
Disponible en ligne sur
IRBM 38 (2017) 42–55

ScienceDirect
www.sciencedirect.com

Original Article

A Landmark Detection Approach Applied to Robust Estimation 

of the Exposure Index in Digital Radiography

P. Irrera b,∗, I. Bloch a, M. Delplanque b

a LTCI, CNRS, Télécom ParisTech, Université Paris-Saclay, Paris, France
b EOS Imaging, Paris, France

Received 19 September 2016; received in revised form 12 December 2016; accepted 13 December 2016

Available online 16 January 2017

Graphical abstract

Abstract

Purpose: The exposure index is an important measure used in digital radiography to control the dose at the detector. This value should be 
computed in regions of interest that are adapted to each patient’s anatomy and pose.
Material and methods: We propose to define automatically these regions based on anatomical landmarks in the main structures of interest (head, 
thoracic spine, lungs, lumbar spine, pelvis, femurs, knees, tibiae). This task is achieved by combining the global information on the size and the 
positions of the anatomical structures on the one hand, with local analysis on the other hand.
Results: Experimental results, on a varied database of 82 full-body acquisitions, demonstrate the interest of the proposed approach, with less 
errors than existing approaches, in particular on frontal view acquisitions. The method is also robust to variations in patient’s conditions and to 
the potential presence of metallic objects.
Conclusion: The approach proposed in this paper allows consistently estimating exposure index values associated with different X-ray acquisi-
tions. This suggests that the application of the proposed method to clinical practice is promising.
© 2017 AGBM. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Digital radiography has many advantages over screen-film 

detectors. For example, digital systems are able to generate 
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well contrasted images at wider dose ranges than analogical 
ones [11]. Indeed, in screen-film imaging, the quality totally 
depends on acquisition conditions because the image is not 
post-processed. Overexposed images tend to look too dark and 
underexposed ones are too bright. On the other hand, digital 
systems allow obtaining images that are well balanced in terms 
of contrast by using post-processing methods. However, the re-
lationship between image quality and X-ray dose is lost. This 
was the reason of the exposure creep in digital X-ray radiogra-
phy. Basically, since the noise level is the only image quality 
measurement that changes according to the amount of dose, the 
users may tend to prefer overexposed images that have better 
signal to noise ratio (SNR) than correctly exposed one. Never-
theless, this choice is clearly in conflict with the ALARA prin-
ciple that strongly suggests clinicians to optimize the amount of 
X-ray exposure As Low As Reasonably Achievable according to 
the purpose of the exam.

The Exposure Index (EI) is a standardized image quality 
measure that has been proposed thanks to a joint initiative of 
the International Electrotechnical Commission [5] and of the 
American Association of Physicists in Medicine [11] in order 
to specifically address this issue. The EI quantifies the amount 
of dose at the detector, and, hence it must not be mistaken with 
patient radiation dose. Nevertheless, since it is proportional to 
the squared SNR [10], it can be used to define the lower limit of 
radiation exposure depending on the intended use of the exam 
and the maximum acceptable amount of noise for clinicians.

The standard IEC 62494-1 [5] is extremely clear on the pro-
cedure to follow in order to estimate EI values from image gray 
levels and we refer to it for any information about, for example, 
X-ray beam characterization. Nevertheless, the manufacturers 
are free to choose a method to define the region of interest (ROI) 
where the EI is computed. It is worth noting that this aspect is 
not only important as the EI value depends on the selected ROI, 
but also not trivial to address.

It is then important to define the ROI used to compute the 
EI in such a way that the comparison between acquisition pro-
tocols on different patients is consistent. Furthermore, the vari-
ations of patients’ poses or the presence of multiple anatomi-
cal structures in the field of view make it very challenging to 
get significant EI measurements. This is even more important 
for clinical exams requiring a full-body analysis of the muscu-
loskeletal apparatus [6]. As a typical example, we consider in 
our experiments images acquired with EOS system, which is 
dedicated to this type of analysis. Table 1 provides an exam-
ple of EI measurements computed from an EOS frontal view 
acquisition of the full body. The values given in this exam-
ple show how heterogeneous is the information. For example, 
the EI value behind the lung region is four times higher com-
pared with the measurement behind the lumbar spine, which 
is a region at higher density than the chest. As a consequence, 
a unique EI value computed at the center of the image gives a 
poor description of the image quality of an exam. It is there-
fore necessary to detect the anatomical regions of interest that 
appear in the image.

Irrera et al., [8] have recently proposed a landmark-based ap-
proach that allows addressing the aforementioned issues. How-
Table 1
Exposure index measurements in anatomical re-
gions of a full-body frontal view exam acquired 
with the EOS system.

Exposure index value

Head 33.0
Thoracic spine 38.3
Lungs 104.5
Lumbar spine 25.4
Pelvis 28.8
Femurs 41.5
Knees 67.5
Tibiae 77.6

ever, the evaluation of the method was conducted from man-
ually annotated landmarks. In this work we propose an unsu-
pervised approach that automatically detects these landmarks. 
Multiple aspects make anatomical structures detection chal-
lenging on planar 2D radiographic images: the image quality 
significantly changes from an exam to another, there are rota-
tional issues due to the projection of the 3D volume on a 2D 
plane and the intensity values inside the same structure are not 
homogeneous given tissue superposition. The proposed method 
should then be able to address all these challenges while being 
efficient in terms of computational time because the EI has to 
be immediately displayed on the processed image. The valida-
tion is another significant contribution of this work as we con-
sider eight anatomical regions, two acquisition views, patients 
of different ages and morphotypes, and acquisition protocols at 
several X-ray exposition levels.

The paper is organized as follows. Section 2 starts by in-
troducing the EI algorithm and by presenting the method for 
computing EI values with a landmark-based approach [8]. We 
then present the proposed landmark detection approach and de-
scribe our clinical database. Section 3 evaluates the proposed 
method and discusses the obtained results. Section 4 concludes 
the paper, and summarizes the achieved objectives and perspec-
tives.

2. Materials and methods

2.1. Exposure index

The exposure index is a standardized measure that represents 
the amount of dose at the detector in a region that is of interest 
for the undergoing clinical exam (ROI). The amount of dose 
measured in Gy is estimated from intensity image values by 
means of a calibration function that depends on the system [5].

The input to the exposure index algorithm is the acquired im-
age corrected in offset, gain and dead pixel. It is worth noting 
that any further operation on the image that changes intensity 
values or noise distribution, for example contrast enhancement, 
must be avoided as the exposure index describes the image 
quality at the acquisition. The input image is denoted by u. 
A ROI � ⊂ �, where � is the whole pixel space, indicates 
the region of the image that is considered meaningful for the 
undergoing exam. The ROI selection methods presented in the 
standard IEC 62494-1 [5] and by Shepard et al. [11] are based 
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on gray level histogram thresholding, positioning of rectangu-
lar or circular shapes at the center of the envelop of the patient 
or a combination of these two techniques. The ROI selection 
may be problematic because of the presence of metallic ob-
jects, unexpected positions of body parts and variations in the 
patient thickness especially in case of full body images. Given 
the mentioned issues, the techniques used to define the ROIs 
are just given as examples and are not imposed by the stan-
dard IEC 62494-1 [5]. Moreover, the manufacturer is invited to 
give users the possibility of validating and, eventually, of mod-
ifying the automatically selected ROI. Therefore, according to 
the original formulation, the EI should rely on user-interaction 
to validate the measures, which can be seen as a remedy to 
the aforementioned issues related to the ROI definition. Nev-
ertheless, our experience on the use of the EI in clinical routine 
invalidates this assumption: the users collect the EI and the cor-
responding deviation index values [9], whereas the control on 
the automatically computed ROIs is, to the best of our knowl-
edge, neglected. It is then important to compute exposure index 
values without requiring user interaction.

