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Abstract

The semantic interpretation of images can benefit from representations of useful concepts and the links between them as ontologies.
In this paper, we propose an ontology of spatial relations, in order to guide image interpretation and the recognition of the structures
it contains using structural information on the spatial arrangement of these structures. As an original theoretical contribution,
this ontology is then enriched by fuzzy representations of concepts, which define their semantics, and allow establishing the link
between these concepts (which are often expressed in linguistic terms) and the information that can be extracted from images. This
contributes to reducing the semantic gap and it constitutes a new methodological approach to guide semantic image interpretation.
This methodological approach is illustrated on a medical example, dealing with knowledge-based recognition of brain structures in
3D magnetic resonance images using the proposed fuzzy spatial relation ontology.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The importance of semantics in images has been highlighted in different domains such as scene analysis, image
interpretation, and content-based indexing of digital images. The image semantics cannot be considered as being
included explicitly in the image itself. It rather depends on prior knowledge on the domain and the context of the image.
Introducing knowledge in the image interpretation process is not a new idea, as evidenced by the numerous work on
knowledge-based systems for computer vision (see for instance a review in [20] or more recent works in [17,71]).
However, this type of approach suffers from several shortcomings, in particular because of the lack of genericity (many
systems are rather ad hoc), and the difficulty of acquiring and representing prior knowledge. Recent developments in
the field of knowledge engineering, including ontology engineering, allow answering some of these questions [43]. The
use of ontologies is also widening in the domain of image indexation [72]. However, the development of ontology-based
methods for image interpretation is still in its infancy.

As opposed to the domain of analysis and indexation of textual documents, in which ontologies are widely used
and became an almost unavoidable support, the domain of image interpretation and semantic indexing has to face the
difficult problem of matching the perceptual level and the conceptual level. The perceptual level consists of features,
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mainly pixels (in 2D), voxels (in 3D), or groups of pixels or voxels, while the concepts are usually expressed in plain text
and have a linguistic nature. This problem is often referred to as the semantic gap, defined as “the lack of coincidence
between the information that one can extract from the visual data and the interpretation that the same data have for
a user in a given situation’’ [64]. It is close to the problem of symbol grounding or anchoring addressed in artificial
intelligence [39] and in robotics [19].

An important type of knowledge that guides spatial reasoning (and therefore image interpretation) consists of spatial
relations, as advocated by works in many domains, such as philosophy, linguistics, perception, cognition, robotics,
artificial intelligence, geographic information systems (GIS), or computer vision. Our research focuses on image
interpretation based on prior knowledge on the spatial organization of the observed structures.

Alternative approaches such as Markov random fields (MRFs) and probabilistic relaxation, described in [47], enable
to introduce and model the spatial context to guide image interpretation. Nevertheless, in these approaches, the formal
models and the contextual information are both different from the ones in our proposal. Recently, our work on spatial
relations has been used by another group in a MRF framework [61], but usually the context is considered in a much
more local way and does not model the whole scene.

In this paper, we propose to reduce the semantic gap between numerical information contained in the image and higher
level concepts by enriching ontologies with a fuzzy formalism layer. Fuzzy representations have several advantages:

e They allow representing the imprecision which is inherent to the definition of a concept; for instance, the concept
“close to’’ is intrinsically vague and imprecise, and its semantics depends on the context in which objects are
embedded, on the scale of the objects and of their environment.

e They allow managing imprecision related to the expert knowledge in the concerned domain.

e They constitute an adequate framework for knowledge representation and reasoning, reducing the semantic gap
between symbolic concepts and numerical information.

More specifically, we introduce an ontology of spatial relations and propose to enrich it by fuzzy representations of
these relations in the spatial domain. The choice of spatial relations is motivated on the one hand by the importance
of structural information in image interpretation, and on the other hand by the intrinsically ambiguous nature of most
spatial relations.

As another contribution of this paper, we show how this enriched ontology can support the reasoning process in
order to recognize structures in images. Examples are taken from the field of medical imaging, and allow illustrating
the proposed approach with concrete situations.

Once linked to an anatomy ontology, our enriched ontology exhibits all required characteristics for ontologies in the
domain of biomedicine, according to [14]: good lexical coverage, good coverage in terms of relations, compatibility
with standards, modularity, and ability to represent variation in reality. This is achieved in particular by the separation
between the different levels and the fuzzy layer we propose.

The paper is organized as follows. In Section 2, we underline the importance of spatial relations for image under-
standing. We also briefly recall the definition of an ontology and review the literature on the introduction of uncertainty
and imprecision in ontologies. We propose in Section 3 an ontology of spatial relations and we briefly present fuzzy
models of spatial relations. In Section 4, we describe the formal representation of the proposed ontology and we de-
tail the integration between the ontology and the fuzzy models with concrete domains. In Section 5, we propose a
methodological approach using the proposed fuzzy spatial relation ontology to perform structural pattern recognition
in the context of semantic image interpretation. As an illustrative example, brain structure recognition is presented. It
illustrates the potential of the proposed fuzzy spatial relation ontology.

2. Related work
2.1. Importance of spatial relations

Spatial relations between objects of a scene or image is of prime importance, as mentioned in Section 1. In particular,
the spatial arrangement of objects provides important information for recognition and interpretation tasks, in particular
when the objects are embedded in a complex environment like in medical or remote sensing images [9,49]. Human
beings make extensive use of spatial relations in order to describe, detect, and recognize objects: they allow to solve
ambiguity between objects having a similar appearance, and they are often more stable than characteristics of the objects
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themselves (this is typically the case of anatomical structures, as illustrated in Section 5). Many authors have stressed
the importance of topological relations, but distances and directional relative position are also important, as well as more
complex relations such as “between’’, “surround’’, “among’’, etc. Freeman [33] distinguishes the following primitive
relations: left of, right of, above, below, behind, in front of, near, far, inside, outside, and surround. Kuipers [48,49]
considers topological relations (set relations, but also adjacency which was not considered by Freeman) and metrical
relations (distances and directional relative position). The framework proposed in this paper takes all these relations
into account and is open to any more complex ones.

Spatial reasoning can be defined as the domain of spatial knowledge representation, in particular spatial relations
between spatial entities, and of reasoning on these entities and relations (hence the importance of relations). This field
has been largely developed in artificial intelligence, in particular using qualitative representations based on logical
formalisms [73]. In image interpretation and computer vision, it is much less developed and is mainly based on
quantitative representations. In most domains, one has to cope with qualitative knowledge, with imprecise and vague
statements, with polysemy, etc. This calls for a common framework which is both general enough to cover large classes
of problems and potential applications, and able to give rise to instantiations adapted to each particular application.
Ontologies appear as an appropriate tool toward this aim.

