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Abstract

We propose a new general method for segmenting brain tumors in 3D magnetic resonance images. Our method is applicable
to different types of tumors. First, the brain is segmented using a new approach, robust to the presence of tumors. Then a first
tumor detection is performed, based on selecting asymmetric areas with respect to the approximate brain symmetry plane and fuzzy
classification. Its result constitutes the initialization of a segmentation method based on a combination of a deformable model and
spatial relations, leading to a precise segmentation of the tumors. Imprecision and variability are taken into account at all levels,
using appropriate fuzzy models. The results obtained on different types of tumors have been evaluated by comparison with manual
segmentations.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Brain tumor detection and segmentation in magnetic resonance images (MRI) is important in medical diagnosis
because it provides information associated to anatomical structures as well as potential abnormal tissues necessary to
treatment planning and patient follow-up. The segmentation of brain tumors can also be helpful for general modeling of
pathological brains and the construction of pathological brain atlases [1].Despite numerous efforts and promising results
in the medical imaging community, accurate and reproducible segmentation and characterization of abnormalities are
still a challenging and difficult task because of the variety of the possible shapes, locations and image intensities of
various types of tumors. Some of them may also deform the surrounding structures or may be associated to edema
or necrosis that change the image intensity around the tumor. Existing methods leave significant room for increased
automation, applicability and accuracy.
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The aim of this paper is to contribute to this domain, by proposing an original method, which is general enough to
address a large class of tumor types.

Let us briefly summarize existing work, classically divided into region-based and contour-based methods. Most
of them are usually dedicated to full-enhanced tumors or specific types of tumors, and do not extent easily to more
general types. In the first class, Clark et al. [2] have proposed a method for tumor segmentation using a set of rules
expressed in a knowledge base and fuzzy classification, where a learning process prior to segment a set of images
is necessary and which requires multi-channel images such as T1-weighted, T2-weighted and proton-density (PD).
Several methods are based on statistical pattern recognition techniques. Kaus et al. [3] have proposed a method for
automatic segmentation of small brain tumors using a statistical classification method and atlas registration. Moon
et al. [4] have used the expectation maximization (EM) algorithm and atlas prior information. These methods fail in the
case of large deformations in the brain and they also require multi-channel images (T1, T2, PD and contrast enhanced
images), which are not always available in clinical routine. Prastawa et al. [5] consider the tumor as outliers of the normal
voxels distribution; a statistical classification based on a learning step using the atlas provides a rough segmentation
and geometric and spatial constraints are then used for the final segmentation. This method does not consider large
deformations of brain structures, and when such deformations occur, the use of the brain atlas may lead to incorrect
learning. In [6] a method based on the combination of model-based techniques and graph-based affinity is proposed:
four classes (edema, tumor, non-brain and brain matter) are first modeled in a Bayesian framework and then the tumor
and edema are segmented using the segmentation weighted aggregation (SWA) method. This method also uses multi-
channel MR images and needs a learning step for estimating the parameters. Other atlas-based methods have been
proposed, for example in [7]: after an affine registration between the atlas and the patient image, the registered atlas is
seeded manually by selecting a voxel of lesion regions. Then a non-rigid deformation method at this voxel is performed
with two forces: the demons force [8] outside the lesion and a prior model of tumor growth inside it. The radial growth
model has been considered, which is appropriate for specific types of tumors only. The fuzzy connectedness method
has been applied by Moonis et al. [9]. In this semi-automatic method, the user must select the region of the tumor.
The calculation of connectedness is achieved in this region and the tumor is delineated in 3D as a fuzzy connected
object containing the seed points selected by the user. Other methods dealing with multi-channel images rely on data
fusion approaches. In [10] a method is proposed based on evidence theory. First the data are modeled according to an
evidential parametric model (Denoeux’ model, Shafer’s model or Appriou’s model). Then spatial information (in this
case spatial neighborhood information) is used by a weighted Dempster’s combination rule. Recently Dou et al. [11]
have proposed a fuzzy information fusion framework for brain tumor segmentation using T1-weighted, T2-weighted
and PD images. This method is sensitive to noise and needs some user interactions. A support vector machine (SVM)
classification method was recently applied in [12,13], which needs a learning process and some user interactions.

In addition to the already mentioned limitations of each method, in general region-based methods exploit only local
information for each voxel and do not incorporate global shape and boundary constraints.