From the distribution of the gray levels of the pixels xi ∈ � , 
a value of interest (VOI) v is extracted. Since v has to repre-
sent the central tendency of the histogram of u, that we denote 
with q, it is equal to the median of q(xi), xi ∈ � [11]. The EI 
value is then computed as follows:

EI = c0g(v) (1)

where c0 is a constant fixed at 100 µGy−1 according to the stan-
dard IEC 62494-1 [5] and g(.) is a calibration function. The 
value returned by g(v) is the Kerma in the air at the receptor 
associated with the ROI � and it is expressed in µGy. The func-
tion g(.) depends on the X-ray system and must be defined in 
the X-ray standard beam geometry and calibration conditions 
specified in the standard IEC 62494-1 [5]. The definition of this 
function for EOS system is not addressed in this paper as it is 
beyond our original scope.

The EI value on its own is not really significant as what re-
ally matters is to assess if the amount of noise in a given image 
is tolerable according to the anatomical region of interest and 
the medical purposes of the exam. The manufacturers are in 
charge of defining target exposure (EIt ) index values accord-
ing to ideal ALARA dose conditions. However, the users must 
be given the possibility to update these target values. The devia-
tion index (DI) from the correct exposure EIt is then computed 
as follows:

DI = 10 log10

(
EI

EI t

)
(2)

where DI < 0 and DI > 0 respectively indicate underexposure 
and overexposure. In practice, the acquisition setting would 
need to be adjusted only if |DI | > 1, i.e. if the estimated EI 
value increases by +25% and decreases by 20% with respect to 
the target EI value.
2.2. Estimation of exposure index values from anatomical 
landmarks

Irrera et al. [8] have proposed to replace the ROI definition 
with a landmark based approach by associating a set of anatom-
ical landmarks with structures of interest. We summarize here 
how EI values are computed from these sets of points.

A local EI measure can be computed considering the distri-
bution of gray levels at the pixels xi ∈ Pi , where Pi is a patch 
centered at the landmark li . Circular patches of radius equal to 
128 pixels are used, i.e. about 23 mm on an EOS image. Note 
that on an adult patient such a patch approximately covers the 
area of a vertebra. The circle has to be large enough to avoid 
the measure to be excessively affected by noise and, at the same 
time, small enough to guarantee the gray level distribution to be 
approximately mono-modal. In this way the median value of a 
distribution will describe in a more representative way the ac-
tual amount of signal and, hence, of the EI value in a region. 
Therefore, local measures are much less biased by presence of 
outliers than those extracted from the histogram of the whole 
image.

Formally, we denote a ROI by Ar . In this ROI, the landmark 
detection method described next provides a cluster Lr of land-
marks lj (lj ∈ Lr ). Then the corresponding values of interest 
v(lj ) and the local EI values e(lj ) are computed using Equa-
tion (1). Finally, the EI value in the ROI Ar is computed by 
using the following weighted sum of local EI values:

EIr =

∑
lj ∈Lr

ω(lj )e(lj )

∑
lj ∈Lr

ω(lj )
(3)

where the weights ω(lj ) assess the accuracy of the measure pro-
vided by the landmark lj ∈ Lr by giving higher importance to 
e(lj ) values that are computed from homogeneous gray level 
distributions because the corresponding value v(lj ) better rep-
resents the overall level of X-ray absorption in the region inside 
the patch Pj . The entropy is used to define the weights ω(lj ). 
The entropy of a random variable X is defined as follows:

H(X) =
∑
x∈SX

−P(x) log(P (x))

where SX is the set of elements of the discrete distribution that 
are taken into account to compute the entropy and, here, corre-
sponds to the gray levels at the pixels xi ∈ Pj where Pj is the 
patch centered at the landmark lj . Then, the weights are defined 
by using the following exponential function:

ω(lj ) = exp

(
−H(lj )

αH

)
(4)

where H(lj ) is the entropy computed at the landmark lj ∈ Lr

and αH is a constant smoothing parameter set to 2 in our exper-
iments.

This approach presents two advantages with respect to 
the ROI detection methods presented in the standard IEC 
62494-1 [5]. First, it takes into account the presence of differ-
ent anatomical structures in the field of view, which is important 
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Fig. 1. A signal k̂i that encodes region nearby the vertebra T1 on a frontal view image at different scales: (a) S = 128 (see salient points P(h,128) in Fig. 2b); 
(b) S = 64 (see salient points P(h,64) in Fig. 2c). The scale has an impact on the amount of captured information and outliers.
for clinical studies that cover large fields of view, such as the 
spine. Second, by exploiting redundancy of local estimates, the 
landmark-based approach is robust to detection errors.

In [8] landmarks were positioned manually and errors were 
simulated in order to show the interest of the method. In this 
paper, we propose a technique to detect these landmarks, and, 
hence, to automatically compute exposure index values. The 
considered anatomical ROIs are the following ones: head (L1), 
thoracic spine (L2), lungs (L3), lumbar spine (L4), pelvis (L5), 
femurs (L6), knees (L7) and tibiae (L8).

2.3. Salient points

The landmarks to be detected occupy only a small portion 
of the whole pixel space. Therefore, an exhaustive search for 
landmark occurrences is unnecessary and time consuming. To 
reduce the search space, the detection and recognition task 
is initialized from a set of sparse points that we call salient 
points.

From a very abstract point of view, the information in X-ray 
images can be associated with changes in the intensity levels 
as related to tissues of different densities. Therefore, when we 
look at an EOS image, the attention is essentially captured by 
these variations of signal. For example, in the abdomen, we 
first look at the lumbar vertebrae and then at the surrounding 
tissues because the bones absorb more signal and have irregu-
lar shapes. As a consequence, the relevant information can be 
associated with differences of intensity levels. Moreover, the in-
formation is scale-dependent and, hence, the search for salient 
points should be led at a scale that contains the features of in-
terest. For example, a coarse scale could be sufficient to capture 
the envelop of the spine, whereas an analysis at finer scales 
would be required if the goal is to capture the internal struc-
tures of the vertebrae.
In practice, given the observed image u of size R × C, 
non-overlapping sub-images ki of size S × C are considered, 
where S � R, extracted from each vertical positions yi ∈
{1, 2, . . . , R}. A sub-image ki is then projected to a 1D signal 
k̂i where each element corresponds to the column-wise aver-
age. Afterwards, the signal is smoothed by using a linear aver-
age kernel of size S. This sequence of operations encodes the 
information related to X-ray absorption as a function of the sub-
window height S that gives the information of scale. It is worth 
noting that if S = 1, a signal k̂i simply coincides with the hori-
zontal profile of the image u at line yi .

The salient information is expressed by means of local max-
ima or minima of the function k̂i that are associated with peaks 
of signal at the detector and of absorption, respectively. The 
salient information of each sub-image ki will be then linked 
with a set of point Pi , where the x-coordinates xj are the posi-
tions of salient points on k̂i and yj = 0.5(yi +yi+1), ∀j , i.e. the 
y-coordinates are simply the centers of the sub-images ki .

