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Abstract. Detecting unusual events in video sequences is very challeng-
ing due to cluttered background, the difficulties of accurate extraction
and tracking of moving objects, illumination change, etc. In this work, we
focus on detecting strong changes in spatial relationships between mov-
ing objects in video sequences, with a limited knowledge of the objects.
In this approach, the spatial relationships between two objects of inter-
est are modeled using angle and distance histograms as examples. To
evaluate the evolution of the spatial relationships during time, the dis-
tances between two angle or distance histograms at two different instants
in time are estimated. In addition, a combination approach is proposed
to combine the evolution of directional (angle) and metric (distance)
relationships. Studying the evolution of the spatial relationships during
time allows us to detect the ruptures in such spatial relationships. This
study can constitute a promising step toward event detection in video
sequences, with few a priori models on the objects.

Keywords: Spatial relationships - Angle histogram - Distances * Fuzzy
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1 Introduction

In the literature, there are many intelligent video surveillance systems, and each
system is dedicated to a specific application, such as sport match analysis, people
counting, analysis of personal movements in public shops, behavior recognition
in urban environments, drowning detection in swimming pools, etc'. The VSAM
project [35] was probably one of the first projects dedicated to surveillance from
video sequences. The goal of ICONS project [18] was to recognize the incidents
in video surveillance sequences. The goal of the three projects ADVISOR [2],
ETISEO [11] and CareTracker [5] was to analyze record streaming video, in
order to recognize events in urban areas and to evaluate scene understanding.

! See http://www.cs.ubc.ca/~lowe/vision.html for examples of companies and projects
on these topics.
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The AVITRACK project [3] was applied to the monitoring of airport runways,
while the BEWARE project [4] aimed to use dense camera networks for moni-
toring transport areas (railway stations, metro).

In this context, an increasing attention is paid to “event” detection. In [28],
an approach is proposed to detect anomalous events based on learning 2-D tra-
jectories. In [30], a probabilistic model of scene dynamics is proposed for appli-
cations such as anomaly detection and improvement of foreground detection. For
crowded scenes, tracking moving objects becomes very difficult due to the large
number of persons and background clutter. There are many approaches proposed
in the literature for abnormal event detection, based on spatio-temporal fea-
tures. In [19], an unsupervised approach is proposed based on motion contextual
anomaly of crowd scenes. In [23], a social force model is used for abnormal crowd
behavior detection. In [9], an abnormal event detection framework in crowded
scenes is proposed based on spatial and temporal contexts. The same authors
proposed in [8] a similar approach based on sparse representations over normal
bases. Recently, Hu et al. [16] proposed a local nearest neighbor distance descrip-
tor to detect anomaly regions in video sequences. More recently, the authors in
[32] have proposed a video event detection approach based on spatio-temporal
path search. It is also applied for walking and running detection.

We adopt a different point of view. We address the question of detecting struc-
tural changes or ruptures, which can be seen as a first step for event detection.
We propose to use low-level generic primitives and their spatial relationships,
and we do not assume a known set of normal situations or behaviors. To our
knowledge, the proposed approach is the first one that exploits low-level primi-
tives and spatial relationships in an unsupervised manner to detect ruptures in
video. In order to illustrate the interest of spatial relationships, let us consider
a person leaving a luggage unattended on the ground. For human beings, it is
easy to detect and recognize this kind of event. To learn an intelligent system to
detect and recognize this event, one solution is to break down this event into the
spatial relationships between the luggage and the person at many points in time.
For example, the person holds the luggage at the beginning. If the person leaves
the luggage unattended, the spatial relationships between the person and the
luggage rapidly changes from very close state to far away state. Thus, detecting
ruptures in spatial relationships can be important in detecting and recognizing
actions or events in video sequences.

