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Abstract

This paper is devoted to the study of re$ectional symmetries of fuzzy objects. We introduce a symmetry
measure which de8nes the degree of symmetry of an object with respect to a given plane. It is computed by
measuring the similarity between the original object and its re$ection. The choice of an appropriate measure
of comparison is based on the desired properties of the symmetry measure. Then, an algorithm for computing
the symmetry plane of fuzzy objects is proposed. This is done using an optimization technique in the space
of plane parameters. Finally, we illustrate our approach with an application where the symmetry measure is
used as an attribute in graph matching for model-based object recognition.
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1. Introduction

DiEerent kinds of symmetry (central, re$ection, rotation, skew) have been widely studied in the
8elds of image processing and computer vision. For scene description and recognition, symmetry is
an important feature. It can be an attribute of the objects themselves, a relation between two objects
or it can be used to compute other relationships between objects (e.g. directional relationships [8]).
This paper is devoted to the case of re$ectional symmetries also called bilateral symmetries. The
study is done for plane symmetries in the 3D Euclidean space but all results are also valid for axial
symmetries in 2D.

Exact symmetry usually does not exist in real objects and one has to deal with approximate
symmetries. Many works quantify the degree of symmetry using a symmetry measure often based
on a distance. For example, Marola [18] uses the normalized l2 metric between the original and
the re$ected image. O’Mara and Owens [21] use the diEerence between gray levels in 3D images.
Minovic et al. [20] use an octree representation to de8ne a symmetry measure corresponding to the
size of the largest symmetrical subset of an object. Heijmans and Tuzikov [13] de8ne symmetry
measures for convex sets using Minkowski addition. Zabrodsky et al. [32] introduce a symmetry
measure for shapes (i.e. sets of points) that quantify the minimum eEort to turn any given shape
into a symmetrical one. Their approach takes into account uncertainty by modeling point localizations
as a probability distribution.

However, apart from the previous reference [32], most results have been obtained for precisely
de8ned objects. We consider the case of 3D fuzzy objects (i.e. fuzzy subsets of 3D space) which
have found increasing application in image processing. Following the classical approach used for
crisp shapes and images, we de8ne a symmetry measure which characterizes the degree of symmetry
of an object with respect to a given plane (Section 2). For this we use a measure of comparison 3

between the object and its re$ection. Various measures of comparison have been proposed in the
literature for fuzzy sets. We present the properties that should be veri8ed by the symmetry measure
for its use in pattern recognition. The choice of a measure that is appropriate to our problem is
based on these properties (Section 3) as discussed in [8]. In Section 4, we study the case of objects
with a principal symmetry plane and propose an algorithm for symmetry plane computation. This
algorithm is based on an optimization technique and uses the principal axes of inertia to de8ne an
initial position of the symmetry plane. In Section 5, we illustrate how symmetry measures can be
used in concrete image recognition problems: the symmetry measure is used as a relation between
objects in model-based pattern recognition through the de8nition of a graph attribute integrated in
the approach proposed in [6].

2. Symmetry measure

2.1. Re?ection of a fuzzy object

Let � be a plane in the 3D space R3 and � a subset of R3 (or Z3 in the digital case). We denote
by F the set of fuzzy subsets of � and for a fuzzy set A, �A denotes its membership function.

3 We prefer to use the expression “measure of comparison” as in [5] instead of “similarity measure”, since diEerent
authors assume diEerent properties for the notion of similarity measure.
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Fig. 1. Angles � and � de8ne a unit vector u.

Given a point x of �, we denote by e�(x) its image under the re$ection with respect to �. The
mapping e� is a bijective transformation in R3. Therefore, one can de8ne the re$ection of a fuzzy
set as follows.

De�nition 2.1. The re$ection of a fuzzy set A is a fuzzy set e�(A) de8ned as:

�e�(A)(e�(x)) = �A(x) for every x ∈ �:

We denote by eu; d the re$ection with respect to a plane �u; d which is orthogonal to u and passing
at the signed distance d from the origin. In spherical coordinates a unit vector u is de8ned by two
angles �∈ ] − 
; 
] and �∈ [−
=2; 
=2] (see Fig. 1). As vectors u and −u de8ne the same plane,
we use �∈ [0; 
[, �∈ ] − 
=2; 
=2] and d∈R.

We also use notation e�;�;d instead of eu; d in 3D, and e�;d = e0; �; d in 2D.

2.2. Symmetry measure

We want to de8ne a symmetry degree of a fuzzy object with respect to a given plane �. One option
is to compare A and e�(A). A symmetry measure �A can be de8ned as a measure of comparison
between the original object and its re$ection:

�A(�) = S(A; e�(A));

where S is a measure of comparison between fuzzy objects. As before, we use notations �A(u; d) =
�A(�; �; d) = �A(�u; d).

Various measures of comparison have been proposed in the literature. They possess diEerent
properties and the choice of a measure depends on the application and on the concept one wants to
describe.
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2.3. Desired properties of symmetry measures

In order to choose appropriate measures of comparison, it is useful to present which properties
should be satis8ed by a symmetry measure. In this section, we summarize properties of measures
of comparison found in the literature and discuss which of them are useful to derive a symmetry
measure.

2.3.1. Measures of similitude
Bouchon-Meunier et al. [5] have proposed a classi8cation of measures of comparison between

fuzzy sets, in particular M -measures of comparison which are derived from a fuzzy measure M .