Figs. 1a and 1b show two examples of functions k̂i that cap-
ture the same region but at different scales, i.e. S = 128 and 
S = 64, respectively. In this example we consider the region 
nearby the vertebra T1 (extracted from the image in Fig. 2b), 
the relevant information is hence located at the center (i.e. xj �
1000) while some outliers associated with the shoulders ap-
pear in the leftmost and rightmost sides of the signals k̂i . We 
consider as outliers the salient points that are associated with 
regions that are not covered by any of the anatomical clusters 
Lr taken into account. By setting S = 128, only one value is 
detected at the center of the cervical spine, whereas, by using 
S = 64, two points inside the vertebra are found. Therefore, 
coarser scales have the advantage of being sparser and, hence, 
present less outliers, but may fail in capturing some relevant 
details. On the other hand, the finer the scale the more precise 
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Fig. 2. Sets of salient points P(l,s) (red) and P(h,s) (green) on a frontal view acquisition at (a) S = 256; (b) S = 128; (c) S = 64 and on the corresponding lateral 
view at (d) S = 256; (e) S = 128; (f) S = 64. See colors on the on-line version.
the analysis is, but the number of outliers also increases. As a 
consequence, the choice of the value S should depend on the 
estimated minimal degree of precision that is required to well 
describe a structure of interest. In the given example, S = 128 is 
the preferable setting because there is no need to associate two 
points with the vertebra, for applications to EI estimation. The 
scale values associated with the anatomical structures to capture 
have been empirically defined in the method that is described in 
the following sections.

Fig. 2 shows some examples of salient points on the frontal 
and lateral view acquisitions for a given exam at different 
scales S. The red stars indicate salient points pj ∈P(l,s) associ-
ated with peaks of signal at the detector (index l) and computed 
at the scale S (index s), whereas the green circles are the salient 
points pj ∈ P(h,s) that correspond to strong absorption regions 
(index h) at the scale S (index s). Note that the salient points 
are computed over the raw image u, but in Fig. 2 we display the 
points on the output image, where the gray levels are inverted 
with respect to u, i.e. high and low intensity values correspond 
to strong and low absorption, respectively.

On frontal acquisitions, the points pj ∈ P(l,s) are mainly lo-
cated in the lungs with a limited amount of outliers in the region 
that surrounds the groin. Note that a quite good approximation 
of the anatomical cluster L3 is obtained at scale S = 128. On 
the other hand, P(l,256) does not give a precise enough descrip-
tion and many points pj ∈ P(l,64) are located in the spine and 
the pelvis, but peaks of signal in these regions are not robust as 
they mainly depend on the morphotype.

The points pj ∈ P(h,s) cover the whole field of view as peaks 
of absorption are mostly due to the presence of bone tissues. 
The majority of the points pj ∈ P(h,s) well fits the spine and the 
bones in the legs both with S = 256 and S = 128, which implies 
that the clusters Lr with r �= 3, 5 (i.e. all the ROIs except the 
lungs and the pelvis) could be well estimated by regularizing 
these salient points. On the other hand, it is more complicated to 
get a proper initialization in the pelvic region because in strong 
absorption regions the signal tends to be homogeneous. In this 
case, it is preferable to rely on an over-complete representation 
such as the one obtained by setting S to 64.

On lateral acquisitions, the salient points pj ∈ P(l,s) do not 
provide useful information. They are indeed randomly concen-
trated in the lung and cardiac regions that we do not include 
in our analysis of lateral view images. On the contrary, all the 
landmarks lj ∈ Lr , with r �= 2 (i.e. except for the thoracic spine) 
are well initialized by using the salient points pj ∈ P(h,128), that 
offer the best compromise between completeness of the repre-
sentation and reduction of outliers. Furthermore, note that the 
salient points pj ∈ P(h,128) in the chest well respond to the rib 
cage, which helps defining the cluster of landmarks associated 
with this region.

These remarks are valid for all the patients in our database 
(see Section 2.7) and, furthermore, no noticeable change of 
trend has been observed on patients with high body mass in-
dex or on acquisitions at very low amount of dose.

2.4. Control points

Once the salient points have been detected, they need to 
be classified according to the anatomical regions of interest 
in order to compute the exposure index values. This can be 
achieved by roughly separating the field of view into disjoint 
sub-windows according to the considered anatomical ROIs Ar . 
The coarse identification of these areas helps to both narrow 
the search space for the landmarks lj ∈ Lr and to verify if 
an estimated solution is coherent with the spatial relations be-
tween clusters. The manually annotated landmarks on frontal 
view acquisitions (Fig. 3a) indirectly provide the ideal division 
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Fig. 3. According to the manually annotated landmarks on the frontal view ac-
quisition (a), 6 horizontal lines (b) can be identified to initialize the method 
(from top to bottom): T1 (green); T12 (yellow); L5 (magenta); proximal fe-
mur (cyan); knees (red); ankles (green). This initialization is also valid on the 
corresponding lateral view acquisition (c). See colors on the on-line version.

into sub-windows (Fig. 3b). For example, the thorax is identi-
fied as the region between the upper and lower landmarks of 
the cluster L2. In order to initialize the detection on full body 
images, it is then necessary to identify 6 horizontal lines that 
pass through the following control points ci : the vertebra T1, 
the vertebra T12,1 the vertebra L5, the proximal femur, the dis-
tal femur and the ankle. The problem is initialized by simply 
estimating the y-coordinates yj of the control points cj ∈ C, 
i.e. the projection Cy on y-axis where C is a set composed by the 
6 control points. Since the image is subdivided along the ver-
tical direction, which is the common axis between the frontal 
and lateral acquisitions, the same initialization can be used on 
the two views.

Fig. 3b shows that the control points can be described by 
simple spatial relations such as relative position (e.g. the ver-
tebra T1 is above the vertebra T12) and distance. The relative 
positions of the control points is fixed, but, in order to encode 
the distances, a subset of 9 full-body EOS exams is used for 
learning. These samples well represent the variability of a big-
ger database composed by 82 patients, and the 9 patients have 
different ages, genders and morphotypes. In this section we 
describe an approach that allows defining the distances with re-
spect to two already detected control points. In the following 

1 We do not strictly need to associate a control point with an exact vertebra 
but rather to distinguish the chest from the abdomen. Therefore, the control 
point T12 may correspond to, for example, T10, without any consequence on 
the results.
Table 2
Rough estimation of yj ∈ Cy for the proximal femur (y4), L5 (y3), T12 (y2) 
and the distal femur (y5) by considering proportions �j from neighbors (see 
Equation (5)). The values for T1 (y1) and the ankle (y6) are assumed to be 
known.

y4 | {y1, y6} y3 | {y1, y4} y2 | {y1, y3} y5 | {y4, y6}
�̄j 0.43 0.72 0.55 0.51
σ(�j ) 0.02 0.02 0.02 0.01
min(�j ) 0.41 0.70 0.53 0.49
max(�j ) 0.45 0.75 0.58 0.53

αj 0.39 0.67 0.51 0.47
βj 0.47 0.77 0.60 0.55

‖βj − αj ‖ 11.39 cm 4.96 cm 3.49 cm 6.43 cm

section we are going to describe how to label a subset of salient 
points to the control points.