We propose to detect in an unsupervised way strong changes (or ruptures) in
spatial relationships in video sequences. This rules out supervised learning-based
algorithms which require specific training data. This is useful in all situations
where an action or an event can be detected based on such changes or rup-
tures. Here, we use Harris detector [15], and/or SIFT detector [22] to extract
low-level primitives, which are suitable to efficiently detect and track moving
objects during time in video sequences [31,36]. In order to associate features
points to objects (to compute the fuzzy representation), the algorithm proposed
in [31,36] can be used. The work presented is considered as a further analysis
step after tracking the objects using feature points. Furthermore, we propose a
fuzzy representation of the objects, based on their feature points, to improve the
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representation of the objects and of the spatial relationships. Then, the structure
of the scene is modeled by spatial relationships between different objects using
their fuzzy representation. There are several types of spatial relationships: topo-
logical relations, metric relations, directional relations, etc. We use directional
and metric relationships as an example. More specifically, we consider the angle
histogram [24] for its simplicity and reliability, and similarly the distance his-
togram. In order to study the evolution of the spatial relationships over time and
to detect strong changes in the video sequences, we need to measure the changes
in the angle or distance histograms during time. Note that this approach dif-
fers from methods based on motion detection and analysis, since it considers
structural information and the evolving spatial arrangement of the objects in
the observed scene. In the literature, many measures have been proposed to
measure the distance between two normalized histograms. Here, we propose to
adapt these measures to angle histograms, in order to use them in our method.
Finally, a criterion is proposed to detect ruptures in the spatial relationships
based on distances between angle or distance histograms over time. In addition,
a new approach is proposed for combining the distances between angle and dis-
tance histograms. The fusion consists in creating a summarized information that
represents both the directional and metric spatial relationships. This is a new
feature with respect to our preliminary work in [1].

The proposed methods for the fuzzy representation and detection of ruptures
in the spatial relationships are described in Sect.2. Experimental results are
shown in Sect. 3 in order to evaluate the performance of the proposed approach.
Finally, conclusions and future work are presented in Sect. 4.

2 Rupture Detection Approach

The proposed approach is divided into two main parts. In the first part, our
goal is to estimate a fuzzy representation of the objects exploiting only feature
points. In the second one, spatial relationships between objects are investigated,
using this representation of the objects. Based on the evolution of the spatial
relationships during time, strong changes in video sequences are detected.

The fuzzy representation of the objects using the features points is described
in Sect. 2.1. Specifically, we study the spatial distribution of the feature points
that are extracted using a detector such as Harris or SIFT, for a given object. Fea-
ture points can be used to isolate and track objects in video sequences [31,36].
Thus, we suppose that each moving object is represented by a set of interest
points isolated from others with the help of such techniques. Here, we pro-
pose two different criteria to represent the objects as regions, exploiting only
the feature points. The first one is based on the depth of the feature points, by
assigning a value to each point based on its centrality with respect to the feature
points. The second one assigns a value to each point depending on the density
of its closest feature points. Finally, the depth and density estimations are com-
bined together, to form a fuzzy representation of the object, where the combined
value at each pixel represents the membership degree of this pixel to the object.



92 A. Abou-Elailah et al.

This allows reasoning on the feature points or on the fuzzy regions derived from
them, without needing a precise segmentation of the objects.

In Sect. 2.2, the computation of the spatial relationships is discussed based on
the fuzzy representation of the objects. As an example, we illustrate the concept
with the computation of the angle and distance histograms. Then, the existing
distances between two normalized histograms are detailed, and the adaptation
of these distances to angle histograms is also discussed. Finally, a criterion is
defined as the distance between the angle or distance histograms during time,
in order to detect ruptures in the spatial relationships.

2.1 Fuzzy Object Representation

In this section, we detail the estimation of the fuzzy representation based on the
feature points.
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Fig. 1. Feature point distribu- Fig. 2. Sorted angles.

tion for a given object.

Feature Detection. For a given object, let z (kK =1,2,...,n) be the detected
feature points. For a given pixel p of the object, let px; denote the line connecting
the pixel p and z; (i € [1...n]), d; the distance between p and x;, and 6; the angle
between pz; and the horizontal line as shown in Fig. 1 (6; € [0, 27]).

Distances d; and angles 6; are used to estimate depth and density weights
for each object based on the x;. The depth weight is computed using the angles
0;, and is denoted by dh. The second weight is computed using the distances d;,
and is denoted by dy. Hereafter, their estimations are described, as well as their
fusion.