In contour-based methods, Lefohn et al. [14] have proposed a semi-automatic method for tumor segmentation using
level sets. The user selects the tumor region, so as to initialize a first segmentation. Based on a visual inspection of the
results, he tunes the level set parameters and the segmentation process is repeated. Zhu and Yang [15] introduce an
algorithm using neural networks and a deformable model. Their method processes each slice separately and is not a
real 3D method. Ho et al. [16] associate level set evolution with region competition. Their algorithm uses two images
(T1-weighted with and without contrast agents) and calculates a tumor probability map using classification, histogram
analysis and the difference between the two images, and then this map is used as the zero level of the level set evolution.
In [17] a semi-automatic method based on level sets was proposed. In this approach, the user selects a ROI and then a
level set method is applied to segment the tumor.

Contour-based deformable models suffer from the difficulty of determining the initial contour, tuning the parameters
and leakage in ill-defined edges.

In this paper we propose a method that is a combination of region-based and contour-based paradigms. It works in
3D and on standard routine T1-weighted acquisitions. First of all we segment the brain to remove non-brain data (skull,
fat, skin, muscle) from the image. However, in pathological cases, standard segmentation methods fail, in particular
when the tumor is located very close to the brain surface. Therefore we propose an improved segmentation method,
relying on the approximate symmetry plane. To provide an initial detection of the tumor we propose two methods. The
first one is a fuzzy classification method that is applicable to hyper-intense tumors while the second one is based on
symmetry analysis and applies to any type of tumor. In this method we first calculate the approximate symmetry plane
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Fig. 1. The segmentation method diagram.

and then symmetry analysis is performed to determine the regions that deviate from the symmetry assumption. The aim
of the detection approach is to roughly locate the tumor. This does not provide an accurate estimation of its boundaries
and we therefore propose a refinement step. This is achieved through a parametric deformable model constrained by
spatial relations.

The paper is organized as follows. First an overview of the proposed method is presented in Section 2. Then a method
to compute the approximate symmetry plane is explained in Section 3. It will be used both for brain segmentation and
initial tumor detection. In Section 4we propose amethod for brain segmentation. In Section 5 twomethods are presented
for the initial segmentation of tumors. The segmentation refinement is presented in Section 6. Section 7 presents the
results with their evaluation and some conclusions are presented in Section 8.

2. Method overview

The automated brain tumor segmentation method that we have developed is composed of two phases: initialization
and refinement, as shown in Fig. 1. In the first phase, we detect and initially segment the tumor. To perform this
operation, the brain is segmented by a combination of histogram analysis, morphological operations and symmetry
analysis.Within the brain, the tumor is then detected using a fuzzy classificationmethod or symmetry analysis and some
morphological operations. The first method relies on the assumption that the tumor appears in the image with specific
gray levels, corresponding to an additional class. The second method relies on the assumption that the brain is roughly
symmetrical in shape, and that tumors can be detected as areas that deviate from the symmetry assumptionwhen looking
at gray levels. This detection provides the initialization for a more precise segmentation step, performed in the second
stage, using a parametric deformable model constrained by fuzzy spatial relations. This allows representing explicitly
relations between the tumor and surrounding tissues, thus reinforcing the robustness of the method. All processing
steps are performed in 3D.

Several sources of imprecision are taken into account in the proposedmethod. Imprecision is inherently present in the
images, due to the observed phenomenon itself (imprecise limits of pathological areas for instance), to the acquisition
system and the numerical reconstruction process (leading to spatial and intensity imprecisions). Moreover, available
knowledge is also prone to imprecision. For instance we exploit the constant order of the gray levels of the main brain
tissues, but the exact range of values of each tissue is imprecise. We will also make use of spatial relations, expressed
in linguistic form, such as “near the tumor”, which cannot be modeled in a precise way. All these reasons justify the
use of fuzzy models in several steps of the proposed approach (fuzzy classification based on gray levels, models of
spatial relations).

3. Computation of the approximate symmetry plane

Normal human brains possess a high degree of bilateral symmetry although they are not perfectly symmetrical. The
symmetry plane of the brain is a good approximation of the mid-sagittal plane, which is defined as the plane that best
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separates the hemispheres. The automatic detection of this plane in brain images is a useful task and here we will use
it to segment the brain and to detect the brain tumors. The computation of the approximate brain symmetry plane is
performed according to a method proposed in [18], which is based on the maximization of a symmetry measure. Let
us briefly describe it here.