De�nition 2.2 (Bouchon-Meunier et al. [5]). An M -measure of comparison is a mapping S :F×F→
[0; 1] such that S(A; B) =FS(M (A∩B); M (B − A); M (A − B)) for a given mapping FS : R+ ×R+×
R+ → [0; 1] and a fuzzy measure M .

A particular class of measures of comparison is composed of measures of similitude.

De�nition 2.3 (Bouchon-Meunier et al. [5]). An M -measure of similitude is an M -measure of com-
parison S such that FS(u; v; w) is non-decreasing in u, non-increasing in v and w.

M -measures of similitude are well suited for describing symmetries: symmetry is stronger if the
measure of intersection between the original object and its re$ection increases, and it is weaker if
the measure of diEerence between them increases.

Measures of similitude include measures of satis8ability and measures of resemblance.

De�nition 2.4 (Bouchon-Meunier et al. [5]).
(1) An M -measure of satis8ability is an M -measure of similitude such that

• FS(u; v; w) is independent of w;
• FS(0; v; w) = 0, for all v, w (exclusivity);
• FS(u; 0; w) = 1, for all u �= 0 (inclusion).

(2) An M -measure of resemblance is an M -measure of similitude such that

• S is re$exive, i.e. S(A; A) = 1.
• S is symmetrical, i.e. S(A; B) = S(B; A).

In our case, since we have M (A − e�(A)) =M (e�(A) − A), measures of satis8ability are also
measures of resemblance [5]. Moreover, the exclusivity property entails that the symmetry measure
is equal to zero when the plane passes outside the support of the object (in the case of a support
with only one connected component). This is considered desirable by Marola [18]. The inclusion
property, as well as re$exivity, entails that the symmetry degree is equal to 1 when the object
coincides with its re$ection, i.e. when there is an exact symmetry. The symmetry property implies
that the symmetry measure for an object A with respect to a given plane � is equal to the measure
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computed for its re$ection e�(A):

∀A; B ∈ F; S(A; B) = S(B; A) ⇒ ∀A ∈ F; S(A; e�(A)) = S(e�(A); A):

Since e�(e�(A)) =A, we have

∀A; B ∈ F; S(A; B) = S(B; A) ⇒ ∀A ∈ F; �A(�) = �e�(A)(�):

Therefore, M -measures of satis8ability seem to be suitable for the de8nition of measures of sym-
metry.

2.3.2. Additional properties
Pappis [22] proposes the following additional properties which are in fact the reverse implications

of re$exivity and exclusivity, leading to the following equivalences:

S(A; B) = 1 ⇔ A = B;

S(A; B) = 0 ⇔ supp(A) ∩ supp(B) = ∅:
where supp(A) is the support of A. The 8rst property, also called separability for distances, expresses
that the symmetry measure is equal to 1 if and only if there is an exact symmetry. The second one
expresses that the symmetry measure equals zero if and only if the plane passes outside the support
of the object. These properties are desirable for de8ning symmetry measures.

2.3.3. Geometrical properties
Intuitively speaking a symmetry measure should be invariant with respect to translation, rotation

and scaling. If S is invariant w.r.t. translation (respectively, rotation) then so is �. This is also true
for scaling but as the scaling of a fuzzy set in the discrete case is not clearly de8ned, we will not
consider it later on.

2.3.4. Summary of properties
Using our properties we are now able to provide a de8nition of a symmetry measure satisfying

our requirements:

De�nition 2.5. The symmetry measure of A with respect to � is de8ned as:

�A(�) = S(A; e�(A));

where S is a measure of comparison with the following properties:

(P1) Symmetry: S(A; B) = S(B; A);
(P2) Re$exivity: S(A; B) = 1 ⇔A=B;
(P3) S(A; B) = 0 if and only if the supports of A and B are disjoint;
(P4) S is invariant w.r.t. translation;
(P5) S is invariant w.r.t. rotation.

Additionally, one can require that S is an M -measure of similitude. Properties (P1), (P2) and
(P3) ensure that it will also be an M -measure of satis8ability and of resemblance.
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Other properties of measures of comparison considered for instance in [5,17,22] are either equiv-
alent to these ones or not interesting for deriving symmetry measures.

3. Deriving symmetry measures from measures of comparison

We summarize which of the previous properties hold for diEerent measures of comparison proposed
in the literature and select some of them to de8ne symmetry measures. We use here a classi8cation
of measures of comparison that is very similar to the ones used in [34,4].

3.1. Set-theoretic approach

Most of the measures discussed in this section have been derived from a general measure proposed
by Tversky [28] and are based on combinations of �A and �B using t-norms and t-conorms. They
satisfy (P1) as t-norms and t-conorms are commutative. The following measure has been used by
several authors [5,9,22,34]: 4

S1(A; B) =

∑
x∈� 
(�A(x); �B(x))∑
x∈� ⊥(�A(x); �B(x))

;

where 
 is a t-norm and ⊥ is a t-conorm [9]. Property (P2) holds if and only if 
= min and
⊥= max.5 Property (P3) is ful8lled for t-norms “minimum” and “product” but is not for “drastic”
and “Lukasiewicz” ones 6 [9]. Properties (P4) and (P5) are ful8lled.