Depth Estimation. In the depth estimation (i.e. centrality), all the feature
points are taken into account. Several approaches have been proposed in the
literature for depth measures [17], such as simplicial estimation [20], half-space
estimation [33], convex-hull peeling estimation [10], L1-depth [34], etc. We pro-
pose a new depth measure which is based on the entropy. For each pixel p,
the computed angles 0; are sorted in ascending order as shown in Fig. 2. Let 6,
(; > 6; if j > i) be the sorted angles. We define A; as follows:

or+6y)—0, ifi=1
A* = (V ~ 1
' { 0; — bi1 if i € [2...n] (1)
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(b) (c) (d) (e) ®

Fig. 3. Depth measures: original object with feature points (a), simplicial estimation
[20] (b), half-space estimation [33] (c), convex-hull peeling estimation [10] (d), L1-depth
[34] (e), and the proposed depth (f) (image from PETS 2009 database [27]).

Let p; = %, p; has two properties: 0 < p; < 1 and E?:lpi = 1. Thus, p;
can be seen as a discrete probability distribution of the angles. Then, the depth
weight is defined as the entropy of this probability distribution:

n

dh(p) = % > —pilog, p; (2)

i=1

This depth measure can be explained as follows: let us consider a point ¢
inside the object with feature points distributed equitably around it in terms of
directions. In this case, we obtain pg = p1 = ... = pn, and the depth weight of
point ¢ is equal to 1 (the highest weight). Otherwise, if the point ¢ is outside the
object, the depth weight depends on the angle view (A; can represent the angle
view) and the distribution of the feature points inside the object (p2, ps3, ..., pn). If
the angle view becomes smaller and smaller (e.g. the point ¢ is moving away from
the object), the depth weight of the point ¢ becomes also smaller accordingly.

Figure 3 shows the representation of several state of the art depth estimations
for an object, including our proposal. As we can see, the entropy depth can bet-
ter represent the shape of the object than the existing depth measures. In terms
of computation time, the L1-depth and the proposed depth are the most effi-
cient ones compared to other measures. Our experimental tests showed that the
choice of a particular depth measure has a limited impact on the detection of the
rupture. However, the entropy depth measure may present a significant enhance-
ment compared to other depth measures, in the applications that need a precise
shape estimation, to describe fine relationships, for example when objects meet.

Density Estimation. For density estimation, for a given pixel inside the object,
only the neighbor feature points are taken into consideration (feature points
within a certain distance r, or k closest feature points). Thus, the distances d;
that are lower than a certain distance r are taken into account to compute the
density weight for the pixel p as follows:
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dy(p) = Z(l - %), where d; <r (3)

where M is the number of points inside the circle of radius r. This radius can be
estimated automatically and online, based on statistics on the distances between
points, in order to be adapted to the scale of the object. Figure4(c) shows a
representation of the density estimation.

Fusion of Depth and Density Estimations. We present a combination app-
roach to fuse the two estimations obtained from depth and density of the feature
points. For the sake of optimization, the pixels ¢ that are taken into considera-
tion for the fusion are defined as follows: dy(q) > 0 or dh(q) > th, where th is
a given threshold. The obtained estimation of the object is referred to as “fuzzy
representation”.

Here, the z-score [6] is applied on the two estimations, in order to make
them comparable. The z-score is the most commonly used normalization process.
It converts all estimations to a common scale with an average of zero and a
standard deviation of one. It is defined as follows: Z = (X — M)/(o), where
M and o represent the average and the standard deviation of the X estimation,
respectively. Let Z4" and Z% be the depth and density estimations respectively,
after applying the z-score normalization.

(b) (© (d) (e) ® (9]

Fig. 4. Original object with the feature points (a), depth estimation (b), density esti-
mation (c), fusion using min operator (d), fusion using max operator (e), fusion using
Eq.4 (f), and the object segmented precisely GT (g).

()

The obtained fuzzy representation, using different fusion operators, are com-
pared with a Ground Truth (GT) where the objects are segmented precisely
(see Sect. 3 for details, and an example in Fig. 4(g)). The combination approach
which gives the best performance consists in using the two operators min and
max together as defined in the following expression:

F(p) = min (max (Zdh(p), de(p)) ,ef) (4)

where ¢ = ﬁ Then, F is normalized using Min-Max scaling [14] to obtain the

membership function pp which varies in [0, 1]. This fusion can be explained as
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follows: when Z (or Z%) is greater than &, the membership value pp(p) is
equal to 1. Otherwise, pr(p) is less than 1 according to the maximum between
them. As an example, Fig. 4 shows different fuzzy representations of the object
using min operator, max operator, and Eq. 4 for the fusion. As we can see, the
last fusion approach shows the best fuzzy representation of the object according
to the ground truth. The obtained fuzzy representations are used to compute
the spatial relationships.