Let u be a unit vector in R3 and �u,d a plane in R3 orthogonal to the vector u and passing at the distance d from
the coordinate origin. We denote by eu,d ( f ) the reflection of image f with respect to the plane �u,d : eu,d ( f )(x, y, z) =
f (eu,d (x, y, z)). An image f is called reflection symmetrical if there exists a reflection plane�u,d such that eu,d ( f ) = f .
Since there is not an exact symmetry in the brain, we consider a degree of symmetry defined as the similarity between
eu,d ( f ) and f:

�u,d ( f ) = 1 − ‖ f − eu,d ( f )‖2
2‖ f ‖2 .

The idea is to compute the symmetry measure �u,d ( f ) of the image f with respect to an arbitrary reflection plane �u,d ,
and to find the plane leading to the maximal symmetry degree and the corresponding value of symmetry measure �( f ):

�( f ) = max
u∈S2, d∈R+

�u,d ( f ). (1)

First, an initial symmetry plane is estimated based on the ellipsoid of inertia of the image f. The three major planes of
the ellipsoid of inertia are computed and the plane for which the symmetry measure is maximum is chosen as an initial
plane. Then, the orientation and the position of the plane are improved by optimizing in the 3D space the reflection
plane parameters. This leads to an optimum of the proposed similarity measure, and is considered as the approximate
symmetry plane.

In the normal brain the symmetry plane of the head in MRI is approximately equal to the symmetry plane of the
segmented brain.Although the internal structure of a pathologic brainmay depart from its normal bilateral symmetry, the
ideal imaginary symmetry plane remains invariant [19]. Therefore in the refinement process of the brain segmentation
we can use the symmetry plane of the head instead of the symmetry plane of the segmented brain. In the normal brain,
it has also been observed that the symmetry plane of the gray level brain image and the one of the segmented brain are
approximately equal. Since pathological brains are usually not symmetric when considering the gray level images, we
can compute the symmetry plane of the segmented brain, which exhibits more symmetry, and the computation time is
shorter. Applying this method to images containing tumors provides a good approximation of the mid-sagittal plane,
despite the asymmetry induced by the tumors. This is illustrated in Figs. 5–9 for a normal brain and for different types
of tumors.

4. Brain segmentation

The first step of our algorithm consists of brain segmentation. Several methods have been proposed to perform this
operation (see e.g. [20–22]) and some of them are available in softwares such as BrainVisa [23], FSL [24] and Brainsuite
[25]. Unfortunately most of them fail in the case of the presence of a tumor in the brain, especially if located on the
border of the brain (Fig. 2).

To solve this problem, we propose to perform a symmetry analysis, based on the assumption that tumors are generally
not symmetrically placed in both hemispheres, while the whole brain is approximately symmetrical.

First we segment the brain using histogram analysis and morphological operations, similarly as in [20]. This leads to
a partial segmentation, where a part corresponding to the tumor is missing. The algorithm summarized in Section 3 is
applied on the gray level image of the head to compute the approximate symmetry plane, because the segmented brain
is not symmetric. The computed symmetry plane on head and segmented brain in normal case are approximately equal
and this approximate is acceptable in pathological cases for tumor detection purpose. We then compute the reflected
brain with respect to the symmetry plane (Fig. 3). By calculating the difference between the reflected brain mask and
brain mask in the unsigned 8 bit format (the images have two levels 0 and 255 and after subtraction we select the
level 255) we obtain an image which contains the removed section of the tumor and other small objects. To select
the component which corresponds to the tumor, first we use a morphological opening to disconnect the components.
We then select the largest connected component since it corresponds to the removed section of tumor, as confirmed
by all our experiments. In the morphological operations the elementary neighborhood corresponds to 6-connectivity.
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Fig. 2. Pathological brain segmentation using existing methods. (a) One slice of the original image on two examples. (b) Segmented brain by
histogram analysis and morphological operations [20] using BrainVisa [23]. (c) Segmented brain by BET [22] using FSL [24]. (d) Segmented brain
by BSE [21] using Brainsuite [25].

Fig. 3. The proposed algorithm for pathological brain segmentation (same examples as in Fig. 2). (a) Segmented brain by histogram analysis.
(b) Reflected brain with respect to the approximate symmetry plane. (c) Difference image of (b) and (a) (bounded difference). (d) Removed section
of the tumor obtained by morphological operations from image (c). (e) Final segmented brain. (f) Final gray level segmented brain.

The result can only been considered as an approximation in the tumor area, but it is accurate enough for tumor detection
in the next step. Finally, we add this result to the segmented brain. The main steps of this method and its results are
illustrated on two examples in Fig. 3. They correspond to the desired whole brain, including the pathological areas.