Wang [29] proposed the following measure of comparison:

S2(A; B) =
1

|�| ×
∑
x∈�


(�A(x); �B(x))
⊥(�A(x); �B(x))

;

where |�| denotes the cardinality of � and with 0
0 = 1. S2 satis8es (P2) if and only if 
= min and

⊥= max but does not satisfy (P3).
However, it is easy to check that a modi8ed version of S2 de8ned as follows:

S3(A; B) =
1

|supp(A) ∪ supp(B)| ×
∑

x∈supp(A)∪supp(B)


(�A(x); �B(x))
⊥(�A(x); �B(x))

satis8es property (P3) for t-norms “minimum” and “product”. Properties (P4) and (P5) are also
ful8lled.

Hyung et al. [14] proposed to use a measure of comparison de8ned as

S4(A; B) = max
x∈�


(�A(x); �B(x)):

Measure S4 satis8es property (P3) for “minimum” and “product” t-norms but does not satisfy (P2).

4 Here we deal with the 8nite discrete case. In the continuous case, the sum is replaced by an integral if it converges.
5 Proofs can be found in the appendix.
6 The usual t-norms are the minimum, the product, the Lukasiewicz t-norm de8ned as �(a; b) = max(0; a+ b− 1) and

the drastic t-norm de8ned as �(a; b) = b if a= 1, a if b= 1, 0 otherwise.
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3.2. Lp distance approach

In this section we use the Lp distance between fuzzy sets A and B:

‖A− B‖p =

(∑
x∈�

|�A(x) − �B(x)|p
)1=p

;

‖A− B‖∞ = max
x∈�

(|�A(x) − �B(x)|):

Measures of comparison based on the Lp distance have the following general form:

S(A; B) = 1 − ‖A− B‖p
K

;

where K is a normalization coePcient. It is easy to see that properties (P1), (P2), (P4) and (P5)
are ful8lled for measures of this type.

For example, Wang [29] and Bouchon-Meunier et al. [5] proposed the following measure:

S5(A; B) = 1 − ‖A− B‖1

|�| :

This measure does not satisfy property (P3). The following measure of comparison proposed by
Pappis [22]

S(A; B) = 1 −
∑

x∈� |�A(x) − �B(x)|∑
x∈�[�A(x) + �B(x)]

:

can be generalized as

S6(A; B) = 1 − ‖A− B‖p
(
∑

x∈� �A(x)p + �B(x)p)1=p :

Measure S6 satis8es property (P3).
Pappis [22] also proposed to use the L∞ distance

S7(A; B) = 1 − ‖A− B‖∞:

Measure S7 does not satisfy property (P3). However, when A and B are normalized fuzzy sets and
their supports are disjoint S7(A; B) = 0. But the converse implication is still false.

It is easy to verify that the measure of comparison (�¿0)

S8(A; B) = e−�‖A−B‖p

proposed in [5] does not satisfy property (P3) either.
Other measures exist, like for example the correlation coePcient between fuzzy sets [12], but they

do not satisfy our properties.
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Table 1
Summary of properties of measures of comparison.

Measure of comparison (P1) (P2) (P3) (P4) (P5)

S1(A; B) =
∑

x∈� �(�A(x);�B(x))∑
x∈� ⊥(�A(x); �B(x))

√ √ √ √ √

S2(A; B) = 1
|�| × ∑

x∈�
�(�A(x);�B(x))
⊥(�A(x); �B(x))

√ √ × √ √

S3(A; B) = 1
|supp(A) ∪ supp(B)| × ∑

x
�(�A(x);�B(x))
⊥(�A(x);�B(x))

√ √ √ √ √

S4(A; B) = maxx∈� �(�A(x); �B(x))
√ × √ √ √

S5(A; B) = 1 − ‖A−B‖1
|�|

√ √ × √ √

S6(A; B) = 1 − ‖A−B‖p
(
∑

x∈� �A(x)p+�B(x)p)1=p
√ √ √ √ √

S7(A; B) = 1 − ‖A − B‖∞
√ √ × √ √

S8(A; B) = e−�‖A−B‖p √ √ × √ √

For measures S1, S2, S3, these results are valid only for some particular t-norms and t-conorms. The symbol
√

means
that a property is satis8ed, while × means that it is not.

3.3. Chosen symmetry measures

The measures of comparison S1, S3 (for t-norm “minimum”) and S6 satisfy properties (P1)–(P5)
(see Table 1).

Therefore we de8ne three symmetry measures:

�1; A(�) =

∑
x∈� min(�A(x); �e�(A)(x))∑
x∈� max(�A(x); �e�(A)(x))

;

�2; A(�) =
1

|supp(A) ∪ supp(e�(A))| ×
∑

x∈supp(A)∪supp(e�(A))

min(�A(x); �e�(A)(x))
max(�A(x); �e�(A)(x))

;

�3; A(�) = 1 − ‖A− e�(A)‖p
(
∑

x∈� �A(x)p + �e�(A)(x)p)1=p :

However, S1 has the additional advantage of being an M -measure of similitude which guarantees
some good monotony properties. As we will see in the next section, it is preferable to use S1.