2.2. Dealing with uncertainty and imprecision in ontology

In knowledge engineering, an ontology is defined as a formal, explicit specification of a shared conceptualization
[35]. An ontology encodes a partial view of the world, with respect to a given domain. It is composed of a set of concepts,
their definitions and their relations which can be used to describe and reason about a domain. Ontological modeling
of knowledge and information is crucial in many real world applications such as medicine for instance [76]. However,
most real world domains contain uncertain knowledge and imprecise and vague information. A major weakness of
usual ontological technologies is their inability to represent and to reason with uncertainty and imprecision. As a
consequence, extending ontologies in order to cope with these aspects is a major challenge. This problem has been
recently stressed in the literature, and several approaches have been proposed to deal with uncertainty and imprecision
in ontology engineering tasks [21,60]. The first approach is based on probabilistic extensions of the standard OWL
ontology language > by using Bayesian networks [27,75]. The probabilistic approach proposes to first augment the
OWL language to allow additional probabilistic markups and then to convert the probabilistic OWL ontology into the
directed acyclic graph of a Bayesian network with translation rules. As the main ontology language OWL is based on
description logics (DL) [3], another approach to deal with uncertainty and imprecision is to use fuzzy DL [42,51,67,68].
Fuzzy DL can be classified according to the way fuzziness is introduced into the DL formalism. A good review can
be found in [24]. In particular, a common approach is to introduce fuzziness by using fuzzy predicates in concrete
domains as described in [69].

DL [3] are a family of knowledge-based representation systems mainly characterized by a set of constructors
that enable to build complex concepts and roles from atomic ones. Due to their well-defined semantics and to their
powerful reasoning tools, DL are perfect candidates for ontology languages as explained in [3]. In DL, a semantics
is associated with concepts, roles and individuals using an interpretation Z = (4%, Ty, where A% is a non empty
set and - is an interpretation function that maps a concept C to a subset CZ of AT or arole r to a subset RT of
AT x AT Concepts correspond to classes. A concept C represents a set of individuals (a subset of the interpre-
tation domain). Roles are binary relations between objects. Table 1 describes the main constructors and a syntax
for DL.

Concrete domains are expressive means of DL that enable to describe concrete properties of real world objects such
as their size, their spatial extension or their color. For instance, in the DL formalism given in Table 1, the concept Person
Mdage. <o denotes the set of persons whose age is lower than or equal to 20. In this example <, is a predicate over
the concrete domain of natural numbers N. As a consequence, a fuzzy extension can be obtained with fuzzy sets defined
on the concrete domains. For instance to denote the concept YoungPerson as YoungPerson = Person 13 age.Young,
we can define the fuzzy concrete predicate over the natural numbers Young: N — [0, 1] which represents the degree
of youngness of a person according to usual modeling methods in fuzzy set theory [30]. Young can be represented by
a trapezoidal membership function for instance. In fuzzy DL, concepts and roles are interpreted as fuzzy subsets of an

3 http://www.w3.org/TR/owl-features/.
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Table 1
Description logics syntax and interpretation

Constructor Syntax Example Semantics
Atomic concept A Human AT c4?
Individual a Lea aT e A%
Top T Thing TZ = 4%
Bottom 1 Nothing 1T =97
Atomic role r has-age RT c AT x A%
Conjunction cnbD Human n Male ctnp?
Disjunction cubD Male U Female ctup?
Negation -C — Human 4T\ cT
Existential restriction ar.C 3 has-child.Girl (xeAt |13y ed?: (x, y) e RZ Ay ety
Universal restriction vr.C V has-child.Human (xed? |vyeda? (x,y) e RT = ye T}
Value restriction > r.{a) shas-child. {Lea} (xedT |3y e 4T : (x,y) € RT = y = a7}
Number restriction (=nR) (=3 has-child) (xedr | |y |, y) € RT}|=n)
(<nR) (<1 has-mother) xed® | Iyl (x,y) e RT)<n)
Subsumption CCD Man C Human ctcp?
Concept definition C=D Father = Man r 3 has-child.Human ct=p?
Concept assertion a:C John:Man at ec?
Role assertion (a,b): R (John,Helen):has-child @t bty e RT
Abstract domain Concrete domain (image)
Rose Pink
R3 : hasColor “ (RGB values)
R1iis a Flower 4 : hasShape Im1
\R\ . (shape descriptors)
R2: is treated by
Gardener Im2
R5 : hasSize (imgge
region)

Fig. 1. Importance of concrete domains in image interpretation.

interpretation domain, and axioms, rather than being satisfied (true) or unsatisfied (false) in an interpretation, become
a degree of truth in [0, 1]. More details about the semantics of fuzzy DL can be found in [69].

As illustrated in the previous example, concrete domains can be natural, real, or rational numbers but they can also be
more structured datatypes. For instance, in [36], a concrete domain Polygon is used to represent the spatial dimension
and to combine spatial knowledge representation (restricted to topology in this work) and spatial reasoning in a unique
paradigm. In image interpretation, we can consider the image domain as a concrete domain. For instance as illustrated
in Fig. 1, Pink can be considered as a predicate over the concrete domain of RGB values. As a consequence, these
predicates defined over concrete domains can be a means of reducing the semantic gap.

In this paper, we are only interested in the representation of spatial relations which enable to represent structural
knowledge by opposition to image features such as color or texture. Their ability to describe scenes and to disambiguate
object recognition makes them useful for a wide range of imaging applications including aerial image interpretation
[44,53], face recognition [16], and medical imaging [18,63]. As a consequence, image interpretation should greatly
benefit from a generic ontology of spatial relations.
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3. An ontology of spatial relations

As mentioned in [4], several ontological frameworks for describing space and spatial relations have been developed
recently. In spatial cognition and linguistics, the project OntoSpace * aims at developing a cognitively based common-
sense ontology for space. Some interesting works on spatial ontologies can also be found in GIS [15,46], in object
recognition in images or videos [26,38], in robotics [28], or in medicine concerning the formalization of anatomical
knowledge [22,23,29,62]. All these ontologies concentrate on the representation of spatial concepts according to the
application domains. They do not provide an explicit and operational mathematical formalism for all the types of
spatial concepts and spatial relations. For instance, in medicine, these ontologies are often restricted to concepts from
the mereology theory [29]. These concepts are fundamental for spatial relations ontologies [66], and these ontologies
are useful for qualitative and symbolic reasoning on topological relations, but there is still a gap to fill before using
them for image interpretation.