5. Tumor detection and initial segmentation

We now describe the initial segmentation of the tumor, for which we propose two methods: the first one relies on a
fuzzy classification and the second one is based on symmetry analysis.
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Fig. 4. Results obtained in the classification step for two 3D images. (a) One axial slice of the segmented brain. (b) Result of FPCM classification.
(c) Selected tumor class. (d) Result after morphological operations.

5.1. Tumor detection using FPCM

In [26] we have proposed a newmethod for hyper-intensity tumor segmentation based on fuzzy possibilistic c-means
(FPCM) [27]. FPCM is a combination of fuzzy c-means (FCM) and possibilistic c-means (PCM) algorithms. In data
classification, both membership and typicality are mandatory for data structures interpretation. FPCM computes these
two factors simultaneously. FPCM solves the noise sensitivity defect of FCM and overcomes the problem of coincident
clusters of PCM. The objective function of FPCM is written as

Jm,�(U, T, V ; X ) =
c∑

i=1

n∑
k=1

(umik + t�ik)‖Xk − Vi‖2, (2)

where m > 1, � < 1, 0�uik �1, 0� tik �1,
∑c

i=1 uik = 1, ∀k, ∑n
k=1 tik = 1, ∀i , Xk denotes the characteristics of a

point to be classified (here we use gray levels), Vi is the class center, c the number of classes, n the number of points
to be classified, uik the membership of point Xk to class i, and tik is the possibilistic typicality value of Xk associated
with class i.

In order to detect the tumor we use a histogram-based FPCM that is faster than the classical FPCM implementation.
We classify the extracted brain into five classes, cerebro spinal fluid (CSF), white matter (WM), gray matter (GM),
tumor and background (at this study stage we do not consider the edema). To obtain the initial values of the class
centers, we use the results of the histogram analysis [20] in the brain extraction step: we define them as the average
gray level values of the CSF, WM and GM (mC, mW and mG, respectively). For the background, the value zero is
used. To select the tumor class we assume that the tumor has the highest intensity among the five classes (this is the
case for hyper-intensity pathologies such as full-enhanced tumors).

Because of some classification errors, there are undesired additional voxels in the tumor class. To remove these
misclassified components, several binarymorphological operations are applied to the tumor class. An opening operation
is first used to disconnect the components. Then we select the largest connected component, which proved to always
correspond to the tumor, even if it has a small size. Here also, the elementary neighborhood of the morphological
operations corresponds to 6-connectivity.

We have applied this method to five 3D T1-weighted images with hyper-intensity tumors at different locations
and with different sizes. In all five cases the tumors have been detected. The results for two images are shown in
Fig. 4.

Although this method is fully automatic and unsupervised, it is, however, difficult to generalize to any type of
tumors.
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Fig. 5. (a) Graph of Hs , Hn and Hp for a normal image (image (c)) (for visualization purposes Hs is multiplied by 2). (b) Symmetry plane
superimposed on the brain mask. (c) Symmetry plane superimposed on the segmented brain.

5.2. Tumor detection by symmetry analysis

To overcome the lack of generality of the previous method, we suggest another approach [28], using the approximate
symmetry plane. As mentioned in Section 3, since the symmetry plane of the gray level image and the one of the binary
mask of the segmented brain in the normal case are approximately equal, to increase the accuracy and to speed-up
the algorithm in the pathological case we compute the symmetry plane on the binary mask of the segmented brain
(if the symmetry plane has been calculated in the brain segmentation step we use that symmetry plane). Now tumors
can be detected by evaluating this asymmetry with respect to the obtained plane. We assume that tumors are localized
in only one hemisphere or are not symmetric and the pathological hemisphere (i.e. which includes the largest part of
the tumor) is selected manually.

Let Hn denote the histogram of gray levels in the normal hemisphere and Hp the histogram in the pathological
hemisphere. The histogram differenceHs = Hp −Hn provides useful information about new intensity classes induced
by the tumor. Here we classify the tumors based on their appearance in T1-weighted images with (T1w) or without
contrast agent (T1w-CA) into four classes:

• Non-enhanced tumors, which do not take contrast agent and appear darker than WM in T1w and T1w-CA images
(such as low grade glioma (Fig. 6)).

• Full-enhanced tumors without edema, which take contrast agent and approximately all voxels of the tumor ap-
pear hyper-intense (brighter than WM) in T1w-CA images (such as contrast enhanced meningioma without edema
Fig. 7).