2.2 Spatial Relationships and Rupture Detection

Here, the goal is to estimate the spatial relationships between two objects based
on their fuzzy representation. The angle [24] and distance histograms are selected
as examples to model the spatial relationships. It is important to note that the
proposed method also applies to other types of spatial relationships.

Angle Histogram. Given two fuzzy regions A = {(a;, pa(a;)),i =1,...,n} and
B = {(bj, uB(b;)),j = 1,...,m}, where a; and b; are the elements of A and B,
and p 4 and pp represent their membership functions respectively, for all possible
pairs {(a;,b;),a; € A and b; € B}, the angle 6;; between a; and b; is computed,
and a coefficient e (0;;) = pa(a;) x pp(b;) is derived. For a given direction «,
all the coefficients of the angles that are equal to « are accumulated as follows:

h = > pe(bis) (5)

0;j=a,i=1,..,n,j=1,..,m

Finally, h = {(a, h*), € [0,27]} is the angle histogram. In our case, the his-
togram can be seen as an estimate of the probability distribution of the angles.
Thus, the obtained histogram is normalized to display frequencies of the existed
angles with the total area equaling 1. It is normalized by dividing each value
by the sum Rj = Zae[o,%] h?%, instead of normalizing by the maximum value
(which would correspond to a possibilistic interpretation).

When the objects are represented sparsely by feature points, then pa(a;) =1
and pp(bj) = 1 (where a; and b; represent the feature points on the objects
A and B respectively), and the same approach is used to compute the angle
histogram between the two sparse objects A and B.

Distance Histogram. In this case, all the distances d;; between a; (i = 1, ...,n)
and b; (j = 1,...,m) are computed. Based on these distances, the distance his-
togram is formulated in the same way as the angle histogram:

h' = Z e (dij) (6)

dij=l,i=1,..,n,j=1,..,m

where pr(dij) = pa(a;) x pp(b;) and I represents a given distance value. The
obtained histogram is normalized such that the sum of all bins is equal to 1.

Comparison of Spatial Relationships. There are two main approaches to
estimate distances between histograms. The first approach is known as bin-to-bin
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distances such as Ly and Ly norms. The second one is called cross-bin distances;
it is more robust and discriminative since it takes the distance on the support of
the distributions into account. Note that the bin-to-bin distances may be seen as
particular cases of the cross-bin distances. Several distances based on cross-bin
distances, such as Quadratic-Form (QF) distance [13], Earth Mover’s Distance
(EMD) [29], Quadratic-Chi (QC) histogram distance [25], have been proposed in
the literature. We have tested these three distances on different examples, and
experiments showed that they were well adapted to angle histograms. Finally,
the QF distance was used in our experiments to assess the distance between the
angle or distance histograms during time, because of its simplicity. It is defined
as follows: d(hi,he) = VZSZT, where Z = hy — hy and S = {s;;} is the bin-
similarity matrix. This distance is commonly used for normalized histograms (the
distance histogram for example). Here, we propose an approach to adapt it to the
case of angle histograms just by adjusting the elements of the similarity matrix S.
We consider that the two histograms h; and hy defined on [0, 27| consist of k bins
B;. Usually, for a distribution on the real line, the distance between B; and B
is defined as follows: z;; = |B; — Bj|, where 1 <i <k and 1 < j < k. However,
in the case of angle histograms, the distance between B; and B; is defined as
follows: z§; = min(z;;,2m — ;) to account for the periodicity on [0, 27]. Thus,
the elements of the matrix S are simply defined, in the case of angle histograms,
using xf; instead of z;; as follows:

Z€.