3.4. Study of �A on examples

Let us see, through some examples, how the value of a symmetry measure can be interpreted.
Fig. 2 shows the shape of �1; A(�; d) for a synthetic 2D fuzzy object (see Section 2.1 for the

notations). This function has four modes which correspond to four local maxima and to four axes
of local symmetry: one axis of exact symmetry (�= 0◦; d= 0), two axes of strong but not exact
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Fig. 2. (a) A 2D fuzzy set A (high gray levels correspond to high membership values), (b) �1; A, (c) �1; A for �= 0,
(d) �1; A for d= 0 and (e) �3; A (p= 2) for d= 0.

symmetry (�= 45◦ or 135◦, d= 0) and one axis of weak symmetry (�= 90◦; d= 0). 7 As expected,
one has �A(�) = 1 for an exact symmetry axis. We can also see that a set A has a local symmetry
plane ��;�;d if a symmetry measure �A has a local maximum in (�; �; d). Thus, to 8nd the local
symmetry planes of A one has to 8nd the local maxima of �A. Fig. 2 also compares the behavior of
�1; A and �3; A for d= 0. Although their shapes are similar, one can see a diEerence in the neighbor-
hood of �= 90◦ which is a local maximum for �1; A but a local minimum for �3; A. In fact, this is
not surprising as we have monotony properties only for M -measures of similitude (De8nition 2.3)
and therefore only for �1; A. In other cases, the behavior cannot be predicted.

Fig. 3 shows the shape of �1; A(�; d) for another 2D fuzzy object. In the direction de8ned by
�= 0, the maximum of �1; A is obtained for d= 10 which is the position of the symmetry plane of
the �-cut of level 0:5. This result 8ts well with the intuition. Fig. 3 also shows the shape of �2; A. For
this measure, the maximum in the direction de8ned by �= 0 is obtained for d= 4. The diEerence
between the two measures can again be explained by the fact that only �1; A is an M -measure of
similitude.

The measure �1 seems to have the best properties. In the following of the paper, we only use this
measure as a symmetry measure and we denote:

�A(�) =

∑
x∈� min(�A(x); �e�(A)(x))∑
x∈� max(�A(x); �e�(A)(x))

:

7 The origin of the coordinate system is located at the center of the image.
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Fig. 3. (a) A 2D fuzzy set A, (b) �1; A, (c) �1; A for d= 0, (d) �1; A for �= 0 and (e) �2; A for �= 0.

4. Symmetry plane computation

In this section, we consider the case of an object with a main approximate symmetry plane i.e.
a plane which corresponds to a global maximum in the symmetry measure. To 8nd this symmetry
plane, one has to 8nd the plane for which the symmetry measure has a maximum, i.e.

max
�∈]−
=2; 
=2]; �∈[0; 
[; d∈R

�A(�; �; d):

Whereas the computation of �A for a suPciently small step is feasible in the 2D case, it is a far
too expensive operation for 3D objects. In many cases, one only wants to locate the best symmetry
plane of an object corresponding to the largest symmetry measure value. We propose a method
that expresses the problem of 8nding the best symmetry plane as an optimization problem in the
parametric space ]−
=2; 
=2] × [0; 
[ ×R (Fig. 4 presents an outline of the algorithm).

The optimization procedure needs a starting point. We suggest to use the ellipsoid of inertia to
de8ne candidates for this starting point. The ellipsoid of inertia has already been used in [21] to
de8ne the symmetry plane of an object. Here it is only taken as an initialization. The directions of
axes are de8ned as the eigenvectors of the inertia matrix:

m200 m110 m101

m110 m020 m011

m101 m011 m002


 :
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Fig. 4. Outline of the algorithm for symmetry plane computation. The illustration is a fuzzy segmentation of lateral
ventricles in a 3D MR image of the brain. We present 3D renderings of the 0:5 �-cut and a slice of the fuzzy set.

Here mpqr de8nes a central moment of order p+ q + r:

mpqr(A) =
∑
�

�A(x; y; z)(x − xc)p(y − yc)q(z − zc)r ;

where c= (xc; yc; zc) is the center of mass of the fuzzy object. If a 3D object possesses an exact
plane of symmetry it passes through its center of mass and is orthogonal to one of the ellipsoid axes.
Let us denote by u1, u2 and u3 the eigenvectors of the inertia matrix. We consider then three planes
orthogonal to these vectors and passing through the center of mass: �1 =�u1 ;u1·c, �2 =�u2 ;u2·c and
�3 =�u3 ;u3·c (where u · c denotes the inner product). Our initial symmetry plane �i maximizes
the symmetry measure, i.e. �A(�i) = max{�A(�1); �A(�2); �A(�3)}. This is only possible when the
eigenvectors are diEerent. Otherwise, one gets an ellipsoid of revolution.
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This plane is just an initial guess, not the symmetry plane. The symmetry plane is found using
an optimization technique. We use the Nelder–Mead downhill simplex method [26] which was also
used in [1] for gray–level images with a diEerent initialization and a diEerent symmetry measure.
This method is often used when one does not know the function derivatives. It is accurate and robust
under a good starting point. However, it is a local optimization method and, in general, one has no
guarantee to 8nd the global maximum. This method starts from a simplex in the parametric space.
In our case, the dimension is three and the simplex is a tetrahedron. We place our initial point at
one of the tetrahedron vertices and compute the 3 other points by only modifying one parameter at
a time (in other words, each vertex is on an axis of the parametric space). The complete procedure
for symmetry plane computation takes 25s to achieve a precision of 10−3 for the symmetry measure
in case of a 128 × 128 × 64 fuzzy object (on a PC Pentium III 1 GHz). This computation time is
very reasonable. If needed, it is possible to achieve a faster computation time by undersampling
the objects.