• Full-enhanced tumorswith edema,where the solid section of the tumor takes contrast agent and appears hyper-intense
in T1w-CA images and the surrounding edema is darker than GM (such as high grade glioma (Fig. 8)).

• Ring-enhanced tumors, which have three sections, a central section is the necrosis and appears darker than GM, an
enhanced section surrounds the necrosis and appears as hyper-intense and the surrounding edema appears darker
than GM in T1w-CA images (such as glioblastoma (Fig. 9)).

In the case of a non-enhanced tumor (as in Fig. 6) a positive peak can be observed between CSF and GM in Hs that
shows the non-enhanced tumor intensity range while in the case of a full-enhanced tumor without edema (as in Fig. 7)
a positive peak can be observed after the WM peak in Hs that shows the full-enhanced tumor intensity range. When
a full-enhanced tumor with edema (as in Fig. 8) or ring-enhanced tumor with edema (as in Fig. 9) exists in the image
we have two positive peaks inHs , where the first peak shows the edema intensity range and the second peak shows the
tumor intensity range, because the intensity of edema is always lower than the intensity of the tumor.

We have considered the peaks with more than 300 voxels, this threshold being based on the analysis of Hs for five
healthy brain images of the IBSR database [29] (as in Fig. 5 (a)). To extract the tumor we first use a thresholding with
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Fig. 6. (a) Graph of Hs , Hn and Hp for a non-enhanced tumor (image (c)) (for visualization purposes Hs is multiplied by 2). (b) Symmetry plane
superimposed on the brain mask. (c) Symmetry plane superimposed on the segmented brain. (d) Extracted tumor after morphological operations.
(e) Tissues around the tumor.
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Fig. 7. (a) Graph of Hs ,Hn and Hp for a full-enhanced tumor without edema (image (c)). (b) Symmetry plane superimposed on the brain mask. (c)
Symmetry plane superimposed on the segmented brain. (d) Extracted tumor after morphological operations. (e) Tissues around the tumor.

tumor peak range values. The gray level ranges of the tumor are selected manually inHs . Some misclassified voxels are
removed using morphological operations with the 6-connectivity related elementary neighborhood. First an opening is
used to disconnect the components. The largest connected component is then selected since it corresponds to the tumor
(as seen in Figs. 6–9).

To obtain the tissues around the tumor, we must distinguish two cases: the tumors with edema and the tumors
without edema. In the case of a tumor with edema the tissues around the tumor correspond to this edema and it can be
extracted by thresholding using the edema gray level range, selected manually in Hs . In the case of a tumor without
edema the negative peaks observed in Hs correspond to normal tissues, around the tumor, since these tissues are less
represented in the hemisphere containing the pathology than in the other hemisphere. These tissues can also be obtained
by thresholding (Figs. 6–9). They will be used for introducing spatial relations in the next section.

We applied this method to 20 cases with different tumor types, at different locations and with different intensities.
In all cases it detects and initially segments the tumor (as seen for seven cases in Fig. 13). We have compared the
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Fig. 9. (a) Graph ofHs ,Hn andHp for a ring-enhanced tumorwith edema (image (c)) (for visualization purposesHs is multiplied by 2). (b) Symmetry
plane superimposed on the brainmask. (c) Symmetry plane superimposed on the segmented brain. (d) Extracted tumor aftermorphological operations.
(e) Tissues around the tumor.

results of the tumor detection process for four full-enhanced tumors in Fig. 15. These results show better initial
segmentation using symmetry analysis method. However, the FPCM method has the advantage of being faster and
fully automatic, while in the symmetry analysis method, the selection of the tumor gray level range inHs is performed
manually.

6. Segmentation refinement using a deformable model

The result of tumor segmentation by symmetry analysis and FPCMclassification is not accurate enough and therefore
we need a method to refine the segmentation. To obtain an accurate segmentation, a parametric deformable method,
that has been applied successfully in our previous work to segment internal brain structures [30], is used.
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6.1. Deformable model

The segmentation obtained from the previous processing is transformed into a triangulation using an isosurface
algorithm [31] based on tetrahedra and is decimated and converted into a simplex mesh, denoted by X [32].

