedmeasures, by computing the distance
between the histogram at time t and the histogram in the �rst frame. The curves showing the evolution of this
distance along time are displayed in Figure 14 for the morphological Hausdor� distance (Equation 15, using
periodic fuzzy dilations) and for the Lévy-Prokhorov distance (Equation 21when distributions are normalized
by the sum, hence of equal masses, and Equation 22 if they are normalized by the sup). In all these curves a
jump is observed at the instant where the change in direction occurs, whichwas expected.We can also notice
the strong similarity between these curves.

Figure 14:Morphological Hausdor� distances between the histogram in each frame and the one in the �rst frame (left). Lévy-
Prokhorov distance between the histogram in each frame and the one in the �rst frame, for histograms normalized by the sup
(middle) and by the sum (right).

Let us now consider a second example, where an object turns around another one and thenmoves away.
A few frames are displayed in Figure 15, and the corresponding angle histograms in Figure 16. The Hausdor�
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distance between the histogramof each frame and the one in the �rst frame is shown in Figure 17, and again is
consistent with what was intuitively expected. The Lévy-Prokhorov distance is illustrated in the same �gure.
As for the �rst example, the curves are very similar.

Figure 15: A few frames from a synthetic video sequence. The gray object turns around the white one and then moves away in a
constant direction.

Figure 16: Angle histograms between the two objects in Figure 15.

In the third example, an object is getting closer to another one, turns above it, goes away in the oppo-
site direction, completes the turn below and moves until the initial position. Some frames are displayed in
Figure 18, with the corresponding histograms in Figure 19. The Hausdor� distance between the histogram of
each frame and the one in the �rst frame is shown in Figure 20, as well as the Lévy-Prokhorov distance. As
for the previous examples, the curves are very similar, and well �t the intuition. This was also observed on
other video examples.

All this extends to other spatial relations, such as distances.
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Figure 17: Left: Hausdor� distance between the angle histogram in each frame and the one in the �rst frame, for the sequence
in Figure 15. Middle: Lévy-Prokhorov distance when histograms are normalized by the sup. Right: Lévy-Prokhorov distance
when histograms are normalized by the sum.

Figure 18: A few frames from a synthetic video sequence. The gray object gets close to the white one, turns above it, moves
away in a constant direction, turns below it and moves to its initial position.

7 Conclusion
In this paper we have investigated several forms of Hausdor� distances for comparing distributions or cumu-
lative distributions. A �rst contribution relies in the de�nition of several dilations of distributions. This allows
deriving Hausdor� distances from their expression in terms of dilations. Then, based on existing de�nitions
and new ones proposed in this paper, we have exhibited interesting links between optimal transport metrics,
in particular Lévy-Prokhorov distance, andmorphological ones. In particular, these links have allowed adap-
tations and extensions to the case of periodic distributions, which would have been more di�cult to address
otherwise. This is another important contribution of this work.

Figure 19: Angle histograms between the two objects in Figure 18.
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98 | Isabelle Bloch and Jamal Atif

Figure 20: Left: Hausdor� distance between the angle histogram in each frame and the one in the �rst frame, for the sequence
in Figure 18. Middle: Lévy-Prokhorov distance when histograms are normalized by the sup. Right: Lévy-Prokhorov distance
when histograms are normalized by the sum.

As an illustration, we have shown that the proposed distances allow comparing spatial relations between
objects in images or videos, represented as distributions. This could lead to future applications for detection
of ruptures in temporal sequences [1], for comparing di�erent spatial con�gurations of objects, as a guide for
structural recognition and scene understanding, and more generally for spatial reasoning.

In our future work we will investigate extensions to higher dimensions, and we anticipate that the in-
creased complexity of the transport approach will be overcome by the equivalence with morphological ex-
pressions.
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would like to thank Julie Delon for fruitful discussions, and Abdalbassir Abou-Elailah for the simulation of
video sequences.

References
[1] A. Abou-Elailah, V. Gouet-Brunet, I. Bloch: Detection of ruptures in spatial relationships in video sequences. In: International

Conference on Pattern Recognition Applications and Methods - ICPRAM. pp. 110–120. Lisbon, Portugal (2015)
[2] R. Aliev, W. Pedrycz, B. Fazlollahi, O.H. Huseynov, A.V. Alizadeh, B. G. Guirimov: Fuzzy logic-based generalized decision

theory with imperfect information. Information Sciences 189, 18–42 (2012)
[3] I. Bloch: On Fuzzy Distances and their Use in Image Processing under Imprecision. Pattern Recognition 32(11), 1873–1895

(1999)
[4] I. Bloch, J. Atif: Comparaison de relations spatiales floues - Approches par transport optimal et morphologiemathématique.