Moreover, to our knowledge, none of these ontologies take into account the vagueness and the subjectivity of spatial
information, even if many frameworks for spatial knowledge representation and spatial reasoning under imprecision
have been proposed. An interesting work dedicated to the representation of uncertain, subjective and vague temporal
knowledge in ontologies has been proposed in [56]. A fuzzy temporal model is integrated into an ontology by using
fuzzy predicates over concrete domains (fuzzy intervals). We propose to develop similar ideas for the representation of
spatial knowledge. In particular, we propose a generic spatial ontology enriched with fuzzy representations of spatial
concepts in the image domain. This modular representation enables to keep abstract generic spatial concepts separated
from their application dependent representation. Moreover, it provides a unified framework for the representation of
spatial information in images and it makes image processing and interpretation easier.

In this section, we describe the main concepts which have been highlighted in the literature for their importance for
spatial reasoning, and which are therefore integrated in our ontology. An excerpt of the hierarchical organization of
spatial relations in our ontology is displayed in Fig. 2. Moreover, details on fuzzy representations of spatial relations
are given for each type of spatial relations.

3.1. Fuzzy representations of spatial relations: some preliminaries

Representation of objects by spatial fuzzy sets: A spatial fuzzy set is a fuzzy set defined on the image space, denoted
by S, S being typically Z2 or Z> for 2D or 3D images. Its membership function u (defined from S into [0, 1]) represents
the imprecision on the spatial definition of the object (its position, size, shape, boundaries, etc.). For each point x of S
(pixel or voxel in digital 2D or 3D images), u(x) represents the degree to which x belongs to the fuzzy object. Objects
defined as classical crisp sets are particular cases, for which u takes only values O and 1. In the following, all definitions
will include the crisp case as a particular case, so that the complete framework applies for both crisp and fuzzy objects
and relations.

The complement of an object defined by its membership function y is classically defined by the membership function
c(w) where c is a fuzzy complementation (typically c(a) = 1 — a).

Types of representations: Different approaches can be chosen to model spatial relations by fuzzy sets and as a
consequence, the fuzzy representations of spatial relations can be of various natures: fuzzy number, spatial fuzzy set,
interval, angle histogram, etc. The choice of the representation depends on the relation but also on the type of question
raised and the type of reasoning one wants to perform. Typically, in spatial reasoning, questions and reasoning may
concern:

(1) The relations that are satisfied or not between two given objects (or satisfied to some degree) (Fig. 3);
(2) The region of the space S where a relation to one reference object is satisfied (to some degree) (Fig. 4).

While in the crisp case, a relation between two objects is usually represented by a number (either 0/1 for an all-or-
nothing relation, or a numerical value for a distance for instance), in the fuzzy case, several representations are possible.
They can typically be intervals, for instance representing necessity and possibility degrees, fuzzy numbers, distributions.
Details can be found in [8] in the case of distances. These representations are adequate to answer questions of type
1, since they rely on some computation procedure between two known objects. As for the second type of question,

4 http://www.ontospace.uni-bremen.de/twiki/bin/view/Main/WebHome.
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Fig. 2. Excerpt of the hierarchical organization of spatial relations in our ontology.

. I <—— Object B

Reference object (R)

Fig. 3. Illustration of the first type of question: Given two objects R and B, what are the relations between them? For instance, is object B close to
reference object R? Is it to the right of R?

Fig. 4. Illustration of the second type of question: given a reference object R (the square), what are the regions of space that satisfy a relation to
it? (a) Region of space close to R, represented as a spatial fuzzy set where the membership degree at each point represents the degree to which the
relation is satisfied at this point (white = 1, black = 0). (b) Region of space to the right of R.

spatial representations are more appropriate, as fuzzy sets in the spatial domain (see the examples in Fig. 4). In these
representations, the membership value at each point represents the degree to which the relation is satisfied.

In terms of concrete domains, for the first type of representations and of question to be answered, the fuzzy sets are
defined over concrete domains which are typically the real line. On the contrary for the second type of representations,
the concrete domain is the image support (spatial domain).
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observer 2

N

observer 1

Fig. 5. Influence of the reference system: x is to the right of y for observer 1 but not for observer 2.

Let us now detail some spatial relations and their fuzzy definitions we rely on (see e.g. [9] for a synthesis of the
existing fuzzy definitions of spatial relations).

3.2. Reference system

Making spatial relations explicit, in particular metric relations, requires a reference system. Let us consider the
example of the directional relation “x in front of y’’. The semantics of the relation is not the same depending on whether
the reference system is object y itself or an external observer. In order to define a binary relation between two objects, at
least the three following concepts have to be specified: the target object, the reference object, and the reference system.
Works in spatial cognition have intensively addressed this question [45]. In general, a reference system is categorized
either from the observer’s point of view (which can be relative or absolute), or according to the way the relation is used
(intrinsic, extrinsic, or deictic use). It is therefore important to integrate the notion of reference system in the ontology.
In the proposed spatial relation ontology, each metrical relation (directional relation or distance) is linked explicitly to
a given reference system and the use of the relation requires defining the reference system associated to the relation.
Fig. 5 illustrates the importance of the reference system: the relation between the two objects differs depending on the
observer.

3.3. A few types of spatial relations

3.3.1. Topological relations

Topology is a fundamental aspect of space. Binary topological relations between two objects are based on notions of
intersection, interior, and exterior. The literature is quite abundant on the formalization of topological relations (see e.g.
[73] for a review of the qualitative formalisms). One of the main approaches is the Region Connection Calculus (RCC)
theory [57], in which relations between closed and connected spatial entities are derived from a connection predicate.
In this theory, eight main exclusive relations are defined. It was extended to imprecise objects via the egg-yolk approach
[40]. Another approach, known as nine-intersections [34], uses a partition of space into three regions for each object (its
boundary, its interior and its complement), which constitutes the basis for computing relations. One of the advantages
of these approaches is that they build an exhaustive set of topological relations from the basic ones. They are organized
in a lattice and are involved in logical reasoning tools. Expressing in extenso all relations of interest is unfortunately
not possible for other types of relations, for which many different types of specifications usually exist.