The evolution of our deformable model is described by the following usual dynamic force equation [33,34]:

�
�X
�t

= Fint (X) + Fext (X),

where X is the deformable surface, Fint is the internal force that constrains the regularity of the surface and Fext is the
external force. In our case, the external force is composed of two terms. The first one is classically derived from image
edges, and is denoted by FC . It can be written as

FC = v(x, y, z),

where v is a generalized gradient vector flow (GGVF) field introduced by Xu et al. [35]. A GGVF field v is computed
by diffusion of the gradient vector of a given edge map and is defined as the equilibrium solution of the following
diffusion equation:

�v

�t
= g(‖∇ f ‖)∇2v − h(‖∇ f ‖)(v − ∇ f ), (3)

v(x, y, z, 0)= ∇ f (x, y, z), (4)

where f is an edge map and the functions g and h are weighting functions which can be chosen as follows:{
g(r ) = e−(r/�)2 ,

h(r ) = 1 − g(r ).
(5)

To compute the edge map, we applied the Canny–Deriche edge detector.
The second term of Fext is derived from spatial relations and is described next.

6.2. Deformable model constrained by spatial relations

Spatial relations are useful to guide the recognition of objects in images since they provide an important information
about the spatial organization of these objects. Two main classes of spatial relations can be considered: topological
relations, such as inclusion, exclusion and adjacency, and metric relations such as distances and orientations. Here we
use a combination of topological and distance information. The evolution process of the deformable model can be
guided by a combination of such relations, via information fusion tools.

In the case of tumor detection by symmetry analysis, two types of information are available: the initial detection and
the surrounding tissues. Therefore we use (i) the distance from the initial segmented tumor, and (ii) the tissues around
the tumor which were obtained in the previous step (as in Fig. 11). The idea is that the contour of the tumor should
be situated somewhere in between the boundary of the initial detection and the boundary of the tumor around tissues
(excluding the background). This constraint also prevents the deformable model from leakage in the weak boundaries.

For distance relations such as “near the initial segmented tumor”, we define a fuzzy interval f of trapezoidal shape on
the set of distancesR+ (Fig. 10). The kernel of f is defined as [0, n1] and its support as [0, n2]. Here n1 and n2 are defined
according to the largest distance between the initial segmentation of the tumor and its surrounding tissues. To obtain
a fuzzy subset of the image space, f is combined with a distance map dA to the reference object A: d(P) = f (dA(P))
where P is a point of the space.

The relation “near the tissues surrounding the tumor” is modeled in a similar way. These two relations are represented
as fuzzy sets in the image space (as shown in Fig. 11).

These relations are combined using a conjunctive fusion operator (a t-norm such as minimum), leading to a fuzzy set
�R . The resulting fuzzy set provides high values in the region where both relations are satisfied, and lower elsewhere.
As shown in Fig. 11, this result is a good region of interest for the contour to be detected.

In [30], several methods to compute the force from a fuzzy set �R were proposed. For instance, if �R(x) denotes
the degree of satisfaction of the fuzzy relation at point x, and supp(R) the support of �R , then we can derive the
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Fig. 10. Fuzzy interval on the set of distances corresponding to the relation “near”.

Fig. 11. Spatial relations used for segmenting the tumor detected in Fig. 8 (highest gray level values correspond to regions where the spatial relation
is best satisfied). (a) Near the tumor. (b) Relation provided by the tissues surrounding the tumor. (c) Fusion of the two relations.

Fig. 12. External force FR computed from a fuzzy subset �R corresponding to a spatial relation R. (a) The force FR computed from �R for the
relation “near the tumor” in Fig. 11(a). (b) The force computed from the fusion of the two relations of Fig. 11(c) (for visualization purposes an
under-sampling has been performed).

following potential:

PR(x) = 1 − �R(x) + dsupp(R)(x),

where dsupp(R) is the distance to the support of �R , used to have a non-zero force outside the support. The force FR

associated with the potential PR is derived as follows:

FR(x) = −(1 − �R(x))
∇PR(x)

‖∇PR(x)‖ .
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This force is combined to the classical external force derived from edge information FC :

Fext = �FC + �FR, (6)

where � and � are weighting coefficients. The role of FR is to force the deformable model to stay within regions where
specific spatial relations are fulfilled. Fig. 12 shows examples of two spatial relations and their corresponding forces.

7. Results and validation

We have applied the proposed method to MR data from 20 patients with cerebral tumors. Images were acquired on
a 1.5T (General Electric Medical System) scanner using an axial 3D IR-SPGR T1-weighted sequence with or without
contrast agent. The volume dimension is 256 × 256 × 124 and the voxel size is typically 1 × 1 × 1.3mm3. These
images contain tumors with different sizes, intensities, shapes and locations. This allows us to illustrate the large field
of application of our method.