Sij =1- — Y (7)

max; ; (zf;)

Criterion for Rupture Detection. Based on the fuzzy representation of the
objects exploiting only the feature points, the angle or distance histogram h
between two different objects is computed. Let f; (¢ = 0,1,..., N — 1) be the
frames of the video sequences, and h; be the computed angle or distance his-
togram between the objects A and B in frame f;. We define y(i) = d(h;, hit1)
for each ¢ = 0,1,...,N — 1. This function describes the evolution of the angle
or distance histograms over time. If a strong change in the spatial relationships
occurs at instant R (R < N), where R denotes the instant of rupture, this means
that the angle or distance histogram hg effectively changes compared to previous
angle or distance histograms (h;,7 < R). A rupture is detected according to the
following criterion W: Vi < R—1, y(R—1) —y(i) > t, and t is a threshold value.
Thus, the instant of rupture R can be effectively detected from the analysis of
the function y.

Here, in order to clearly show the instant of ruptures in the spatial relation-
ships and remove noise, we also show the evolution of the function y filtered by a
Gaussian derivative, denoted by g, instead of a simple finite difference. This filter
can remove noise and the function g effectively exhibits the instant of the strong
changes in the spatial relationships using a threshold approach. This approach is
particularly well suited for abrupt changes, leading to clear peaks in the function
g, that are then easy to detect (a simple threshold can be sufficient). For slower
changes, a multiscale approach can be useful to detect more spread peaks.
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(a) Frames number 1, 30, and 50 of (b) Frames number 45, 55, 74, 95, and 105 of SE 2.
SE 1.
B ﬁﬁr“fy A= ﬂ %”ﬁ%i’ ’aﬁﬁ
E’ I ? § m m &
(c) Frames number 450, 462, and 468 (d) Frames number 595, 630, 670, and 700 of RE 2 selected
of RE 1 selected from PETS 2009.  from PETS 2009.

Fig. 5. Events SE 1 (a), SE 2 (b), RE 1 (¢) and RE 2 (d).

Fusion of Directional (angle) and Metric (distance) Evolutions. To
distinguish between two functions that are derived from angle and distance his-
togram, let % and y? be the functions that represent the evolution of directional
(angle) and metric (distance) spatial relationships during time respectively. The
goal of this study is to combine the two functions ¢’ and 3¢ in an efficient way,
in order to produce a unique function y*, which allows us to detect the strong
changes in both directional and metric relationships, at the same time. Thus,
if a rupture occurs in at least one of them (y’ and y?), this rupture must be
efficiently detected using the function y*.

To combine the two evolutions, at each instant time k, the two distances
y?(k) and y?(k) are extracted and used to provide a single point py(z,yx) in
R?, defined as follows :

ri = (do -+ (k) cos(y” () .
k= (do +y*(k)) sin(y’ (k)

where dy is a constant, to account for the variation of the distance y?(k) when
the value of y?(k) is very small (e.g. close to 0). Furthermore, we define a sin-
gle function y* using the points pi (k = 1,...,n), by computing the distances
between two consecutive points pi and pg1, over time. The value of the function
y* at instant time k is computed as follows:

Y (k) = vV (@rt1 — 26)% + (Yrg1 — yr)? 9)

this function y* can be used to detect the ruptures in both directional and metric
relationships, using the approach described above.
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(a) Frames number 1, 5, 10, and (b) Frames number 1955, 2010, 2060, and 2100 of RE 3 selected
50 of SE 3. from PETS 2006 [26].

Fig. 6. Events SE 3 (a) and RE 3 (b).

3 Experiments and Evaluations

To evaluate the performance of the proposed approach, we created some syn-
thetic events (illustrated in Fig.5(a) and (b)), and also used a variety of events
selected from the PETS 2009 datasets [27] (illustrated in Fig. 5(c) and (d)). Here,
we call “event”, some frames that contain a rupture in the spatial behavior.
The results of the proposed fuzzy representation are also compared to classical
segmentation approaches: a binary segmentation approach [7] and an approach
using differences between the background and the actual frame. Then, morpho-
logical operations are carried out to remove small objects and fill holes. The last
one is used as ground truth (GT) because it produces very precise segmentations.

A synthetic event and an event selected from PETS 2006 dataset [26], dis-
played in Fig. 6, are used to illustrate the proposed approach using the distance
histogram. To associate feature points to objects, here we simply consider the
points included in the bounding boxes associated with objects available in the
PETS 2009 dataset.