The position of a target control point will be intuitively more 
stable to changes in the data by exploiting the fact that the hu-
man body parts are approximately proportionate to each others. 
Formally, a horizontal line at yj can be described according to 
the proportion between the distances from two other horizon-
tal lines of known positions. For example, let us assume that 
y1 and y6 have already been identified, and that y4 has to be 
found. The following proportionality factor can then be associ-
ated with y4:

�4 = y4 − y1

y6 − y1
. (5)

Table 2 reports the average (κ̄j ), standard deviation (σ(κj )), 
minimal (min(κj )) and maximal (min(κj )) relative distances 
between two given horizontal lines yj ∈ Cy , that are assumed to 
be already detected (e.g. T1 and ankle), and a third one, com-
puted over the training database. Then, each control point cj is 
associated with an interval [αj , βj ] that constrains the position 
of cj on a new test image according to the manually annotated 
data of the training set. In particular, the width of the ranges is 
computed as follows:

‖β4 − α4‖ = �4 max
i

(yi
6 − yi

1) (6)

where yi
j is the y-coordinate of the control point cj on the pa-

tient i of the training set. The extension of the interval refers 
then to the worst case scenario, i.e. the maximal distance be-
tween the two referential horizontal lines over the training set. 
This implies that αj = min(�j ) − σ(�j ) and βj = max(�j ) +
σ(�j ). These values indicate that by exploiting the proportion-
ality principle the initialization of the problem is more precise, 
i.e. a local analysis to define the exact position of the con-
trol points will be limited to a small region compared with the 
whole pixel space. This helps increasing then both efficiency 
and robustness. Quantitatively, by relying on the proportions 
�j , the same control points will be searched in areas that cover 
11.33 cm, 4.96 cm, 6.43 cm and 3.49 cm. The problem can then 
be initialized by using the learned proportionality factors given 
the upper and lower control points, i.e. the vertebra T1 and the 
ankle. Section 2.5 describes how to detect these two points.

Some spatial relations in the horizontal direction can also 
be used to facilitate the localization of some landmarks lj ∈ Lr . 
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For example, the clusters in the left and right lungs constrain the 
position of the landmarks lj ∈ L2 (thoracic spine). Similarly, 
the clusters L4 (lumbar spine) and L6 (femurs) help defining 
the landmarks in the pelvic region.

The initialization from the frontal view is straightly used on 
the corresponding lateral view. However, it would be also use-
ful to get the rough position of the most prominent points of the 
kyphotic and lordotic curves in the spine (see the clusters L2
and L4 in the image in Fig. 3c). By computing the proportion-
ality factor in this case, the interval associated with the most 
prominent point in the lumbar spine is equal to [−0.01, 0.71]
which indicates that the initialization is highly uncertain. This 
is due to the posture of the patient that influences the position 
of the most prominent point. Similarly, the changes in the pos-
ture do not allow for a significant initialization on the horizontal 
direction and, thus, the lateral acquisition can only rely on infor-
mation extracted from the frontal view to initialize the positions 
of the control points.

2.5. Control point detection

The control points are sequentially detected among the 
salient points by taking into account the spatial relations (Sec-
tion 2.4). The procedure starts by identifying two main control 
points that are the vertebra T1 and the ankle. These points are 
chosen among the others not only because they are located at 
the upper and bottom extrema limits of the image, but mostly 
because they are the easiest ones to detect in a completely un-
supervised way. It is worth noting that this logic requires the 
input images to contain the whole body of a patient.

We present here only the principles for the detection of con-
trol points. Please refer to [7] for a complete description of the 
mathematical steps that allow extracting the control points.

The frontal view image is used in order to localize the con-
trol point for T1. This relies on two principal information: the 
position of patient’s central vertical axis and the salient points 
associated with peaks of signal. The central vertical axis does 
not necessarily pass through the center of the image because the 
image may have been collimated.2 However, by relying on the 
values of the collimation limits, the position of the patient’s cen-
tral vertical axis in the image space is straightly deduced. This 
allows retaining the salient points that roughly correspond to 
the spine. In order to select the salient point associated with the 
control point T1, the second information is exploited, i.e. the 
salient points at peaks of signal roughly correspond with the 
cluster of landmarks lj ∈ L3. Finally, T1 is detected by exploit-
ing the following spatial relation: T1 is immediately over the 
lungs, and between the left and right lung.

The ankle landmark is the next to be detected, and, as for T1, 
the frontal view is used too. The junction between the lower 
bound of the tibia and the ankle cavity causes a strong hori-
zontal discontinuity which can be well captured by a gradient-

2 The collimation in this case consists in narrowing the width of the field 
of view. This allows limiting the irradiated area to regions of interest for the 
undergoing clinical study. The collimation limits can be extracted from DICOM 
metadata fields.
based descriptor. In practice, we compute the following gra-
dient based measure, associated with each salient point pj ∈
P(h,128):

gj =
∑

(xi ,yi )∈Pj

‖
h(xi, yi)‖
|Pj | (7)

where 
h(xi, yi) is the horizontal component of the Sobel oper-
ator at the pixel of coordinates (xi, yi) that belongs to a circular 
patch Pj of radius equal to S/2 centered at the point pj . The 
size of the patch is chosen such that the measure associated 
with a given point is independent from the ones computed at 
nearby points. Considering the width of the human leg, by set-
ting S = 128 only one landmark on each S horizontal line is 
obtained and, then, the measure gj computed at the landmark 
lj can be expressed as a function of its y-coordinate yj . In other 
words, the measures gj computed at the anatomical landmarks 
lj ∈ (L6 ∪L7 ∪L8) that belong to one leg can be represented as 
a mono-dimensional function of the y-coordinate yj . The con-
trol point for the ankle is located at the position of the last peak 
of the gradient-based measures.

The same measure is used to define the control point for dis-
tal femur because this structure also presents a strong horizontal 
discontinuity. The search area is in this case constrained by the 
position of the proximal femur and the ankle according to the 
relative distances presented in Section 2.4. This requires detect-
ing the control point at proximal femur.

The proximal femur is the most difficult control point in the 
leg to detect because of the proximity to another anatomical 
region, the pelvis, and of the X-ray absorption due to tissue su-
perposition that is much higher compared with that in the knees 
and ankles. We consider a set of points T0 ⊂P(h,128) composed, 
for each line yf , f = 1, . . . , |Py |, by the leftmost and rightmost 
points of x-coordinates xl and xr , respectively. The extrema 
are retained because they most probably correspond to the legs. 
Formally, xl and xr for a given yf are defined as follows:

xl = min{xj | pj ∈Pyf
} xr = max{xj | pj ∈ Pyf

} (8)

where Pyf
is the set of points pj ∈P that lie on the line defined 

by y = yf . The y-coordinate of the control point c4 is then 
defined as follows:

y4 = arg max
yj ∈Py

(
d

(
t (xl, yj ), t (xr , yj )