The segmentation results for seven cases with initial segmentation by symmetry analysis and refinement by con-
strained deformablemodel are shown in Figs. 13 and 14. The results can be compared withmanually segmented tumors.
The four first cases are full-enhanced and ring-enhanced tumors while the three last tumors are non-enhanced tumors.
In all cases, the initial detection based on symmetry analysis only provides a part of the tumor. The whole tumor is
successfully recovered by the second segmentation step using the deformable model and the spatial relations.

The evaluation of the segmentation results was performed through a quantitative comparison with the results of a
manual segmentation. Let us denote by M the manually segmented tumor and A the segmented tumor by our method.
We used five measures to evaluate the results which are:

• ratio of correct detection: Tp = NTp/NM ∗ 100%, where NTp is the number of true positive voxels and NM is the
cardinality ofM;

• ratio of false detection: Fp = NFp/NA ∗ 100%, where NFp is the number of false positive and NA is the cardinality
of A;

• similarity index: S = 2NTp/NM + NA ∗ 100%;
• Hausdorff distance between A and M, defined as DH = max(h(M, A), h(A, M)) where h(M, A) = maxm∈M
mina∈A d(m, a), and d(m, a) denotes the Euclidean distance between m and a (m and a are points of M and A,
respectively);

• average distance (Dm) between the surfaces of M and A.

The Tp value indicates how much of the actual tumor has been correctly detected, while Fp indicates how much of
the detected tumor is wrong. The similarity index S is more sensitive to differences in location. For example, if region
A completely includes region M, while M is one half of A, then the Tp value is 100% while the S value is 67%. Since
usually most errors are located at the boundary of the segmented regions, small regions will have smaller S and Tp

values than large regions. Therefore we also use the average distance and the Hausdorff distance that do not depend on
the region size.

The quantitative results obtained by comparing the automatic segmentations with the availablemanual segmentations
are provided in Table 1 for 20 cases. In Table 1, where the tumor size varies from 2312 to 69748mm3 with three
types of appearance in intensity: full-enhanced, ring-enhanced and non-enhanced. The similarity index varies from
86% to 96% with a mean of 92% and the correct detection ratio varies from 79% to 97% with a mean of 93%
that shows a high matching between the manually and automatic segmented tumor. The false detection ratio ranges
between 2% and 12% with an average of 7.92%, which shows a good accuracy of segmentation (since it is normalized
by NA). The Hausdorff distance, that is a maximum distance and therefore a particularly severe evaluation, varies
from 1.5 to 8.12mm with a mean of 4.57mm. This expresses a good position of the boundary of the tumors and
we believe that it is due to the use of spatial relations to constrain the deformable model. The mean value of the
average distance is 0.69mm that is approximately equal to the half of the voxel size, and constitutes a very good
result.

The results of this table also show that the quality of the segmentation for ring-enhanced and full-enhanced tumors
is better than for non-enhanced tumors because of their well-defined boundaries. Improvement of the method for
segmenting non-enhanced tumors could still be useful.
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Fig. 13. Comparison of manual and automatic segmentation results using symmetry analysis and constrained deformable model for seven different
cases. (a) One axial slice of the original image. (b) Manual segmentation superimposed on the axial slice. (c) Initial detection by symmetry analysis.
(d) Final segmentation. (e) Result superimposed on a coronal slice. (f) Result superimposed on a sagittal slice.

The average computation time for detection and segmentation of each tumor by the symmetry analysis method, in
20 cases, is about 4.5min, in addition to 1min for manual operation to select the tumor gray levels rang in Hs , while
for FPCM method the computation time is about 3.5min (on a PC Pentium IV 2GHz).

The segmentation results based on the two proposed methods for initialization were compared on five full-enhanced
cases. The results are provided in Table 2. They show that using the symmetry analysis and constrained deformable
model improves the segmentation quality. But on the other hand the FPCM method is unsupervised and faster than the
symmetry analysis method.



Author's personal copy

1470 H. Khotanlou et al. / Fuzzy Sets and Systems 160 (2009) 1457–1473

Fig. 14. All slices of a segmented tumor. The last image (bottom-right) is the 3D view of the segmented tumor.