Besides these qualitative formalisms, quantitative approaches allow expressing all these relations for digital objects
using values: (/1 for relations expressed in an all-or-nothing manner, numbers or fuzzy numbers for expressing degrees
to which relations hold (degree of adjacency, degree of overlap, etc.).

Fuzzy representations of topological relations: Relations such as “intersects’’ (connection relation of the mereotopol-
ogy), “in the interior of ’ (inclusion), and “exterior to’’ (exclusion) can be simply defined from fuzzy set theoretical
concepts (complementations ¢, t-norms ¢, t-conorms 7' [30]). The two types of questions can be easily addressed for
inclusion and exclusion, and it is possible to define the degree to which a fuzzy object v is included in another one p,
for instance by

;relg T(c(v(x)), u(x)),

as well as the degree to which a point x is in the interior of a fuzzy set u, for instance simply by pu(x).
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Adjacency between two fuzzy sets can be defined from a non-symmetrical visibility concept [58], or in a symmetrical
way from topological concepts [12]. In both cases, mainly the first type of question can be addressed.

Besides these simple topological spatial relations, the ontology also contains the RCC mereotopological relations
which are organized according to the subsumption hierarchy proposed in [57]. It should be noted that our framework,
dedicated to fuzzy representations of spatial relations, can also cope with non fuzzy ones (such as the RCC relations
for instance).

3.3.2. Directional relations

Directional relations, which are useful to describe the relative position of an object with respect to other ones, require
the space to be oriented, i.e. a reference system, as described below. The most used relations are related to three axes of
references: “To the right of”’, “To the left of”’, “Above’’, “Below’’, “In front of’’, “Behind’’. More specific relations
can be derived by combining some of these basic ones, such as “In front and left of”’. Although these main directions
are the most usual ones, nothing prevents from using a finer granularity on the set of directions.

More complex relations in this category include for instance the ternary relation “Between’’ or the binary relation
“Along’’. The natural language has many terms for speaking about such relations, which are sometimes very difficult
to model mathematically [41,70]. Fuzzy representations of these relations have been proposed, taking into account a
few typical situations [10]. As opposed to topological relations, it would be very difficult to define exhaustively a set
of relations with a large enough degree of genericity. The same remarks hold for distances. However, our framework
is open and allows for an easy inclusion of new relations of interest.

Fuzzy representations of directional relations: This type of relation is ambiguous and imprecise even if objects
are crisp. Therefore, relative position concepts are typical examples where they may find a better understanding in
the framework of fuzzy sets, as fuzzy relations, even for crisp objects. This framework makes it possible to propose
flexible definitions which fit the intuition and may include subjective aspects, depending on the application and on
the requirements of the user. Several definitions have been proposed by a few teams, and a synthesis can be found
in [13]. They differ through the representation they use for objects and relations. Objects can be represented by one
point only, by their projection on one axis, or by complete spatial fuzzy sets. Relations can be defined by numbers,
fuzzy numbers, intervals, angle histograms, or their extensions as histograms of forces. These histograms represent all
relative directions between the objects [52,54]. In this case, the answer to the first question for a given relation requires
to extract the information specific to this relation from the histogram, for instance by comparison with a fuzzy subset
of the set of angles representing the semantics of the relation. Histogram representations also allow determining the
dominant relation between two objects.

As for the second type of question, a spatial representation has been proposed in [7]. We consider a reference object
R and a directional relation to be evaluated. A fuzzy “landscape’’ is defined around the reference object R as a fuzzy
set such that the membership value of each point corresponds to the degree of satisfaction of the considered spatial
relation. This is formally defined by a fuzzy dilation of R by a fuzzy structuring element representing the desired
relation with respect to the origin. Details about the formalization and the properties, as well as some algorithmical and
computational aspects, can be found in [7]. Note that this approach can be followed by a second step in order to answer
the first type of question, by evaluating how well the second object matches with the areas having high membership
values (i.e. areas that are in the desired direction), using for instance a fuzzy pattern matching approach.

Histogram and fuzzy landscape approaches are illustrated in Fig. 6.

Currently, the ontology contains the six main directional relations, i.e. “To the right of’, “To the left of”’, “Above’’,
“Below’’, “In front of”’, and “Behind’’. The reference system is given by the coordinate frame of the spatial domain.
The conjunction, disjunction, and negation constructors of the DL can be used to specialize these different directional
relations. Moreover, the ontology contains the following cardinal directional relations: “To the north of”’, “To the south
of”’, “To the West of”’, and “To the East of”’.

3.3.3. Distances

Distances are also very commonly used to describe the spatial arrangement of objects. A distance relation can be
represented by a number of R* (“At a distance of™”). It can also be specialized under less precise forms, using relations
such as “Close to’” and “Far from’’. The degree of granularity can be further modified using quantifiers (for instance
“Very far from””).
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Fig. 6. (a) Two objects. (b) Semantics of directional relations for four main directions, represented as fuzzy sets on the angle space (left), and fuzzy
structuring element v representing the semantics of “to the right of’’ in the spatial domain (right). (c) Angle histogram between the two objects,
showing the dominance of the relation “to the right of”’. (d) Fuzzy dilation of object R (the square) by the fuzzy structuring element v.

Fuzzy representations of distance relations: Several definitions can be found in the literature for distances between
fuzzy sets (which is the main addressed problem). They can be roughly divided into two classes: distances that take
only membership functions into account and that compare them point-wise, and distances that additionally include
spatial distances (see e.g. [8] for a review). The definitions which combine spatial distance and fuzzy membership
comparison allow for a more general analysis of structures in images, for applications where the topological and spatial
arrangement of the structures of interest is important (segmentation, classification, and scene interpretation). These
distances combine membership values at different points in the space S, and take into account their proximity or
distance in S. The price to pay is an increased complexity, generally quadratic in the cardinality of S. In [8] original
approaches were proposed for defining fuzzy distances taking into account spatial information, which are based on
fuzzy mathematical morphology, exploiting the strong links existing between mathematical morphology (in particular
dilation) and distances (from a point to a set, and between two sets). The advantage is that distances are expressed
algebraically, in set theoretical terms, and are therefore easier to translate to the fuzzy case with nice properties than
usual analytical expressions. All these approaches are adequate to address the first type of question.