))
, (9)

which means that the proximal femur is on the line yj where 
the points t (xl, yj ) and t (xr , yj ) are the most distant from each 
other, which is coherent with the assumption made for the man-
ual annotations. Nevertheless, the distribution of the points may 
change depending on the morphotype or the presence of metal-
lic objects. Therefore, the position of the proximal femur is esti-
mated multiple times, i.e. one time for each considered scale S. 
According to multiple tests conducted on part of the database, 
we remarked that either the estimates are similar regardless the 
chosen scale or two estimates are close and one is wrong. As 
a consequence, the final position is computed as the median 
of the estimates at the three considered scales, which is a ba-
sic way of exploiting information at multiple scales, but good 
enough according to the tests and application of interest.
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Fig. 4. Hierarchical detection on frontal view acquisition images.
The control points in the spine, except for the vertebra T1, 
are the most difficult ones to precisely define on frontal view 
acquisitions and, hence, are reserved for the last step. The dif-
ficulty comes from the complexity in distinguishing between a 
vertebra and another one, and consistent features are not trivial 
to define considering the rotational issues, the low contrast to 
noise ratio and the tissue superposition. According to our tests, 
the definition of consistent features that allow capturing the 
vertebra L5 (c3), despite changes in morphotype and entrance 
dose, remains an open question, but, for the EI application, this 
does not cause a significant problem for two reasons. First, ac-
cording to the values in Table 2, the interval where to look for c3
is relatively narrow, i.e. 4.96 cm in the worst case scenario. Sec-
ondly, the EI values associated with the lumbar spine and pelvis 
are similar and, hence, potential misplacement of c3 would only 
slightly affect the exposure indicators [8]. Finally, the position 
of L5 is just roughly inferred from the vertebra T1 and the prox-
imal femur by using a proportionality factor equal to 0.72, i.e. at 
the center of the interval given by the model.

As for the control point T12 (c2), it can be much more eas-
ily detected on the lateral view acquisition. The position of the 
control point for the vertebra T12 (c2) can be refined by analyz-
ing the landmarks lj ∈ (L2 ∪ L4). The passage from L2 to L4
is marked by a strong reduction of the local EI estimate due to 
a higher density in the lumbar region than in the chest. There-
fore, the local EI estimates e(lj ) are computed at the landmarks 
lj ∈ (L2 ∪L4), and the following function is defined from these 
values:

δ(yj ) = e(lj+1) − e(lj ), j = 1, . . . , (|L2 ∪L4| − 1) (10)

where δ(.) depends on yj because there is one point for each 
line in the set L2 ∪ L4. Since each element of the function 
quantifies how much consecutive local EI values change, the 
y-coordinate of the control point for T12 is estimated as fol-
lows:
y = arg min
yj ∈Ym

(δ(yj )) (11)

where Ym is the set of values that constrain the position of 
y = y2 according to the model of global relations (see Ta-
ble 2).

The position of the control points allow classifying the 
salient points into landmark clusters Lr that will be used to 
compute exposure indices as explained in Section 2.2. The po-
sition of the points lj ∈ Lr can be refined by relying on models 
of the corresponding anatomical regions. It is out of the scope 
of this paper to detail how landmark clusters are refined for 
each of the eight anatomical regions on both views, and the 
concepts presented above represent the core of the hierarchi-
cal detection and recognition algorithm. Details can be found 
in [7].

Fig. 4 summarizes the described steps to hierarchically de-
tect the anatomical landmarks on frontal view acquisition im-
ages. The inputs are the anatomical constraints between the 
structures and the salient points positions. The landmarks in 
the upper part of the body and in the legs are first detected and 
then the definition of the control points for T12 and distal femur 
allows separating them into L1–L2–L3–L4 and L6–L7–L8, re-
spectively. The cluster L5 at the last step because it is the most 
difficult region for the definition of consistent salient points. It 
is worth noting that some operations can be executed in parallel 
because they concern different anatomical regions. The detec-
tion on lateral view acquisition images consists in sequentially 
narrowing the solution space as on frontal view acquisitions. 
Moreover, control points are not re-detected (see Section 2.4). 
Only T1 is refined as previously explained.

Fig. 5 provides an example of landmark detection that shows 
how the method is able to project the whole pixel space to a set 
of labeled landmarks while being robust to bone distortion such 
as thoracic scoliosis.
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Fig. 5. Example of automatic landmark detection: (a) frontal view; (b) lateral 
view.

Fig. 6. Landmarks defined from the patient’s envelop: (a) patient’s envelop; 
(b) Euclidean distance map; (c) landmarks bj ∈ Br .

2.6. Landmark cluster from the patient’s envelop

The proposed method that combines salient points with con-
trol points (Sections 2.3 and 2.5) is compared to an easier detec-
tion technique. The latter consists in a landmark-based formu-
lation of the classical method that considers ROIs at the center 
of the image. A transposition of this idea into the landmark-
based formulation leads to place the landmarks bj ∈ Br at the 
center of the mask. Given the patient’s envelop (Fig. 6a), the 
Euclidean distance transform (Fig. 6b) is computed. The val-
ues of this map increase with the distance from the borders of 
the mask and are equal to zero outside of it. On each line, the 
position of the maximum of the Euclidean distance transform 
profile on a line yj corresponds to the x-coordinate of a land-
mark bj . Two points per line, i.e. two local maxima, may also 
be considered if symmetrical to the central vertical axis of the 
mask (e.g. the legs on frontal view acquisitions). Fig. 6c shows 
an example of the resulting landmarks. Note that the landmarks 
in the lungs (bj ∈ B3) are located proportionally to the posi-
tions of those in the thoracic spine (bj ∈ B2) and of the borders 
of the patient. Formally, if pf is the nearest point on the border 
at the left (right) of the landmarks bf ∈ B2 on a line y = yf , the 
landmark bj ∈ B3 in the left (right) lung will be placed at the 
coordinates 0.5(pf + bf ). Finally, the landmarks are assigned 
to the specific anatomical structures depending on the positions 
of the control points. This simpler approach is compared to the 
other one in Section 3 in order to quantify the meaningfulness 
of the initialization by means of salient points.

2.7. Database

We evaluate the method explained in the previous sections 
according to the DI values computed as follows:

DI = 10 log10

(
EI

EIgt

)
(12)

This is very similar to Equation (2), which compares the 
exposure index value to a previously recorded target. The differ-
ence is that Equation (12) assesses the accuracy of the automat-
ically estimated EI values with respect to the ground truth val-
ues, i.e. those computed from manually annotated landmarks. 
The precision in terms of positions of the landmarks is not dis-
cussed here because, as justified in Section 2.2, the proposed 
landmark-based approach allows for a certain degree of local-
ization error.

The database is composed by 82 full-body anonymous ex-
ams that are categorized into the following subsets:

• Da : 24 diagnostic exams of adult patients aged between 54
and 82.

• Db: 29 diagnostic exams of young patients aged between 8
and 16.

• Dc: 29 preview exams of the patients in the subset Db.

This database is representative of the variety of types of patients 
that undergo an imaging system dedicated to osteoarticular dis-
orders, such as EOS. For example, 13 of the 29 young patients 
in our database are affected by idiopathic scoliosis. Moreover, 
many patients in our database contain metallic objects. Indeed, 
30 of the 53 patients have at least one of the following metallic 
objects: gonad shields, spine rods (post spine surgery exams) 
and hip prosthesis (total hip arthroplasty exams). It is important 
to take into account metallic objects as, if not neglected during 
the computation, they cause an underestimation of exposure in-
dex values. Finally, the computed exposure index values should 
well represent the morphotype of patient. We then consider both 
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normal and overweight patients. Since the DICOM field weight
was not filled in the exams that compose our database, we can-
not provide precise Body Mass Index (BMI) values. Neverthe-
less, we use a quantitative approach to establish the amount of 
over-weight patients in our database (BMI > 30). Given that 
all the patients in the same category of age (adolescents or 
adults) are scanned with default acquisition parameters, we can 
use the ground truth exposure index values in order to identify 
overweight patients. We take the median of the exposure index 
values associated with the pelvis of the frontal view as reference 
values, one for each group of age. We label as overweight the 
patients for which the deviation index, computed as in Equa-
tion (2), is lower than −1. Following this approach, we count 4 
on 29 and 8 on 24 overweight patients among the adolescents 
and adults, respectively.