3.1 Parameters Tuning

In this section, some results are detailed concerning the tuning of the parameters
that are used in the proposed approach. Specifically, we discuss the estimation of
the radius r, which is used in the computation of the density estimation. Then,
some results are shown for different values of the threshold th, which is used in
the combination of depth and density estimations. Finally, we show the effect
of the number of bins on the computation of the distance between two angle
histograms.

r Parameter. Fig.7 shows different estimations of the radius r (normalized)
during time. First, all the possible distances d;; among the feature points are
computed. The mean, median, and maximum of these distances are computed, as
shown in the figure (three first curves). Then, Delaunay triangulation is applied
on the feature points, and two other estimations of the radius r are computed, as
the mean and median of the lengths of the triangle edges (fourth and fifth curves).
Finally, as in [21], the median of all radius of the circumscribed circle around
the Delaunay triangles provides the last estimation (last curve). As we can see,
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the maximum of the distances (third curve) gives the most robust and stable
estimation during time. Other experiments on different objects show the same
result. Thus, the expression
d.:
r= max - (10)

i=1,..,n,j=i,..,m 6

is adopted to estimate the radius r for the density estimation.

1 Mean distances 14 = T
Median distances —+—z - 360 bins
Max distances 12 y - 360 bins
0.9 Mean Delaunay —+— > - 18 bins
Me@ian De.launay 4 y - 18 bins
Median radius Delaunay L
z- 6 bins
0.8 gosll—=y- 6 bins
]
k]
0.7 B 0.6
0.4 : :
0.6
0.2
0.5 0 a B B it
540 550 560 570 580 590 600 610 440 445 450 455 460 465 470 475
Frame number Frame number
Fig. 7. Different estimations of the Fig. 8. The functions y and z over time
radius r based on the feature points. using various number of bins.

A
Original object GT th =0.2 th =0.5 th =0.8

Fig. 9. Original object with the feature points, GT of the object, and fuzzy represen-
tations of the object for th equal to 0.2, 0.5, and 0.8 respectively.

th Parameter. In the fusion of depth and density estimations, a threshold th
is used. Figure9 shows the original object with the feature points, the ground
truth (GT) of the object, and the fuzzy representation (FR) of the object for
different values of th. As we can see, the proposed fusion approach is quite robust
to the variation of the used threshold th. In the paper, a value of th equal to 0.5
is used in the combination of depth and density estimations.

Number of Bins. In this section, we study the effect of the number of bins
(quantification) on the distance between two angle histograms. We defined the
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function y as the distance between two successive angle histograms in frames
fi and f;11. Here, we also define z(i) = d(ho, h;) for i = 0,1,..., N — 1, i.e. the
distance to the histogram in the initial frame, to consider strong changes in the
angle histograms. Figure 8 shows the evolution of the two functions y and z, for
numbers of bins of 360, 18, and 6. As we can see, there is almost no difference
between 360 and 18 bins, for the two functions. For a number of bins equal
to 6, there is a difference compared to 360 and 16 bins for the function z. For
the function y, the three curves are almost the same. Thus, the used distance
between two angle histograms is robust to the variation of the number of bins.

S. Event 1 S. Event 2
0.06 0.08
—Y
0.05 0.06 :
0.04 0.04
003 I3
2 2 002
S o002 S
w w2
=< o= o
[a o)
o -0.02
-0.01 -0.04
-0.02 -0.06
0 10 20 30 40 50 60 0 50 100 150
Frame number Frame number

Fig. 10. Functions y and g for events SE 1 (left) and 2 (right), computed from angle
histograms.

3.2 Ruptures in Spatial Relationships

We now illustrate how the analysis of the distances between histograms allows
us to detect ruptures in spatial relations, both for orientation and distances.

Angle Histogram. Three snapshots of the first synthetic event (SE) are shown
in Fig. 5(a) (two objects moving together and then separately). In this case, there
is a rupture in the directional spatial relationships, when the two objects diverge.
Figure 5(b) shows five snapshots of the second SE. In this event, the object B
moves towards the object A (fixed) from the left to the right. Then, the object
B changes of direction (frame 74), and when the object B becomes above the
object A, it goes towards the top.