Let us now consider the second question, i.e. defining the area of the space that satisfies some distance property with
respect to a reference object. We assume that a set A is known as one already recognized object, or a known area of S,
and that we want to determine B, subject to satisfy some distance relation with A. According to the algebraic expressions
of distances, dilation of A is an adequate tool for this. For instance if the knowledge expresses that d(A, B) > n, then B
should be looked for in the complement of the dilation of A of size n. As another example, expressing that B should lay
between a distance n| and a distance n; of A can be obtained by considering both minimum and maximum (Hausdorff)
distances: the minimum distance should be greater than | and the maximum distance should be less than n;, which can
be expressed by the set difference between two dilations of A of size n, and n| respectively. In cases where imprecision
has to be taken into account, fuzzy dilations are used, with the corresponding equivalences with fuzzy distances. The
extension to approximate distances calls for fuzzy structuring elements. We define these structuring elements through



1938 C. Hudelot et al. / Fuzzy Sets and Systems 159 (2008) 1929—1951

1.00 —
0.75 c
0.50 b
0.25
0.00 T T | T |
0.000 0.050 0.100 0.150 0.200 0.255

Fig. 7. (a) Fuzzy set on the distance space ([R?+) representing the semantics of “close to”’. (b) Fuzzy structuring element derived from (a). (c) Fuzzy
dilation of a square using the structuring element, representing the area of space close to the square.

fid) normal cases

pathological cases

0 distances

Fig. 8. Learning the relation “close to’” between putamen and caudate nucleus on normal cases and on pathological cases.

their membership function v on S. Structuring elements with a spherical symmetry can typically be used, where the
membership degree only depends on the distance to the center of the structuring element. An example is illustrated in
the case of the relation “close to’” in Fig. 7.

3.4. Fuzzy model learning

A key point of our approach is the instantiation of the parameters involved in the construction of the fuzzy repre-
sentation of spatial relations, and consequently of our ontology. In [18] and in [1], this point is addressed as a learning
problem. We assume, in the sequel, that in a first step a database of segmented images is available.

Let us detail the learning procedure for the second type of representations discussed in Section 3.1; its adaptation to
the first type of representations is straightforward. Let K be the learning database, ¢ an instance of K (image), O, the set
of segmented objects in ¢, R a spatial relation and px the fuzzy subset in the image space corresponding to the relation
R. For a given spatial relation, a leave-one-out procedure is used to learn the parameters of its fuzzy formulation pp.
Since pp is defined in the spatial domain, we can directly compare up with the target objects. This allows computing the
fuzzy functions, which are of trapezoidal shapes in our ontology, involved in the construction of the spatial relations.

Let us detail the example of the relation “close to’’. The training consists in computing the maximum distance from
a point x of the target object B, to the reference object A.:

df.x = max (da, (x)).
X€B,
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Then the mean m and the standard deviation o of dy,,, are computed over all instances c. The fuzzy interval fis then
defined as the fuzzy set of the real line with kernel [0, m] and support [0, m + 2¢]. This allows taking into account the
variability of the parameters in the training set and overcoming, if necessary, the weak representativity of the database.
A similar approach is applied for adjacency and directional relations. An application of this fuzzy learning approach
to brain imaging is depicted in Fig. 8. More details can be found in [1].

4. Formal representation of spatial relations

We now describe the formalization of the different types of spatial relations which is necessary to clarify the user’s
diverse understanding of spatial relations and to automate spatial reasoning. As a formal language, we have chosen
DL since it is compact and expressive and it is the basis of most ontological languages, in particular of the OWL
language. The OWL DL formalism benefits from the compactness and the expressiveness of DL. It seems important
to mention that other formalisms exist as for example conceptual graphs [65] for which fuzzy extensions have been
proposed [55].

4.1. Spatial relations as concepts

One important entity of our ontology is the concept SpatialObject (SpatialObject © T). Moreover, as mentioned
in [50], the nature of spatial relations is twofold: they are concepts with their own properties but they are also links
between concepts. For instance, the assertion “X is to the right of Y’ can be interpreted and represented in two different
ways:

(1) As an “abstract’’ relation between X and Y that is either true or false;
(2) As aphysical spatial configuration between the two spatial objects X and Y.

As a consequence, we use a process of reification of spatial relations (illustrated in Fig. 10) as in [50]. A spatial
relation is not considered in our ontology as a role (property) between two spatial objects but as a concept on its
own (SpatialRelation). Fig. 9 represents the Venn diagram of the different concepts of the spatial relation ontology.

“CloseTo” “RightOf”

Spatial Relation

[13 B”
“A” Spatial Object

Spatially Related
Object

“D_RightOf_A"

“RightOf_A”
“CloseTo_D”

Fig. 9. Representation of the main concepts of the spatial relation ontology as a Venn diagram. This diagram illustrates the different concepts and how
they are related. “A’’ is a SpatialObject, it is the ReferentObject of the Spatial Relation With concept “RightOf_A’’. “D’’ is a SpatialObject
which has the property of having as Spatial Relation the relation “RightOf_A’’.
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SpatiallyRelatedObject

hasReferenceObject
(allValuesFrom)

hasSpatialRelation ) )
SpatialObject —{ SpatialRelation
(allValuesFrom)

hasReferenceSystem
(allValuesFrom)

SpatialObject

ReferenceSystem

SpatialRelationWith

Fig. 10. Reification of spatial relations in the spatial relation ontology.

The notations used in the following are those of Table 1.

o A SpatialRelation is subsumed by the general concept Relation. It is defined according to a ReferenceSystem.

SpatialRelation C Relation M
> type.{Spatial} M
3 hasReferenceSystem.ReferenceSystem
SpatialRelation subsumes TopologicalRelation and MetricRelation which itself subsumes DirectionalRelation

and DistanceRelation as shown in Fig. 2. For BinarySpatialRelation, we can also specify inverse spatial relations
and properties such as reflexivity, irreflexivity, symmetry, antisymmetry, and asymmetry useful for qualitative spatial
reasoning as shown in [50].

e We define the concept SpatialRelation With which refers to the set of spatial relations which are defined according
to at least one or more reference spatial objects.

SpatialRelationWith = SpatialRelation ™
3 hasReferentObject.SpatialObject M
> 1 hasReferentObject
e We define the concept SpatiallyRelatedObject which refers to the set of spatial objects which have at least one spatial
relation with another spatial object. This concept is useful to describe spatial configurations.