Sections 3.1 and 3.2 analyze the results corresponding to 
frontal and lateral view acquisitions, respectively. The descrip-
tions are conducted by referring to the anatomical ROIs Ar . 
The accuracy of the estimated EI values is evaluated accord-
ing to the root mean square error (RMSE) defined as fol-
lows:

RMSEAr
=

√√√√√√√
Np∑
z=1

(
DIr,z

)2

Np

(13)

where Np is the number of patients in a given database and 
DIr,z is the DI value obtained for the patient z and the region 
Ar according to Equation (12).

The ideal result is a DI equal to zero, but a margin of er-
ror is accepted and different degrees of errors are, thus, con-
sidered: |DI| ∈ [0, 0.25), |DI| ∈ [0.25, 0.5), |DI| ∈ [0.5, 0.75), 
|DI| ∈ [0.75, 1) and |DI| ∈ [1, + inf) mean, respectively, negli-
gible, low, medium, high and extreme errors. We then measure 
the percentages ε0, ε1, ε2, ε3 and ε4 that indicate the amount of 
samples in the database whose estimation errors are negligible, 
low, medium, high and severe, respectively, when compared 
with the ground truth values. We will use ε0 + ε1 as a mea-
sure of the amount of acceptable errors. Furthermore, specific 
observations are made on the three subsets Da , Db and Dc in 
order to understand if the quality of the estimation may change 
depending on the age of the patient or the amount of radiation 
exposure.

Sections 3.3 and 3.4 deal with cases that, according to the 
state of the art, make it difficult to obtain consistent EI mea-
sures, i.e. particular conditions of the patient and presence of 
metallic objects, respectively.

The proposed method is very efficient as the analysis is lim-
ited to some salient points that are sparsely distributed on the 
pixel space: by running our MATLAB code on a conventional 
machine (Intel Core 2.20 GHz, 4 GB RAM), it takes about 
6.50 s and 3.50 s at most to detect and recognize the landmarks 
on both frontal and lateral full-body acquisitions views, respec-
tively.
Table 3
Evaluation on frontal view acquisitions in the whole database: comparison of 
the automatic EI estimates associated with the clusters Br and Lr , r = 1, . . . , 8, 
in terms of RMSE and percentages of negligible (ε0), low (ε1), medium (ε2), 
high (ε3) and severe (ε4) estimation errors.

Frontal RMSE ε0 ε1 ε2 ε3 ε4

A1 B1 0.32 65.9% 25.6% 4.9% 1.2% 2.4%
L1 0.29 67.1% 26.6% 4.9% 1.2% 1.2%

A2 B2 0.61 20.7% 31.7% 28.0% 13.4% 6.1%
L2 0.30 61.0% 32.9% 4.9% 1.2% 0.0%

A3 B3 0.56 45.1% 30.5% 15.9% 3.7% 4.9%
L3 0.27 85.4% 9.8% 2.4% 1.2% 1.2%

A4 B4 0.11 96.3% 3.7% 0.0% 0.0% 0.0%
L4 0.09 97.6% 2.4% 0.0% 0.0% 0.0%

A5 B5 0.35 73.2% 18.3% 4.9% 1.2% 2.4%
L5 0.25 86.6% 8.5% 2.4% 1.2% 1.2%

A6 B6 0.68 39.0% 36.6% 8.5% 3.7% 12.2%
L6 0.19 86.6% 13.4% 0.0% 0.0% 0.0%

A7 B7 0.16 65.9% 25.6% 4.9% 1.2% 2.4%
L7 0.12 85.4% 14.6% 0.0% 0.0% 0.0%

A8 B8 0.09 100.0% 0.0% 0.0% 0.0% 0.0%
L8 0.06 100.0% 0.0% 0.0% 0.0% 0.0%

3. Results and discussion

3.1. Quantitative evaluation of frontal view acquisition

Tables 3 and 4 report the results corresponding to all the 
frontal view acquisitions in the database and to the three subsets 
Da , Db and Dc, respectively.

Table 3 shows that the estimation of the sets of EI values 
on frontal view acquisitions with the proposed approach is very 
robust and overcomes some drawbacks of the method where the 
landmarks are detected depending on the position with respect 
to the borders of the patient envelop.

The improvement is particularly significant in the thoracic 
spine (A2), lung (A3) and femur (A6) regions of interest. In 
particular, as we will better explain in Section 3.3, the pro-
posed detection technique allows respecting the curve of the 
spine when the patient is side-bending or in presence of a sco-
liosis, which is not the case if the landmarks are simply placed 
on the central vertical axis. This allows reducing of 50% the 
RMSE when the set of points L2 is used instead of B2. More-
over, while by using the cluster B2 the amount of acceptable 
errors (ε0 + ε1) gets to 52.4%, the proposed approach allows 
reaching 93.9%. The same conclusion results from the analy-
sis of error measurements associated with the lung area. This 
is due to the fact that a distorted thoracic spine directly affects 
the shape of the lungs. In the femur region the reduction of es-
timation error is particularly significant due to the robustness 
of the proposed method to changes in patient morphotype. This 
assessment is justified in Section 3.3.

The two methods perform similarly in the other tested re-
gions. In the lumbar spine (A4) and pelvis (A5) the detection 
errors poorly affect the EI estimation because of the high den-
sity [8]. In the head (A1), knee (A7) and tibiae (A8) the anatom-
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Table 4
Evaluation over the frontal view acquisitions 
in the subsets Da , Db and Dc : comparison of 
the automatic EI estimates associated with the 
clusters Br and Lr , r = 1, . . . , 8 in terms of 
RMSE.

Frontal RMSE

Da Db Dc

A1 B1 0.11 0.36 0.37
L1 0.11 0.33 0.35

A2 B2 0.69 0.62 0.51
L2 0.28 0.32 0.28

A3 B3 0.33 0.60 0.67
L3 0.28 0.19 0.33

A4 B4 0.11 0.10 0.13
L4 0.06 0.09 0.10

A5 B5 0.17 0.46 0.32
L5 0.15 0.16 0.36

A6 B6 0.59 0.78 0.65
L6 0.19 0.18 0.19

A7 B7 0.12 0.10 0.22
L7 0.09 0.06 0.17

A8 B8 0.09 0.07 0.10
L8 0.07 0.04 0.08

ical structures are mostly at the center of the envelop as shown 
by the results.

Table 4 reveals that the estimation accuracy does not depend 
on the patient age (subset Da versus Db) nor on the amount of 
dose (subset Db versus Dc). Nevertheless, in the head region, 
the accuracy is higher on Da (RMSE equal to 0.11) than on 
Db (RMSE equal to 0.33). This can be related to the position 
of the head for the patients in the databases Db and Dc, which 
is bent forward by hence leading to a partial superposition of 
the head with the neck. As it will become more evident from 
the analysis on the lateral view acquisitions (Section 3.2), the 
partial occlusion of an anatomical structure by another one can 
cause some problems for the estimation of the EI values. In any 
case, a RMSE error equal to 0.33 is still a low error and, thus, 
this practically is a marginal issue.