Table 1
Evaluation of the segmentation results of tumors by symmetry analysis and constrained deformable model on a few 3D MR images for which a
manual segmentation was available

Tumor type M (mm3) Si (%) Tp (%) Fp (%) DH (mm) Dm (mm)

FE1 9822.4 92 92 7.53 4.19 0.56
FE2 62406.0 96 97 4.38 4.63 0.62
FE3 2312.2 90 91 11.40 4.26 0.49
FE4 11118.0 94 91 2.01 4.89 0.47
FE5 5776.16 91 95 12.59 3.97 0.45
RE1 13213.2 92 96 12.11 3.35 0.63
RE2 23787.2 92 94 10.18 3.57 0.50
RE3 42320.4 95 96 6.49 3.36 0.35
RE4 42322.9 89 86 8.33 7.53 1.04
NE1 14967.1 96 97 5.44 2.00 0.38
NE2 9543.9 89 88 9.85 5.89 1.01
NE3 63611.4 95 95 5.09 5.01 0.62
NE4 34396.4 95 94 3.84 1.50 1.27
NE5 61056.6 86 79 6.71 8.12 1.68
NE6 15349.0 95 97 7.35 3.32 0.40
NE7 21621.7 93 96 9.92 4.45 0.64
NE8 16184.0 89 88 11.02 6.15 0.99
NE9 5978.9 90 92 12.11 3.49 0.50
NE10 69748.4 95 96 4.75 6.71 0.51
NE11 51857.6 94 96 7.28 4.92 0.64

Average 28869.7 92 93 7.92 4.57 0.69

M denotes the manually segmented tumor and FE, RE and NE denote full-enhanced, ring-enhanced and non-enhanced cases, respectively.

8. Conclusion

We have developed a hybrid segmentation method that uses both region and boundary information of the image to
segment the tumor. We compared a fuzzy classification method and a symmetry analysis method to detect the tumors
and we have used a deformable model constrained by spatial relations for segmentation refinement. This work shows
that the symmetry plane is a useful feature for tumor detection. In comparison with other methods, our approach has
some advantages such as automation (in the symmetry analysis method, a reduced interaction is required to select the
appropriate peaks in the difference histogram), and more generality with respect to the wide range of tumors. We also
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Table 2
Evaluation of the segmentation results of full-enhanced tumors by FPCM and deformable model method on five 3D MR images for which a manual
segmentation was available

Tumor type Method M (mm3) Si (%) Tp (%) Fp (%) DH (mm) Dm (mm)

FE1 FPCM 9822.4 89 82 1.92 4.60 0.68
FE1 Symmetry 9822.4 92 92 7.53 4.19 0.56
FE2 FPCM 62406.0 92 93 9.57 6.53 1.10
FE2 Symmetry 62406.0 96 97 4.38 4.63 0.62
FE3 FPCM 2312.2 86 85 11.82 4.17 0.64
FE3 Symmetry 2312.2 90 91 11.40 4.26 0.49
FE4 FPCM 11118.0 94 97 9.31 5.09 0.62
FE4 Symmetry 11118.0 94 91 2.01 4.89 0.47
FE5 FPCM 5776.16 90 94 12.76 4.19 0.51
FE5 Symmetry 5776.16 91 95 12.59 3.97 0.45

Average FPCM 18286.9 90 90 9.08 4.92 0.71
Average symmetry 18286.9 93 93 7.58 4.39 0.52

Fig. 15. Comparison of FPCMmethod with manual and symmetry analysis segmentation results. (a) One axial slice of the original image. (b) Manual
segmentation. (c) Initial detection by FPCM. (d) Initial detection by symmetry analysis. (e) Final result by FPCM method and deformable model.
(f) Final result by symmetry analysis and spatial relation constrained deformable model.

anticipate that it is applicable to any type of image such as T2-weighted, FLAIR, etc. Unfortunately there is not a gold
standard to compare quantitatively the method with existing methods. In comparison with recent works such as Dou
et al. [11], Corso et al. [6] and Prastawa et al. [5], where a quantitative evaluation has been done, our results based on
similarity index and correct detection ratio are better than or equal to the ones reported in these works.

A limit of our approach is that the symmetry analysis may fail in the case of a symmetrical tumor across the
mid-sagittal plane. However, this case is very rare.
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Future work aims at determining the type of tumor based on an ontology of tumors. Further segmentation, such as
segmentation of the edema, would be useful for this aim. Using other features of tumors such as texture information
can be useful in improving the results of detection and segmentation.

Our results can also serve as a preliminary step for segmenting surrounding structures by using fuzzy spatial relations
defined according to the type of the tumors, as shown in [36,37]. They can also be incorporated in longitudinal studies,
for analyzing the evolution of the tumors and their impact on surrounding structures, and they can be used for diagnosis,
treatment planning, therapeutical monitoring, surgery and pathological brain modeling.
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