SpatiallyRelatedObject = SpatialObject M
3 hasSpatialRelation.SpatialRelationWith M
> 1 hasSpatialRelation
e At last, the concept DefinedSpatialRelation represents the set of spatial relations for which target and reference
objects are defined.
DefinedSpatialRelation = SpatialRelation
3 hasReferentObject.SpatialObject
> 1 hasReferentObject M
3 hasTargetObject.SpatialObject M
= 1 hasTargetObject
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Right
Right of y

x is to the right of y: true

Fig. 11. Difference between three concepts: right (according to a reference frame), right of y (with respect to a reference object), and x is to the
right of y.

This distinction between SpatialRelation, SpatialRelation With, SpatiallyRelatedObject, and DefinedSpatialRelation
is important. Indeed, the meaning of Right_Of, Right_Of_Y, and X is to the Right_Of_Y is not the same as illustrated in
Fig. 11 where an absolute frame of reference is considered. Let us describe the scene illustrated in this figure by using
the spatial relation ontology. The concept Right_Of is defined as:

Right_Of C DirectionalRelation M
BinarySpatialRelation m
I inverse.Left_Of

e y:SpatialObject and x:SpatialObject are two assertions that say that x and y are two spatial objects.

e The concept Right_Of y is defined as Right_Of_y = Right_Of rn >hasReferentObject.{y}. It represents the set of
“right of”” relations that are possible with the object y.

e x:SpatialObject m 3 hasSpatialRelation.Right_Of_y represents a spatial configuration. We can easily verify that
x:SpatiallyRelatedObject.

e The concept Cy = SpatialRelation M >hasReferentObject.{y} M >hasTargetObject.{x} represents the set of spatial
relations between the object x and the reference object y. SPj:CloseTo M >hasReferentObject.{y} 1 3
hasTargetObject.{x} and S P,:RightOf rm >hasReferentObject.{y} M >hasTargetObject.{x} are two individuals
belonging to Cyp.

Ontology implementation: The ontology of spatial relations has been developed with the software Protégé OWL >
and can be obtained on demand. Fig. 2 represents a part of the hierarchy of the different spatial relations.

4.2. Integration of the fuzzy models

As in [56], we follow an approach of modular semantics for integrating the fuzzy model of spatial relations with the
spatial relation ontology. We combine the two various formalisms in a modular way, thus we can combine and use the
best of each of them. Moreover, the separation of the abstract domain (the spatial relation ontology) from its concrete
domain on which fuzzy representations are defined contributes to reducing the semantic gap. This integration consists
in linking concepts of the spatial relation ontology to their corresponding physical fuzzy representation in the image
domain. Of course, the fuzzy representation depends on the type of question. For instance, for the relation “Right of R*’,
we are interested in the area of the image space where the relation right of R can be satisfied. Therefore this concept is

5 http://protege.stanford.edu/plugins/owl/.
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Fig. 12. Syntactic integration between the spatial relation ontology and the fuzzy representation model for directional relations.

! ( 0 ifz< a
(z —a)/(b—a)if z € [ab]

0 «| Trz(z;a,b,c,d) =4 1 if € [by
(d=z)/(d=c)if z € [c,d]
0 ifz>d

<xsd:complexType name="TrapezoidalFuzzySet” >
<xsd:sequence>

<xsd:element name="a" type="xsd:float"/>
<xsd:element name="b” type="xsd:float”/>
<xsd:element name="c” type="xsd:float"/>
<xsd:element name="d" type="xsd:float”/>

</xsd:sequence>

</xsd:complexType>

Fig. 13. A trapezoidal fuzzy set, its membership function and description of the corresponding fuzzy XML datatype.

linked to a fuzzy landscape representation (Fig. 6 (b right)), whereas the relation “Right of’’ is linked to a fuzzy subset
of the set of angles representing the semantics of the relation. In the first case the concrete domain is the image support,
while in the second one it is the real line. The fuzzy sets defined on these concrete domains provide the semantics of
the relation.

Fig. 12 represents the nature of integration links for directional relations. These links are implemented by the relation
has for fuzzy representation in the concrete domain. In this figure, operators correspond to comparison operators.

Let us illustrate how to interpret this figure on a simple example, and consider the following anatomical knowledge:
“the right putamen is to the right of the lateral ventricles’’. Let us consider a scenario where the lateral ventricles have
been recognized in an image. The “Spatial Object lateral ventricle’’ of the ontology is then linked to its representation
in the concrete domain (image support), which can be a fuzzy or a crisp set. Let us then consider the concept “Right’’
in the ontology. Its semantics is provided by a fuzzy set in the image domain, according to the usual reference system
used to describe anatomy, defining for each point to which degree it is to the right of some reference point. This fuzzy
set is then considered as a structuring element and used in a morphological dilation to define the region of space to
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the right of the lateral ventricles, according to [7]. This new fuzzy set (fuzzy landscape) defines the semantics of the
ontological concept “Right of the lateral ventricles’’. This fuzzy region can be used to drive the recognition of the right
putamen (see Section 5). In case the putamen is known in the image, again the concept “Spatial Object right putamen’’
is linked to its spatial representation in the image, which can be compared, using appropriate operators, to the region
to the right of the lateral ventricles to assess the degree of satisfaction of the relation between both objects.

As the introduction of concrete domains in OWL is based on XML Schema datatypes, we have defined a set of
XML Schema datatypes in order to describe fuzzy sets, fuzzy numbers, fuzzy intervals, and spatial fuzzy sets. Fig. 13
describes the fuzzy XML schema datatypes used to describe trapezoidal fuzzy sets.

For instance, the spatial relation “Close to’’ described in Fig. 7 is linked to a trapezoidal fuzzy set (represented in
Fig. 7 (a)) and described by the fuzzy datatype:

<fxsd:TrapezoidalFuzzySet name="closeto" >
<fxsd:a value="0.0"/ >

<fxsd:b value="0.0"/ >

<fxsd:c value="0.1"/ >

<fxsd:d value="0.15"/ >

< /fxsd:TrapezoidalFuzzySet>

where fxsd is the namespace for the fuzzy XML schema datatype definitions.

4.3. Fusion and reasoning

One of the advantages of using spatial concrete domains is the separation of semantics, which is very useful for
knowledge representation and for reasoning.