3.2. Quantitative evaluation of lateral view acquisition

Tables 5 and 6 report the results associated with all the lateral 
view acquisitions in the database and the three subsets Da , Db

and Dc, respectively.
The results on lateral view acquisitions indicate that a level 

of accuracy similar to that registered on frontal view acquisi-
tions can only be obtained in the regions A4 and A5.

Table 6 shows that in the region A1 the results are biased 
by bad performance for the subsets Db and Dc. Indeed, on the 
subset Da the method performs well, with RMSE equal to 0.12, 
and high errors are only found in the subsets Db and Dc. This 
is not due to the change of morphotype but rather to the fact 
that, in these subsets, the scans start from half the head and, 
hence, the low amount of landmarks make the estimation un-
Table 5
Evaluation on lateral view acquisitions in the whole database, of the accuracy of 
the automatic EI estimates associated with the clusters Br and Lr , r = 1, . . . , 8, 
in terms of RMSE and percentages of cases whose estimation errors are negli-
gible (ε0), low (ε1), medium (ε2), high (ε3) and severe (ε4).

Lateral RMSE ε0 ε1 ε2 ε3 ε4

A1 B1 0.68 62.7% 17.6% 5.9% 3.9% 9.8%
L1 0.57 66.7% 17.6% 2.0% 5.9% 7.8%

A2 B2 0.89 23.2% 18.3% 19.5% 13.4% 25.6%
L2 0.64 41.5% 17.1% 13.4% 14.6% 13.4%

A4 B4 0.16 90.2% 7.3% 2.4% 0.0% 0.0%
L4 0.16 86.6% 13.4% 0.0% 0.0% 0.0%

A5 B5 0.28 72.0% 22.0% 2.4% 2.4% 1.2%
L5 0.15 95.1% 3.7% 0.0% 1.2% 0.0%

A6 B6 0.44 50.0% 28.0% 14.6% 4.9% 2.4%
L6 0.42 62.2% 22.0% 7.3% 4.9% 3.7%

A7 B7 0.75 25.6% 18.3% 17.1% 19.5% 19.5%
L7 0.58 36.6% 22.0% 20.7% 11.0% 9.8%

A8 B8 0.47 56.1% 23.2% 13.4% 1.2% 6.1%
L8 0.45 58.5% 20.7% 13.4% 1.2% 6.1%

Table 6
Evaluation on lateral view acquisitions in the 
subsets Da , Db and Dc , of the accuracy of 
the automatic EI estimates associated with the 
clusters Br and Lr , r = 1, . . . , 8 in terms of 
RMSE.

Lateral RMSE

Da Db Dc

A1 B1 0.11 1.00 0.84
L1 0.12 0.83 0.70

A2 B2 1.16 0.72 0.79
L2 0.22 0.70 0.80

A4 B4 0.17 0.17 0.15
L4 0.11 0.19 0.16

A5 B5 0.21 0.34 0.27
L5 0.14 0.14 0.17

A6 B6 0.42 0.42 0.47
L6 0.35 0.40 0.48

A7 B7 0.50 0.91 0.75
L7 0.47 0.68 0.55

A8 B8 0.58 0.53 0.26
L8 0.59 0.46 0.25

stable. Moreover, in some exams, the hands of the patients are 
placed on the neck and interfere then with the structures of in-
terest. On the contrary, the images in the subset Da are acquired 
from over the top of the head and there is no occlusion with the 
hands, which are the conditions that allow for a robust estima-
tion of the EI values. Therefore, the ROI A1 should be taken 
into account only if it is important for the exam and, hence, ac-
quired with the patient positioned in a suitable way.

The evaluation on the whole database indicates that the EI 
value in the ROI A2 is not easy to estimate automatically. In-
deed, the landmarks bj ∈ B2 produce a RMSE equal to 0.89, 
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Fig. 7. The detection of the landmarks lj ∈ L2 on lateral view images depends 
on patient’s pose: (a) example from the subset Da ; (b) example from the sub-
set Db .

and 23.2% and 41.5% of samples whose estimation errors are 
negligible and acceptable, respectively. The landmarks lj ∈ L2
improve the performances given the RMSE equal to 0.64, and 
41.5% and 58.6% of samples whose estimation errors are negli-
gible and acceptable, respectively, but is not completely satisfy-
ing yet. Nevertheless, the results substantially change according 
to the subset here too. In details, the landmarks bj ∈ B2 give 
a low quality estimation regardless the morphotype and the 
amount of dose, whereas the RMSE associated with the land-
marks lj ∈ L2 for the exams in Da is very low (0.22). Figs. 7a 
and 7b show that the difference between the results associated 
with Da and Db (Dc) is not due to the morphotype but it rather 
depends on the position of the arms: while for the patient in 
Fig. 7a the arms cover the heart but do not occlude the ver-
tebrae, in Fig. 7b the superior vertebrae (T1–T4) are partially 
occluded by the shoulders. The thoracic spine is always a re-
gion of interest and, thus, the estimation of the associated EI 
value should not depend on the position of the arms. A possi-
ble solution may consist in attributing higher importance to the 
local estimates e(lj ) associated with landmarks lj placed in the 
inferior part of the thoracic spine.

Finally, the results are not good for any anatomical region 
in the leg. This is mainly due to the fact that the leg nearer 
the detector is partially occluded by the one nearer the X-ray 
source. Given these conditions, it is not sure that an EI value es-
timation in this region from lateral view is actually meaningful 
given the superposition of the legs in the image. The perfor-
mance may be improved by taking into account patient pose in 
exposure index estimation. This would however require auto-
matically detecting patient pose, which is out of the scope of 
this work.

3.3. Robustness to patient conditions

We address in this section the challenges brought by the 
presence of deformed anatomical structures (e.g. scoliosis) and 
by patient obesity. The measures computed from the landmarks 
lj ∈ Lr and bj ∈ Br are compared.

Fig. 8a displays the cluster L2 (green points) and B2 (red 
points) on the anatomical region A2 of a patient affected by 
scoliosis. The landmarks bj ∈ B2 generate a DI index value 
equal to 1.36 because the central axis does not correspond to 
the thoracic spine but rather to the surrounding structures. On 
Fig. 8. Particular cases due to patient conditions. In figure (a) the landmarks 
bj ∈ B2 (red points) do not follow the curvature of the spine due to scoliosis, 
whereas the landmarks lj ∈ L2 (green points) allow overcoming this drawback. 
In figure (b) as the legs are adjacent, the landmarks bj ∈B2 (red points) do not 
capture the femurs, whereas the landmarks lj ∈ L2 (blue points) well match the 
anatomical structures. See colors on the on-line version.

the contrary, the landmarks lj ∈ L2 well respect the curvature 
of the spine and, hence, the EI value is robustly estimated as 
shown by the DI value that is equal to −0.16. In general, when 
a patient is affected by a scoliosis in the thoracic region, the 
measure computed at bj ∈ B2 generates severe errors, whereas 
the proposed method overcomes this issue. This analysis justi-
fies the results presented in Table 3 for the anatomical ROI A2. 
On the other hand, if the scoliosis affects the lumbar spine the 
EI value is not considerably biased.