In: Rencontres Francophones sur la Logique Floue et ses Applications - LFA. pp. 133–140. Cargèse, France (2014)
[5] I. Bloch, J. Atif: Deux approches pour la comparaison de relations spatiales floues : transport optimal et morphologie math-

ématique. Revue d’Intelligence Arti�cielle 29(5), 595–619 (2015)
[6] I. Bloch, J. Atif: Hausdor� distances between distributions using optimal transport and mathematical morphology. In: 12th

International Symposium on Mathematical Morphology (ISMM), LNCS 9082. pp. 522–534. Reykjavik, Iceland (2015)
[7] L. Boxer: On Hausdor�-like Metrics for Fuzzy Sets. Pattern Recognition Letters 18, 115–118 (1997)
[8] B.B. Chauduri, A. Rosenfeld: On a Metric Distance between Fuzzy Sets. Pattern Recognition Letters 17, 1157–1160 (1996)
[9] E.R. Dougherty: Application of the Hausdor� metric in gray-scale mathematical morphology via truncated umbrae. Journal

of Visual Communication and Image Representation 2(2), 177–187 (1991)
[10] D. Dubois, H. Prade: On Distance between Fuzzy Points and their Use for Plausible Reasoning. In: International Conference

on Systems, Man, and Cybernetics. pp. 300–303 (1983)
[11] R. M. Dudley: Distances of probability measures and random variables. The Annals of Mathematical Statistics 39(5), 1563–

1572 (1968)
[12] M. Gromov: Metric Structures for Riemannian and Non-Riemannian Spaces. Progress in Mathematics 152 (1999)
[13] J. Lindblad, N. Sladoje: Linear time distances between fuzzy sets with applications to pattern matching and classi�cation.

IEEE Transactions on Image Processing 23(1), 126–136 (2014)
[14] K. Miyajima, A. Ralescu: Spatial Organization in 2D Images. In: Third IEEE International Conference on Fuzzy Systems, FUZZ-

IEEE’94. pp. 100–105. Orlando, FL (Jun 1994)

Brought to you by | Telecom Paristech
Authenticated

Download Date | 4/10/16 9:32 AM



Hausdor� distances between distributions | 99

[15] O. Pele, M. Werman: A linear time histogram metric for improved SIFT matching. In: European Conference on Computer
Vision, ECCV. pp. 495–508 (2008)

[16] A.T. Popov: Hausdor� distance and fractal dimension estimation bymathematical morphology revisited. In: Nonlinar Signal
and Image Processing, NSIP. pp. 90–94 (1999)

[17] Y. Prokhorov: Convergence of random processes and limit theorems in probability theory. Theory of Probability & Its Appli-
cations 1(2), 157–214 (1956)

[18] M.L. Puri, D.A. Ralescu: Di�érentielle d’une fonction floue. C. R. Académie de Sciences de Paris, Série I 293, 237–239 (1981)
[19] J. Rabin, J. Delon, Y. Gousseau: Transportation distances on the circle. Journal of Mathematical Imaging and Vision 41(1-2),

147–167 (2011)
[20] S.T. Rachev: Minimal metrics in the real random variables space. In: Stability Problems for Stochastic Models. pp. 172–190

(1983)
[21] A. Rosenfeld: Distances between Fuzzy Sets. Pattern Recognition Letters, 3, 229–233 (1985)
[22] B. Sendov: Hausdor� approximations, vol. 50. Springer (1990)
[23] J. Serra: Image Analysis and Mathematical Morphology. Academic Press, New-York (1982)
[24] C. Villani: Optimal transport: old and new. Springer, Berlin (2003)
[25] M. Werman, S. Peleg, A. Rosenfeld: A distance metric for multidimensional histograms. Computer Vision, Graphics, and

Image Processing 32(3), 328–336 (1985)
[26] R. Zwick, E. Carlstein, D.V. Budescu: Measures of Similarity Among Fuzzy Concepts: A Comparative Analysis. International

Journal of Approximate Reasoning 1, 221–242 (1987)

Brought to you by | Telecom Paristech
Authenticated

Download Date | 4/10/16 9:32 AM


	1 Introduction
	2 Preliminaries
	2.1 Distributions and cumulative distributions
	2.2 Ground distance

	3 Definition of some dilations of distributions
	3.1 Morphological dilation of a sup-normalized distribution
	3.2 Dilations of cumulative distributions in the non-periodic case
	3.3 Dilations of cumulative distributions in the periodic case

	4 Distances between distributions on the real line
	4.1 Morphological approach
	4.1.1 Hausdorff distance from dilations of cumulative distributions
	4.1.2 Fuzzy Hausdorff distance from dilations of distributions

	4.2 Lévy and Prokhorov distances

	5 Distances between periodic distributions
	5.1 Lévy and Prokhorov distances
	5.2 Morphological approach
	5.2.1 Hausdorff distance from dilations of cumulative distributions
	5.2.2 Hausdorff distance from dilations of distributions


	6 Comparison between directional spatial relations
	7 Conclusion