All concepts that are included in the ontology are generic in the sense of their formal definition. Only their fuzzy
representations (and their semantics) may vary from one domain to another one, and can be learned as explained in
Section 3.4. For example a relation such as “close to’” will not have the same meaning in a GIS context or in the context
of interpretation of satellite images or of medical images. This difference is expressed in the fuzzy model (for instance,
we only have to adapt the values of a, b, c, d in the trapezoidal fuzzy sets, see Fig. 13), whereas the ontology of spatial
relations remains a support for more general reasoning. At this stage of development, the ontology contains the most
used spatial relations. Concepts that are not encoded cannot be used in the reasoning, but the ontology could be easily
extended to add new ones. We describe in Section 5 how this spatial relation ontology can be used to describe structures
in specific domains. Moreover, image interpretation tasks can also benefit from automatic reasoning on ontologies and
from fuzzy logic reasoning.

General automatic reasoning tasks on ontologies include concept consistency, concept subsumption to build inferred
concepts taxonomy, instance classification and retrieval, parent and children concept determination, and answering
queries over ontology classes and instances. To perform these reasoning tasks, we can use reasoning tools such as
RACER [37], FACT++© or PELLET.” In the current implementation, only this classical reasoning is used. Recent
works on fuzzy DL reasoners® could be used in future works to improve the proposed framework and to enable the
reasoning on fuzzy models.

Spatial reasoning aspects often imply the combination of various types of information, in particular different spatial
relations. Again, the fuzzy set framework is appropriate since it offers a large variety of fusion operators [31,32] allowing
for the combination of heterogeneous information (such as spatial relations with different semantics) according to
different fusion rules, and without any assumption on an underlying metric on the information space. They also apply
on various types of spatial knowledge representations (degree of satisfaction of a spatial relation, fuzzy representation
of a spatial relation as a fuzzy interval, as a spatial fuzzy set, etc.). These operators can be classified according to
their behavior, the possible control of this behavior according to the information to combine, their properties, and their
specificities in terms of decision [6].

6 http://owl.man.ac.uk/factplusplus/.
7 http://www.mindswap.org/2003/pellet/.
8 http://gaia.isti.cnr.it/~straccia/software/fuzzyDL/intro.html or see [25].
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For instance, if an object has to satisfy, at the same time, several spatial constraints expressed as relations to other
objects, the degrees of satisfaction of these constraints will be combined in a conjunctive manner, using a t-norm. If
the constraints provide a disjunctive information, operators such as t-conorms are then appropriate. It is the case for
example for symmetrical anatomical structures that can be found in the left or right parts of the human body. Operators
with variable behavior, as some symmetrical sums, are interesting if the aim is a reinforcement of the dynamics between
low degrees and high degrees of satisfaction of the constraints. In particular, this facilitates the decision since different
situations will be better discriminated.

5. Illustration: model-driven segmentation of brain structures in MRI

In this section, we show how the proposed approach can be exploited in the context of structural pattern recognition.
As an illustration, we consider a real medical problem in brain imaging: internal brain structure recognition in magnetic
resonance volumes. The motivation of this choice is threefold. (i) In this domain, to establish an accurate diagnosis,
it is desirable to have a description of the pathology as well as its influence on the surrounding brain structures, in
particular through their spatial relations. (ii) Internal brain structures have the same appearance (they are constituted of
gray matter) and are often prone to shape variability. The use of spatial relations may then help to solve the ambiguity
and improves detection and recognition. (iii) The elaboration of the domain ontology can benefit from the large amount
of existing knowledge formalization models, some of them based on ontological engineering tools (such as the FMA
[59]), that emerged from the medical informatics research field. While neuro-anatomy has not been much developed in
these models, it is largely described in textbooks [74] and dedicated sites,? in linguistic form. These models involve
concepts that correspond to anatomical objects, their characteristics, or the spatial relations between them. Human
experts use intensively such concepts and knowledge to recognize visually anatomical structures in images. This
motivates the use of the ontology of spatial relations for enriching the ontology of the domain (cerebral anatomy in this
context).

Fig. 14 represents how the spatial relation ontology can be used to describe structures in specific domains. In this
figure, the ontology is imported in an ontology of the brain anatomy (excerpt of the Foundational Model of Anatomy
(FMA) [59]) and is used to describe the spatial organization of brain anatomical components. We consider that each
physical anatomical component is a spatial object. Then, spatial relations between these different spatial objects are
described by using the spatial relation ontology. For instance, as illustrated in Fig. 14, the right caudate nucleus is to
the right and close to the right ventricle and above the right thalamus.

Moreover, the semantic enrichment by the fuzzy representations of spatial relations, learned on a database of exam-
ples, makes it possible to formalize the ontology concepts in an operational way, that facilitates pattern recognition and
image interpretation.

In previous works [5,11,18], two methods have been proposed for recognizing brain structures, a global one and a
sequential one. The choice of the structures to recognize and the spatial relations that guide the recognition was entirely
supervised. This constraint can now be relaxed by exploiting the features of the proposed ontology, and this constitutes
an important and concrete outcome of this paper. In the following, we consider crisp spatial objects and fuzzy spatial
relations.

5.1. Sequential approach

In a sequential approach [11,18], the structures are recognized successively. To detect a structure, its spatial relations
with the previously recognized structures are used to reduce the search space to image areas that satisfy these relations.

Let us detail the process in the case of the detection and recognition of the right caudate nucleus assuming that the
right lateral ventricle has already been extracted. The situation is represented in Fig. 15. 1°

e A first step consists in extracting information from the domain ontology by querying it. The goal of the query is to
find the spatial relations involving the right lateral ventricle and the right caudate nucleus. As the first one is already

9 http://www.chups.jussieu.fr/ext/neuranat/index.html for instance.
10 Here we do not use the “left is right”” convention usually adopted in the medical imaging community, but for the sake of simplicity we denote
by “right’” structures that are on the right side in the figures (i.e. on the left side of the body).
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Fig. 14. Part of an ontology of the brain anatomy (excerpt of the FMA [59]). The concepts of the spatial relation ontology are prefixed by p1.

extracted and recognized, it is taken as a reference object. As a querying language, we use the nRQL language
provided by RACER [37]. The nRQL request is expressed as:

(tbox-retrieve (?x)(and

(?y Right'Caudate nucleus)

(?y ?x hasSpatialRelation)

(?z Right’Lateral ventricle)

(?x ?z hasReferenceObject)))

An answer to such a query using our enriched domain ontology is: Right_Of Right Lateral_ventricle and
Close_To_Right_Lateral_ventricle. Indeed, according to the domain ontology “the right caudate nucleus is to the
right and close to the right lateral ventricle and above the right thalamus’’ (see Fig. 15). Note that the last part of this
knowledge is not used here since the thalamus is not recognized yet.

e Then, according to the ontology of spatial relations, concepts such as Right Of _Right_Lateral_ventricle or
Close_To_Right_Lateral_ventricle are derived from the concept SpatialRelation With and their syntactic integration
(i.e. fuzzy semantics in the image domain) corresponds here to a fuzzy landscape (see Fig. 12). The fuzzy semantics
is used to guide the operating mode (in this case, a fuzzy dilation with a structuring element defining the right
direction). A similar reasoning is used for the relation close to, leading to another morphological operation.

e In the image domain, the search space of the “right caudate nucleus’” corresponds to the area to the right and close
to the right lateral ventricle, derived from the conjunctive fusion of the results of the two morphological operations,
still performed in the spatial domain (Fig. 16).