5. Symmetry measure as a graph attribute for facial feature recognition

Model-based pattern recognition often makes use of graph representations, where vertices and
edges are attributed. These attributes are used for comparing the image to be recognized and the
model, in a graph matching procedure. Typically vertices represent image regions, with attributes such
as gray levels, texture and shape measures, while edges represent relationships between regions, with
attributes such as distances and relative directional position. In this section, we show how symmetry
measures can be used to de8ne edge attributes between image regions in such structural models.

The application concerns the recognition of facial features such as pupils, nostrils and mouth based
on a face model. This is an important task in face recognition [33] and facial expression analysis
[10]. Symmetry has been explored as an important feature in this context due to face symmetry.
For instance, it is used as a feature to help deciding if a given region represents a face, which is
an important step for face detection [31,2]. A similar approach, but using gradient vectors instead
of image gray-levels to detect the symmetry axis, is described in [15]. The symmetry of facial
features has also been explored for their automatic localization in [27]. The use of face symmetry
in the literature shows its importance for face analysis problems. We show here that the addition of
symmetry attributes improves the recognition results previously obtained in [6].

5.1. Graph construction and attributes

The image to be analyzed is represented as a graph GD (the data graph), based on an over-
segmentation obtained by the watershed algorithm. Each region in the segmented image corresponds
to a graph vertex. Vertices are linked by edges and edge attributes represent relations (e.g. spatial)
between the corresponding regions.

The model is represented as a graph GM (the model graph) as well, where each vertex corresponds
exactly to one structure to be recognized. Edges are de8ned analogously as for GD. In our experiments
on facial feature recognition, the model was built manually from a face image.

Fig. 5 illustrates this construction. Figs. 5(a) and (b) show the model and over-segmented faces,
respectively. The corresponding model and image graphs are schematically shown in Figs. 5(c) and



O. Colliot et al. / Fuzzy Sets and Systems 147 (2004) 141–163 153

Fig. 5. The model (left) and the image where recognition has to be performed (right): (a), (b): segmentation superimposed
on the image and (c), (d): a subset of the model and the data graphs. We show only edges between adjacent regions to
simplify visualization. The real number of edges is much larger since we use complete graphs. (e), (f): a subset of the
graphs superimposed on the images.

(d). In order to make visualization easier, only a subset of the edges is shown. Figs. 5(e) and (f)
show the graphs superimposed on the corresponding images.

We will denote by ND (respectively NM) the set of vertices of GD (respectively GM), by ED (EM)
the set of edges of GD (GM) (in our experiments, the graphs are complete, i.e., ED =ND ×ND and
EM =NM ×NM).

We use crisp attributes in these experiments but fuzzy attributes could also be used as in [24].
Let a be a vertex of GD or GM. The vertex attributes are de8ned as the average gray level g(a) of
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the region represented by a (normalized between 0 and 1) and a texture index w(a) computed from
wavelet coePcients [11].

Let a and b be two vertices of GD (or of GM). The 8rst edge attribute used is de8ned as the
vector v(a; b) = ˜papb=2dmax where pa and pb are the centroids of the regions represented by a and
b, respectively, and dmax is the largest distance between any two points of the face region. This
attribute is not symmetrical in a and b and therefore edges are directed.

In this section we explore symmetry as a second edge attribute used together with v(a; b), as
described below.

5.2. Symmetry attributes

As mentioned in the introduction, when no strict or exact symmetry is veri8ed, then it is mean-
ingful to consider symmetry as a matter of degree, expressed by a symmetry measure. In our case,
the regions are crisp sets but, as we have to deal with approximate symmetries, it is still of interest
to use a symmetry measure instead of a Boolean value. All the results obtained in the previous
sections are valid here, considering crisp sets as a particular case of fuzzy sets.

Symmetry measures can be used to de8ne a vertex attribute or an edge attribute. The 8rst case
applies if some objects of the scene are known to be approximately symmetrical. Then it is possible
to de8ne a symmetry attribute as the orientation of the symmetry plane of the region and compare
these orientations in the model and the image to be recognized. Another option for such a scene is
to compare the degree of symmetry of regions.

However in the case of facial analysis, the objects taken individually do not have any particular
symmetry and therefore we will not use symmetry as a vertex attribute in this paper. On the contrary,
some pairs of objects are approximately symmetrical in the face with respect to the mid-face axis
(for example the two eyes, the two eyebrows, etc.). Therefore, it seems natural to consider the
degree of symmetry of two regions with respect to the plane (or axis in our case) of symmetry of
the face, this leading to an edge attribute. This attribute will constrain a pair of symmetrical regions
in the image to be matched with a pair of symmetrical regions in the model. It can be formalized as
follows. Let �M (respectively �D) be the symmetry plane of the model (respectively of the data).
Let a and b be two vertices of the model. Using the symmetry measure �1, we de8ne the attribute
of symmetry of the edge (a; b) as:

s(a; b) = S1(a; e�M(b)): (1)

Similarly we de8ne a symmetry attribute for the data as: s(a; b) = S1(a; e�D(b)). The planes �D

and �M are computed automatically using the algorithm presented in Section 4. But as the planes
are computed on gray-level images, a diEerent symmetry measure is used instead of �A. Let f
be a gray-level image normalized between 0 and 1, e�(f) its re$ection with respect to � and
I = supp(f) ∩ supp(e�(f)) the intersection of their supports, we derive the symmetry measure from
the L2 distance between images:

�f(�) = 1 − (
∑

x∈I (f(x) − e�(f)(x))2)1=2

|I | :
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Fig. 6. A face and the detected symmetry axis.