Fig. 8b shows the femoral region of a patient with high body 
mass index. Since the legs are joined, the envelop of the patient 
does not well describe the underlying anatomy and the land-
marks bj ∈ B6 start separating into two branches only at half of 
the femur. As a consequence, the DI value rises up to 1.69. The 
proposed method does not depend on the morphology of the pa-
tient and the EI value is perfectly estimated (DI equal to 0.01). 
These considerations are coherent with the results presented in 
Table 3 corresponding to the anatomical ROI A6.

3.4. Robustness to metallic objects

The metallic objects should be neglected in the estimation of 
the EI values because they are not associated with anatomical 
information and significantly bias the measure given the strong 
X-ray absorption. Therefore, they should be removed from the 
whole pixel space �, just like the regions outside the body of 
the patient where the X-rays are not attenuated. However, con-
sidering that the EI value e(lj ) is computed at a landmark lj , 
the non-anatomical objects do not necessarily need to be seg-
mented, but the weight ωj should be set to 0 if the local estimate 
e(lj ) corresponds to a metallic object. A local estimate e(lj ) is 
an outlier only if more than 50% of the circular patch Pj cen-
tered at lj is covered by a metallic object. In other words, the 
presence of metallic objects in the field of view does not nec-
essarily imply that some of the local estimates e(lj ) need to 
be discarded and, even if it is the case, the number of outliers 
is most likely low. According to these observations, a simple 
threshold-based method is used to reject the contributions from 
potential metallic objects.
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Fig. 9. Robustness to the presence of the metallic objects. In (a), among the 
landmarks lj ∈ L5 (green points), the point that corresponds to the femoral 
prosthetic head is labeled as outlier (red square) and then rejected. In (b), none 
of the landmarks lj ∈ L5 is detected as outlier, but this does not affect the EI 
measure (see text for details). See colors on the on-line version.

Formally, the minima of the local estimates min(e(lj )), for 
the landmarks lj ∈ Lr , r ∈ {2, 4, 5, 6}, are computed. The me-
dian of these values is retained as the reference value that cor-
responds to anatomical exposure in strong absorption regions, 
which is why only the anatomical ROIs Ar , r ∈ {2, 4, 5, 6}, 
are taken into account. The median value is computed because 
we assume that the outliers are at most present in two of the 
anatomical ROIs Ar , r ∈ {2, 4, 5, 6}, as biased local estimates 
due to metallic objects are rare. The threshold τm is fixed at 
80% of the reference value, i.e. a DI > −1 with respect to the 
reference is considered as acceptable. The landmarks lj ∈ Lr , 
r = 1, . . . , 8, such as e(lj ) < τm are considered as outliers and, 
hence, their weights ω(lj ) are fixed to zero.

Fig. 9 shows two sub-images extracted from the same image 
with a femoral prosthesis. In details, Fig. 9a displays the land-
marks lj ∈ L5 on the pelvic region and the one placed in the 
middle of the prosthetic femoral head (red square) is rejected. 
The DI value with respect to the ground truth is then equal to 
−0.07. Nevertheless, even if the outliers are taken into account, 
the measure is not significantly affected as the DI value be-
comes −0.12, which shows how the landmark-based method is 
practically not biased by the presence of outliers as long as their 
number is limited. Fig. 9b shows that the presence of metallic 
objects does not necessarily imply presence of outliers. Indeed, 
the EI values associated with the left and right legs are practi-
cally identical, i.e. 41.24 and 40.27, even if all the landmarks 
are taken into account. It is worth noting, however, that in this 
example only 2 of the 5 landmarks placed in the prosthesis give 
wrong EI estimates because, as for the others, the metallic ob-
ject is not represented by the median values of the local gray 
level distributions. As a consequence, the number of outliers is 
too low to influence the EI estimated at the femoral region. On 
the other hand, the proposed technique to reject outliers could 
be useful when their number in a cluster Lr is relatively high 
with respect to the number of landmarks |Lr |. This would be the 
case, for example, of the estimation of the EI value associated 
with the anatomical region A7 in presence of a knee prosthe-
sis.

Finally, these results well summarize that our method is able 
to overcome the issues due to the presence of metallic objects, 
which is one of the advantages of the landmark-based formula-
tion.
4. Conclusion

The exposure index can be computed by relying on clusters 
of landmarks associated with anatomical regions [8]. Accord-
ing to this formulation, the image quality estimation becomes 
a matter of detection and recognition of anatomical landmarks. 
We have proposed an unsupervised method that addresses this 
task by combining the global information on the size and the 
positions of the anatomical structures on the one hand, with lo-
cal analysis on the other hand. The search of the position of the 
landmarks is sparsely conducted by visiting salient points that 
correspond to peaks of absorption or signal at the detector. The 
results indicate that the EI values computed at the automatically 
detected landmarks correspond very well to those associated 
with manual annotations on frontal view acquisitions. On lat-
eral view acquisitions, the estimates in the thoracic spine may 
be biased by the superposition with the shoulder in the superior 
part of the region. Therefore, in a next version of the method, 
higher importance should be given to the contributions from the 
lower thoracic vertebrae. An unstable estimation may also oc-
cur in the legs due to their superposition in a lateral image. We 
should then check with the users whether the estimation of the 
image quality in these regions is meaningful despite the super-
position or not. Note that the validation has been conducted on 
a heterogeneous database composed by full-body images of pa-
tients of different morphotypes, acquired at different radiation 
exposure amounts, and including post-surgery and pathological 
cases. The proposed method has shown to be very robust to all 
these different cases, except for the aforementioned structures 
acquired from the lateral view for which the estimation needs 
to be improved.

The proposed detection method relies on the hypothesis that 
the anatomical structures present in the image are known. This 
information can be normally retrieved from the DICOM fields. 
For example, all the tested images cover the full body. This al-
lows initializing the method by detecting a set of control points 
from which the search for the solution can be sequentially nar-
rowed and then locally refined. Nevertheless, in unusual cases, 
such as when the DICOM field anatomical study is missing or 
wrong, the proposed method would not work. A possible solu-
tion to make the method robust to these non-nominal cases may 
consist in detecting the control points with a classification- or 
regression-based supervised approach. The control points could 
be then located despite the missing prior knowledge and the 
landmarks detected as proposed in our method. For example, 
Gauriau et al. [4] have proposed an approach that combines cas-
cade of supervised regressors to statistical shapes, which may 
be adapted to the problem of control points detection. While 
this work is applied to CT images, some recent works [1,2]
have also investigated supervised structure detection on X-ray 
images acquired with EOS system.

The detection is sequentially conducted in a predefined or-
der. However, as proposed by Fouquier et al. [3], it may be 
preferable to conduct the search according to information ex-
tracted from the image to process. Moreover, while an already 
detected cluster of landmarks can constraint the sets corre-
sponding to other anatomical structures, our method does not 
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offer a backward check on the already detected landmarks. This 
option could however prevent potential errors to propagate. The 
algorithm could also be improved by adaptive setting of the 
parameters, such as the scale at which the salient points are 
computed.

Ethical statement

All procedures performed in studies involving human par-
ticipants were in accordance with the ethical standards of the 
institutional and/or national research committee and with the 
1964 Helsinki declaration and its later amendments or compa-
rable ethical standards.
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