Figure 10 shows the functions y and g during time for the two events SE 1 and
2. For the event SE 1, the function y shows a strong variation at frame number 31.
At this instant, there is the rupture in the spatial relationships (the two objects
begin to separate). Using the evolution of g over time, the instant of the rupture
can be detected by applying a threshold (a threshold of 0.02 can be used to detect
the instants of rupture for the SE). For the second SE, we can see two strong
variations in the function y; the first strong variation (frame 60) occurs when B
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changes of direction with respect to A, the second strong variation (frame 90)
occurs when B becomes above A and changes its direction towards the top. The
function g clearly shows the two strong variations. Thus, the proposed method
can efficiently detect the instants of ruptures in the spatial relationships. Other
SE were created and tested using the proposed approach, and similar results
were obtained.

Real event 1 Real event 2

0.4 0.4
0.3 03
0.2
0.2
8 8 0.1
0.1
g g o
+~ -
.é’ 0 é -0.1
-0.2
-0.1
-0.3
-0.2 Y 1 oa|l— Y
— g
-0.3 -0.5
440 445 450 455 460 465 470 475 550 600 650 700 750 800
Frame number Frame number

Fig. 11. Functions y and g over time, using the proposed fuzzy representation, for the
events RE 1 (left) and RE 2 (right), computed from angle histograms.

Let us now evaluate the proposed detection of ruptures in the spatial rela-
tionships in the presence of noise (deformation of objects, etc.) in real events.
For the real event (RE) 1 (Fig.5(c)), the two persons converge then diverge.
Figure 11 (left) shows the functions y and g over time using the proposed fuzzy
representation, for the event RE 1. Two ruptures in the directional spatial rela-
tionships exist in this event. The first one is when the two persons meet, and the
second rupture when the two persons separate. It is clear that the two instants
of the ruptures can be efficiently detected using the evolution of g (a threshold
of 0.2 can be used to detect the instants of ruptures for the RE). In the event RE
2 (Fig. 5(d)), the two persons (surrounded by white and blue bounding boxes)
converge and diverge several times. In Fig. 11 (right), we show the functions y
and g over time, using the fuzzy representation of the objects, for the event
RE 2. All the ruptures in the directional spatial relationships can be efficiently
detected using the function g.

Distance Histogram. Four snapshots of the third synthetic event are shown in
Fig.6(a). At the beginning of this event, the two objects diverge at a speed of 5
pixels/frame, and at a given instant (precisely at frame 10), the speed of the two
objects becomes 10 pixels/frame. Thus, the velocity of the objects is suddenly
increased. Figure 6(b) shows four snapshots of the third real event selected from
PETS 2006. In this event, the luggage is attended to by the owner for a moment,
and then the person leaves the place and goes away.
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Fig. 12. Functions y and g over time,
using the proposed fuzzy representa-
tion, for the event SE 3, computed from
distance histograms.
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Fig. 13. Functions y and g over time,
using the proposed fuzzy representa-
tion, for the event RE 3, computed
from distance histograms.

In Fig. 12, the functions y and ¢ during time for the event SE 3 are shown.
As we can see, the function y shows a strong variation at frame number 10,
when the velocity of the objects changes. At this instant, a rupture in the metric
spatial relationships is detected, using the evolution of g over time.

In the presence of noise, we show in Fig. 13 the functions y and g during
time for the third real event. When the person leaves the place and goes away,
we can see a strong change in the function y. By nalyzing the obtained results,
the instant of rupture in the metric spatial relationships can be detected. These
results can be used to indicate events occurring in the video sequences, such as
escaping in Fig. 6(a) and Left-Luggage in Fig. 6(b).

Fusion of Angle and Distance Histograms. To evaluate the performance of
the proposed approach for the fusion of directional and metric information, we
create a synthetic event that contains many ruptures, in directional and metric
spatial relationships, during time. In Fig. 14, we show the obtained functions
y? and y? over time. Note that y’ and y? represent the evolution of spatial
relationships using the angle histogram and the distance histogram respectively.
As we can see, there are many directional and metric ruptures in these functions.
On the right side, we show the results of the combination of the two functions y¢
and y? using a naive method (in this approach, the fusion consists in averaging
the two functions) and the proposed approach. As we can observe, the proposed
approach shows clearly the instant of ruptures in both directional and metric
spatial relationships, and provides higher values than the naive fusion for most
of the ruptures.