Fig. 7. (a) Two regions a and b which are approximately symmetrical. (b) s(a; b) is high as a and e(b) (the re$ection of
b) almost coincide. (c) The second de8nition (Eq. (2)) provides a much higher value than the 8rst one (Eq. (1)), because
the centroids are very close while the intersection between a and e(b) is reduced. (d) The 8rst de8nition provides a zero
value, while the second de8nition provides a non zero value.

The measure is computed only on the intersection of supports in order not to take into account the
background of the image (see for example Fig. 6 which shows a face and the detected
symmetry axis).

One important property of the symmetry attribute s(a; b) is that it will be zero for most pairs of
regions which are not symmetrical, and non-zero only for a small group of approximately symmetrical
pairs of regions. This comes from property (P3) presented in Section 2.3. It is illustrated in Fig. 7(d).
Moreover, regions which are almost symmetrical will lead to a high degree of symmetry. It is
illustrated in Figs. 7(a) and (b) which show two regions a and b that present a high degree of
re$ection symmetry. A high degree of symmetry can be identi8ed by the large intersection between
a and e�M(b).

To evaluate the ePciency of our symmetry attribute, we compared it to another attribute computed
from the distance between the centroids of the regions. Let a and b be two vertices of the model
and e�M(b) be the re$ection of b. Let pa and pe�M(b) be the centroids of the regions represented by
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a and e�M(b), respectively. We de8ne an alternative symmetry attribute of edge (a; b) as:

sd(a; b) = 1 − min
(

1;
d(pa; pe�M(b))

h1 + h2

)
; (2)

where d(pa; pe�M(b)) denotes the Euclidean distance between the two points and h1 and h2 are the
diameters of a and b, respectively. The symmetry attribute for the edges of the data graph is de8ned
analogously. The symmetry measure sd(a; b) leads to non-zero values even when the regions a and
e�M(b) do not intersect (see Fig. 7(d)). This can be seen as an advantage when one has very
small regions. On the other hand, this attribute may indicate high symmetry despite important shape
diEerences between the object and its re$ection when the region centroids are very near or coincide
(see Fig. 7(d)). In Section 5.4, an experimental comparison is presented.

The approach presented in [27] also relies on face symmetry axis detection and on a symmetry
degree de8nition. However the following diEerences can be noted: the symmetry axis computation
is done directly using the axes of inertia and the symmetry degree is based on centroids, like our
second attribute but without normalization. Also their approach does not rely on the comparison with
a model but on the minimization of a symmetry-based cost function for some particular features.
Finally, the method proposed in [27] aims at locating the face and facial features (more speci8cally,
only the centroids of the eyes are found), whereas the application described in the paper allows not
only to locate the facial features, but also to segment them (i.e. the image region corresponding to
each facial feature).

5.3. Graph matching procedure

Now the next problem to be solved is graph matching. A widely used approach consists in 8nding
an isomorphism between both graphs (or subgraphs). However, the bijective condition is too strong
here, and the problem is expressed rather as an inexact graph matching problem [23,6]. Because of
the diPculty to segment the image into meaningful entities, no isomorphism can be expected between
both graphs. Here, |ND| is generally much larger than |NM|, and we expect to match several vertices
of GD to one vertex of GM, i.e. several image regions can be assigned to a single model label.

Recognition can then be performed by searching for a homomorphism between GD and GM

which satis8es both structural and similarity constraints [25]. A graph homomorphism is a mapping
h : ND →NM such that:

∀(a1
D; a

2
D) ∈ N 2

D; (a
1
D; a

2
D) ∈ ED ⇒ (h(a1

D); h(a2
D)) ∈ EM

which imposes a structural constraint on the mapping between edges, and guarantees that each data
vertex has exactly one label (i.e. model node).

Similarity functions are then used to 8nd the best homomorphism, being thus based on comparison
of attributes. A good homomorphism will maximize the similarity between attributes of matched
vertices and between attributes of matched edges, or, equivalently, minimize a dissimilarity. The
dissimilarity between any two vertices aD ∈ND and aM ∈NM is de8ned here as

cN (aD; aM) = �|gD(aD) − gM(aM)| + (1 − �)|wD(aD) − wM(aM)|;
where gD; wD (gM; wM) are the vertex attributes of graph GD (GM), and � a parameter for tuning the
relative importance of gray level and texture indices. The above dissimilarity measure quanti8es the
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absolute diEerence between the corresponding image regions w.r.t. the gray values and texture. In
our experiments, we set �= 0:6. Parameter values were set experimentally and led to good results
for all tested examples. For a diEerent application, these values might change. It could be interesting,
in some future work, to design a learning procedure for all parameters.