The next step consists in segmenting the caudate nucleus. The fuzzy region of interest derived from the previous steps
is used to constrain the search space and to drive the evolution of a deformable model. An initial surface is deformed
toward the solution under a set of forces, including forces derived from spatial relations. The detailed description of
this segmentation process is outside the scope of this paper [2,18]. Fusion aspects are involved when several types of
knowledge are expressed for the same object. Spatial representations of each knowledge type have to be combined in
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Fig. 15. The right lateral ventricle corresponds to the spatial region R1 in the image. The domain ontology describes spatial relations between the
right caudate nucleus and the right lateral ventricle. These relations will be exploited to segment the right caudate nucleus.

Fig. 16. (a) The right ventricle is superimposed on one slide of the original image. The search space of the object “caudate nucleus’’ corresponds
to the conjunctive fusion of the spatial relations “to the right of the right ventricle’” (b) and “close to the right ventricle’’ (c). The fusion result is
shown in (d).

order to define a search space which satisfies the fusion of the constraints (in the previous example, a constraint on
distance and a constraint on direction). Fusion between different forces is also involved in the evolution process of the
deformable model.

More generally, this type of approach and the use of spatial representations of spatial relations are appropriate for
problems of scene navigation where the knowledge about the scene is incrementally refined when more and more
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Fig. 17. The right lateral ventricle corresponds to the spatial region R1 on image. The domain ontology describes spatial relations between several
gray nuclei and the lateral ventricles. These relations will be exploited to identify each individual structure.
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Fig. 18. (a) Segmentation of some structures. (b) Histogram of angles of the structure in red (R4 in Fig. 18) and the structure in blue (R2). The
comparison between this histogram and the semantic of the relation “below’’ makes it possible to compute to which degree this relation between the
two structures is satisfied (0.9 here). Hence the blue structure should be a structure that is below another one in the ontology. Similar computation
of other relations lead to the recognition of the segmented structures: caudate nucleus in red, putamen, in green and thalamus in blue.

objects are recognized: starting with simple objects, the scene structure is learned progressively and exploited in order
to detect and recognize objects that would have been difficult to recognize directly.

This segmentation approach has been evaluated for several brain structures on normal brain images in [18]. The
order of the structures to be segmented and the type of knowledge useful for recognizing each of them was provided
by the user. As illustrated above, this step can now be completely automated.
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5.2. Global approach

While in the sequential approach, segmentation and recognition are performed simultaneously, in a global approach
[5], several objects are first extracted from the image using a segmentation method, and then recognized. The recognition
can be achieved by assessing if the spatial relations between two objects x and y are those existing in the domain ontology.
As for the sequential approach, let us detail the process in the case of Fig. 17.

e From the segmentation process (not described here), three structures that belong to the grey nuclei are extracted.
The first step consists in assessing spatial relations between these structures. For the sake of simplicity we focus on
relative directions. The situation is represented in Fig. 18.

e We are interested in finding all the directional spatial relations between R1, R2, R3, R4, where R1 represents the
lateral ventricles and R2-R4 the three regions to be labeled. The ontology of spatial relations is used to select an
adequate representation for question 1, i.e the fuzzy representation of concepts “X in directional relation with Y’
(see Section 3.1). The derived syntactic integration corresponds for instance here to a histogram of angles (see Fig.
12). By using a fuzzy interval operating mode, the degrees of satisfaction of several directional relations between the
segmented regions are computed. In this example, the following assertions yield high degrees of satisfaction: “R2 is
to the right of R1°’, “R2 is below R4*’, “R3 is to the right of R1°’, “R3 is to the right of R4’’, and “R4 is to the right
of R1”’.

e The description of the concepts C1, C2, C3, and C4 (Fig. 18) is completed with the predominant directional relations
between R1, R2, R3, R4 and then are classified in the hierarchy using reasoners. This allows us to label, i.e. to
recognize each individual structure. In the example, structures R2, R3 and R4 are recognized as thalamus, putamen
and caudate nucleus, respectively.

6. Conclusion

The contribution of this paper is twofold. First, an ontology of spatial relations is proposed, along with its integration
with existing domain ontologies, such as the FMA for anatomical concepts. Secondly, this ontology is linked to fuzzy
representations which define the semantics of the spatial concepts, in particular the spatial relations. This link is
implemented via concrete domains. This allows adapting the semantics to a particular application, while the ontology
remains general. Different types of reasoning then become possible: (i) a quite general reasoning may consist in
classifying or filtering ontological concepts to answer some queries; (ii) at a more operational way, the ontology and the
fuzzy representations can be used to deduce spatial reasoning operations in the images and to guide image interpretation
tasks such as localization of objects, segmentation, recognition. The potential of these types of reasoning and of the
proposed approach has been illustrated on a simple example in brain imaging. The enriched ontology contributes to
reducing the semantic gap, which is a difficult and still open problem in image interpretation, and provides tools both
for knowledge acquisition and representation and for its operational use. It has an important potential in model-based
recognition that deserves to be further explored.

It should be noted that all concepts that are included in the ontology are generic. Only their fuzzy representations
(and their semantics) may vary from one domain to another one, and can be learned. At this stage of development, the
ontology contains the most used spatial relations. Concepts that are not encoded cannot be used in the reasoning, but
the ontology could be easily extended to add new ones. What might be more difficult is to define the proper semantics
and the associated fuzzy representation. For instance, our work on the relation “between’’ [10] has shown that the
semantics can vary a lot depending on the context, but also on the shape of the objects. Modeling complex relations is
still an open question for most of them.
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