As we can see, when a rupture occurs in both functions y? and y¢, it is clearly
shown in the function y* (see instants 10 and 94). In addition, the last rupture
in the function y? (at instant 100) can be efficiently detected using the function
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Fig. 14. Functions y’ and y? over time, for a synthetic event (left) and the combination
of the functions 3 and y? using the naive fusion and the proposed combination (right).

y*, even if there is no strong change in the function 4? at this instant. Similarly,
the rupture at instant 50 in the function y? can be efficiently detected using y*,
even if at this instant, no rupture is shown in the function y¢. Thus, the function
y* can show clearly the ruptures that occur in at least one of the functions y¢
and y?.

3.3 Impact of Object Representation

Here, we show the importance of the fuzzy representation based on a simple fea-
ture points representation. Two feature detectors, Harris and SIFT, are tested.
Figure 15 illustrates the function y during time (computed here from angle his-
tograms) for different representations of the objects, for RE 1. The Harris and
SIFT features are directly used to estimate the spatial relationships between
the two objects and to compute the function y (red and green curves in the
figure). In addition, we show in the same figure the evolution of the function y
computed on the fuzzy representation of the objects using the Harris and SIFT
features (blue and black curves in the figure). As we can see, the evolution of
the function y obtained from the fuzzy representation of the objects using the
SIFT features (black curve) can significantly reduce the variation of the distance
(i.e. less amplitude of the curve) on areas when there is no rupture in the spatial
relationships (see Fig. 15, frames 440 to 456) with respect to the SIFT features
without computing the fuzzy representation. Thus, the proposed fuzzy repre-
sentation of the objects before computing the spatial relationships can improve
the robustness of the detection of ruptures, based on the observation that SIFT
features are more noisy across frames than Harris features in this sequence.
However, noise is present in the function y for all object representations.
Assuming that the function y has additive Gaussian noise, the algorithm pro-
posed by Garcia [12] is used to estimate the variance of the noise of the function
y, for the different object representations: Harris features, fuzzy representation
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Fig. 15. Function y over time, computed from angle histograms, for different estima-
tions of the objects: Harris features, SIFT features, fuzzy representation (FR) of the
objects using Harris features (FR Harris) and SIFT features (FR SIFT), for RE 1.

of the objects using Harris features (FR Harris), SIFT features, fuzzy represen-
tation of the objects using SIFT features (FR SIFT), the binary segmentation
using Mean-Shift algorithm [7] and GT.

Table 1. Estimated variance of the noise (x107%) [12] in the function y, for different
object representations, for RE 1 and 2.

Event | Harris | FR Harris | SIFT | FR SIFT | Mean-Shift | GT
RE 1 |13 12 27 10 31 12
RE2 |7.7 5.48 8.9 7 31 5.4

Table 1 shows the variance of the noise in the function y, for the different
object representations, for the two events RE 1 and 2. It is clear that the pro-
posed fuzzy representation significantly reduces the variance of the noise, which
becomes close to the one of the GT. Especially, for SIFT features, the variance of
the noise reduces from 27 to 10 for RE 1, and from 8.9 to 7 for RE 2. In addition,
the variance of the noise of the proposed object representation is significantly
less than the one of the binary segmentation using Mean-Shift algorithm.

4 Conclusion

In this paper, a new method was proposed to detect strong changes in spatial
relationships in video sequences. Specifically, new approaches have been pro-
posed to compute depth and density estimations, based on feature points, as
well as fuzzy representations of the objects by combining depth and density
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estimations. Exploiting the fuzzy representations of the objects, the angle and
distance histograms are computed. Then, the distance between the angle or dis-
tance histograms is estimated during time. Based on these distances, a criterion
is defined in order to detect the significant changes in the spatial relationships.
A new approach has been also proposed to combine directional and metric spa-
tial relationships. The proposed method shows good performances in detecting
ruptures in the spatial relationships for both synthetic and real video sequences.

Future work will focus on further improvement of the proposed method in
order to detect other kinds of ruptures, and investigating the use of spatio-
temporal relationships. Besides, we will investigate multi-time scale analysis,
in order to better detect events that take more time to happen. In addition,
proposing a complete event detection framework based on spatial relationships
as discriminative features seems to be promising.
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