The dissimilarity between two edges eD = (a1
D; a

2
D) of ED and eM = (a1

M; a
2
M) of EM is de8ned

as follows. Firstly, we compute the modulus and angular diEerences between v(a1
D; a

2
D) and

v(a1
M; a

2
M) as

-m(eD; eM) = |‖v(a1
D; a

2
D)‖ − ‖v(a1

M; a
2
M)‖|

and

-a(eD; eM) =
|cos(.) − 1|

2
;

where . is the angle between v(a1
D; a

2
D) and v(a1

M; a
2
M).

The dissimilarity measure cE(eD; eM) is de8ned as

cE(eD; eM) = /(0-a(eD; eM) + (1 − 0)-m(eD; eM)) + (1 − /)|s(a1
D; a

2
D) − s(a1

M; a
2
M)|;

where / is a weight parameter for tuning the relative importance of the vector attribute and the
symmetry attribute (in our experiments, we set /= 0:6). The above dissimilarity measure quanti8es
the absolute diEerence between the corresponding relative position of the respective image regions
both w.r.t. the distance between the regions (i.e. length) and orientation (i.e. angle). The factor 0
is also a weight parameter, which controls the importance of the modulus and angular diEerences
between the data and the model edges. In our experiments, we have set 0= 0:2 in order to have a
good balance between the numerical values of -m and -a.

Based on the vertex and edge dissimilarities, we propose to de8ne a global dissimilarity func-
tion as

f1(h) =
�

|ND|
∑
aD∈ND

cN (aD; h(aD)) +
1 − �
|ED|

∑
(a1

D ;a
2
D)∈ED

cE((a1
D; a

2
D); (h(a1

D); h(a2
D))); (3)

where � is a weight parameter used for tuning the relative importance of vertex dissimilarity and
edge dissimilarity. In our experiments we have set �= 0:4, in order to give more importance to edge
information, since it can be expected to be more robust than vertex attributes with respect to the
oversegmentation.

Several optimization algorithms can be used to compute the minimum of the global dissimilarity
function: randomized tree search [7], genetic algorithms [19,30] or estimation of distribution algo-
rithms (EDAs) [3]. The reader can refer to Cesar et al. [6] for a comparison between them. This
paper does not focus on the optimization method. Randomized tree search [7] was chosen here to
illustrate our results and should be considered as but one possible example of optimization method,
which provides good results.

5.4. Results

In order to illustrate the importance of using symmetry to improve the method described in [6],
Fig. 8 shows the results obtained by the application of the proposed method. Figs. 8(a) and (b)
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(a) (b)

(c) (d)

(e) (f )

Fig. 8. Results of recognition (only eyebrows, eyes, nostrils and mouth are shown) on two examples. From top to bottom:
without the symmetry attribute ((a) and (b)), with the 8rst de8nition of the symmetry attribute ((c) and (d)) and with
the second de8nition ((e) and (f)). The symmetry attribute allows to improve the results (mouth, eyebrows). The 8rst
de8nition leads to slightly better results.

show the detection of the eyebrows, eyes, nostrils and mouth as performed by the original method
without the symmetry attributes. Some parts have been missed such as the left eye in Fig. 8(a)
and parts of the mouth in Fig. 8(b). The introduction of the symmetry attribute de8ned by Eq. (1)
has circumvented these problems, as shown in Figs. 8(c) and (d). Finally, the application of the
alternative symmetry attribute de8ned by Eq. (2) leads to similar results, which are shown in Figs.
8(e) and (f). No signi8cant improvement over the results obtained using Eq. (1) can be observed.
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It is nevertheless worth noting that calculating Eq. (1) in practice generally takes much less time
since e�M(b) typically has non-empty intersection with very few regions and the symmetry should
be calculated only for them. On the other hand, the attribute of Eq. (2) must be always calculated
for all edges in the complete graph. Considering the computational cost, the experimental results,
and also the potential problems mentioned in Section 5.2, we suggest to use the attribute of Eq. (1).

The computation time is quite reasonable since obtaining the image graph, which includes symme-
try axis detection and symmetry measure computation, requires 23 s, leading to a total computation
time of 7 min for the whole graph matching process. Moreover, the intersection computation in the
symmetry measure is performed ePciently. For a given object, we can compute its intersection with
respect to all the other objects using a single min operation on the whole image. As mentioned
before, the union computation is only performed for pairs of objects which have a non-zero intersec-
tion. This is only a small fraction of all possible pairs. Additionally the computation time could be
also reduced using bounding boxes of objects. Finally, the procedure is implemented as a mixture of
C and matlab routines. In cases where computation time is an important issue, it could be rewritten
all in plain C.

6. Conclusion

Since no exact symmetry can usually be expected on real objects, in particular if they are not
well de8ned, we proposed in this paper to study approximate symmetries through the de8nition
of symmetry measures. We de8ned symmetry measures of fuzzy objects based on measures of
comparison between the object and its re$ection. The choice of an appropriate measure of comparison
is based on the required properties for symmetry measures. A comparative study led us to privilege
a symmetry measure based on the ratio between a measure of the intersection between the fuzzy set
and its re$ection and a measure of their union.

Another contribution of this paper consists of an algorithm to compute the best symmetry plane
of a 3D fuzzy object. Thanks to a reasonable initialization based on the inertia axes, it iteratively
converges towards the global optimum.

These two aspects of our work have been applied on a facial feature recognition problem. The face
symmetry axis has been found using the proposed optimization method. The recognition problem is
expressed as an inexact graph matching where one graph represents a face model and the second
graph represents the image where recognition has to be performed. Vertices represent image regions
and edges represent spatial relations between these regions. Symmetry measures are used as edge
attributes, and contribute to improve recognition results by favoring associations of symmetrical
regions in the model with symmetrical regions in the image.

Multiple perspectives of this work can be foreseen. First, we expect that a similar approach
could be used for other recognition problems, such as brain structures. Another possible use of the
symmetry axis or plane could be to guide a registration procedure to get an initial match between the
model and the image. The proposed symmetry measure has also been used by Letournel et al. [16]
to de8ne a feature for the evaluation of segmentations in aerial imaging. Finally, another interest of
this work is to derive spatial relationships referring to symmetry. This can be particularly useful for
applications where directional relations like “on the left” are not absolute but relative to a symmetry
plane of some object [8].
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Appendix A.

We give here the main lines of the proofs of the properties of the measures used in Section 3.

A.1. Proofs for S1

S1(A; B) =

∑
x∈� 
(�A(x); �B(x))∑
x∈� ⊥(�A(x); �B(x))

:

Proposition 1. Property (P2) holds if and only if 
= min and ⊥= max.

Proof. One has 
(�A(x); �B(x)) 6 ⊥(�A(x); �B(x)) for all x∈�. Therefore,

S1(A; B) = 1 ⇔ 
(�A(x); �B(x)) = ⊥(�A(x); �B(x)) for every x ∈ �:

Since for every x∈�:


(�A(x); �B(x)) 6 min(�A(x); �B(x)) 6 max(�A(x); �B(x)) 6 ⊥(�A(x); �B(x));

one has:

S1(A; B) = 1 ⇔ A = B and 
 = min and ⊥ = max :

Proposition 2. Property (P3) is fulBlled for t-norms “minimum” and “product” but is not for
“drastic” and “Lukasiewicz” ones [9].

Proof.

S1(A; B) = 0 ⇔ 
(�A(x); �B(x)) = 0 for all x ∈ �:

For “minimum” and “product” t-norms, one has

min(�A(x); �B(x)) = 0 ⇔ �A(x) = 0 or �B(x) = 0;

�A(x)�B(x) = 0 ⇔ �A(x) = 0 or �B(x) = 0

and therefore (P3) holds. For “drastic” and “Lukasiewicz” t-norms, one can have �A(x) �= 0
and �B(x) �= 0 but 
(�A(x); �B(x)) = 0 (for example, �A(x) = �B(x) = 0:5). Therefore (P3) does
not hold.

Proposition 3. Properties (P4) and (P5) are fulBlled.

Proof. The proof is given here for the translation only, since for the rotation it is similar:

S1(A+ v; B + v) =

∑
x∈� 
(�A+v(x); �B+v(x))∑
x∈� ⊥(�A+v(x); �B+v(x))

:

By de8nition one has �A+v = �A(x − v). Therefore

S1(A+ v; B + v) =

∑
x∈� 
(�A(x − v); �B(x − v))∑
x∈� ⊥(�A(x − v); �B(x − v))

:
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Substituting x− v with x one gets S1(A+ v; B+ v) = S1(A; B). The proofs for (P4) and (P5) are the
same for all measures and are not given.

A.2. Proofs for S2

S2(A; B) =
1

|�| ×
∑
x∈�


(�A(x); �B(x))
⊥(�A(x); �B(x))

:

Proposition 4. S2 satisBes (P2) if and only if 
= min and ⊥= max but does not satisfy (P3).

Proof. The proof for (P2) is the same as for S1.
(P3): Let us consider two fuzzy sets A and B with disjoint supports such that supp(A) ∪ supp(B) �=

�. Then there exists x in � such that �A(x) = �B(x) = 0 and therefore S2(A; B) �= 0.

A.3. Proofs for S4

S4(A; B) = max
x∈�


(�A(x); �B(x)):

Proposition 5. S4 does not satisfy (P2).

Proof. If A is a normalized fuzzy set, one has S(A; A) = 1. However, the converse implication is
false. If there exists an element x such that �A(x) = �B(x) = 1 then S4(A; B) = 1, even if A �=B.

A.4. Proofs of Section 3.2

For all these measures, it is easy to check that properties (P1), (P2), (P4) and (P5) hold.

A.5. Proofs for S5

S5(A; B) = 1 − ‖A− B‖1

|�| :

Proposition 6. This measure does not satisfy property (P3).

Proof. Suppose that sets A and B have disjoints supports. Then:

‖A− B‖p =

(∑
x∈�

�A(x)p + �B(x)p
)1=p

∑
x∈�

�A(x)p + �B(x)p 6 |�|:

Thus, if
∑

x∈� �A(x)p + �B(x)p¿1,

‖A− B‖p ¡ |�|:
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A.6. Proofs for S6

S6(A; B) = 1 − ‖A− B‖p
(
∑

x∈� �A(x)p + �B(x)p)1=p :

Proposition 7. Measure S6 satisBes property (P3).

Proof. Suppose that sets A and B have disjoint supports. Then S6(A; B) = 0, since

‖A− B‖p =

(∑
x∈�

�A(x)p + �B(x)p
)1=p

:

The converse is also true since S6(A; B) = 0 ⇒ ∀x∈�; |�A(x) − �B(x)|p = �A(x)p + �B(x)p ⇒ ∀x∈�,
�A(x) = 0 or �B(x) = 0.
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